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CORRELATION FUNCTIONS OF CIRCULAR WILSON
LOOP WITH LOCAL OPERATORS

E. I. Buchbinder 1

The University of Western Australia, Australia

We discuss the correlation function of a circular Wilson loop with one or two local scalar operators
in N = 4 supersymmteric YangÄMills theory. We show that in the case of one local operator such a
correlation function is ˇxed by conformal invariance up to a constant, and in the case of two operators
it is ˇxed up to a single function of two variables. These two variables have a clear geometric meaning:
after conformal transformation from R4 to AdS2 × S2, they become the geodesic distances in AdS2

and S2. We present some explicit results at weak and strong coupling. We also comment that correlators
of inˇnite line Wilson loop with local operators are the same as those for circular loop.

PACS: 12.10.-g; 12.15.-y

1. As is well known, conformal invariance ˇxes correlation functions to a large extent.
The most interesting and important observables in conformal ˇeld theory (CFT) are the ones
which are substantially constrained but yet nontrivial. For example, it is well known that in
any CFT 2- and 3-point functions of local, scalar, gauge-invariant operators are ˇxed up to a
constant. More precisely2,

C2 = 〈O(�a1)O†(�a2)〉 =
1

|�a1 − �a2|2Δ
, dim O = Δ, (1)

and

C3 = 〈O1(�a1)O2(�a2)O3(�a3)〉 =
C123

|�a12|Δ1+Δ2−Δ3 |�a13|Δ1+Δ3−Δ2 |�a23|Δ2+Δ3−Δ1
,

dim Oi = Δi.

(2)

In general, Δ and C123 are functions of the coupling constant λ. Hence, we can conclude that
computation of C2 and C3 is reduced to computation of scalar quantities Δ(λ) and C123(λ)
as the dependence on the coordinates is fully ˇxed by conformal invariance.

1E-mail: evgeny.buchbinder@uwa.edu.au
2In the paper, it is assumed that we performed the Wick rotation to Euclidean space, and by �a we denote a point

in R4. Strictly speaking, the results for the correlation functions are valid only in the Euclidean space where the
operators cannot become null-separated.
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Similarly, 4-point function is constrained as follows:

C4 = 〈O1(�a1)O2(�a2)O3(�a3)O4(�a4)〉 =
1

|�a12|q1 |�a14|q2 |�a24|q3 |�a34|q4
G(u, v; λ),

q1 = −Δ1 + Δ2 + Δ3 − Δ4, q2 = Δ1 − Δ2 − Δ3 + Δ4,

q3 = −Δ1 + Δ2 − Δ3 − Δ4, q4 = 2Δ3.

(3)

Here the function G(u, v; λ) is conformally invariant and depends on 2 conformally invariant
variables (cross ratios) u and v

u =
|�a12|2|�a34|2
|�a13|2|�a24|2

, v =
|�a14|2|�a23|2
|�a13|2|�a24|2

. (4)

Note that conformal symmetry does not ˇx the prefactor in (3) uniquely. However, the ratio of
any such prefactors is conformally invariant and, hence, can be absorbed into the redeˇnition
of the function G. Thus, computation of C4 at a given coupling is equivalent to computation
of a single function G(u, v) of 2 variables.

The above results are based only on conformal symmetry and are valid in any CFT. Below
we will consider a particular CFT−N = 4 supersymmetric gauge theory in the planar limit.

2. Local operators are not the only interesting observables in CFT. Among non local
operators the most popular ones are Wilson loops. In N = 4 gauge theory they are deˇned
as [1, 2]

W =
1
N

Tr P exp
[∫

dτ(iAμẋμ(τ) + ΦIθI(τ)|ẋ(τ)|)
]

,

6∑
I=1

θI(τ)θI(τ) = 1. (5)

Here Aμ and ΦI are the bosonic ˇelds in N = 4 gauge theory; (xμ(τ), θI (τ)) is a contour
in R4 × S5, and N is the rank of the gauge group.

In this paper, we will consider Wilson loops in the form of a circle [3] with θ1 = 1,
θ2 = . . . θ6 = 0. Let us comment that a circle is related by a conformal transformation to
inˇnite straight line. However their expectation values are not equal, in fact [4, 5]1,

〈WL〉 = 1, 〈Wc〉 =
2√
λ

I1(
√

λ). (6)

This is due to anomaly in the special conformal transformation which is not well-deˇned at
inˇnity in R4 [6]. However, one should expect that

〈Wc O . . .〉
〈Wc〉

=
〈WL O . . .〉

〈WL〉
, (7)

that is, the anomaly cancels in the ratio. In [3], this was checked in a number of examples.
In this paper, we will concentrate only on the case of circular Wilson loop.

1These results are exact to all orders in the 't Hooft constant λ, I1 is the Bessel function.
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3. Let us consider
〈Wc O . . . 〉

〈Wc〉
, where we inserted n local scalar operators. Such a

correlator depends on
dn = 4n − (Γ − Γn) (8)

independent variables. Here 4n is the total number of coordinates, Γ is the number of
generators preserving the circle and Γn is the number of generators preserving the circle and
n points1. One can show that [3] Γ = 6, Γ1 = 2, Γ2 = Γ3 = . . . = 0. Hence, d1 = 0, d2 = 2,
d3 = 6, . . . This means that correlation function of a circle with just one local operator is ˇxed
by conformal symmetry up to a constant [7, 8] (like 3-point function) and a similar correlator
with two local operators is ˇxed up to a function of 2 variables (like 4-point function).

To construct the general form of the correlators and the 2 conformally invariant variables,
we will use the fact that R4 is conformally equivalent to AdS2 × S2. Let us write the metric
in R4 in polar coordinates in 2 different planes

ds2 = dx2
1 + . . . + dx2

4 = dr2 + r2dψ2 + dh2 + h2dφ2. (9)

We will put the circle in the (x1, x2) plane

x2
1 + x2

2 = R2, x3 = x4 = 0. (10)

Now we change variables (r, ψ, h, φ) → (ρ, ψ, θ, φ) as

r = 	 sinh ρ, h = 	 sin θ, 	 =
R

cosh ρ − cos θ
=

√
(r2 + h2 − R2)2 + 4R2h2

2R
. (11)

In these new variables we obtain

ds2 = 	2[dρ2 + sinh2 ρdψ2 + dθ2 + sin2 θdφ2] = 	2ds2
AdS2×S2 . (12)

The circle (10) is now parameterized by the angle ψ and is mapped to the boundary of AdS2.
Since the boundary is invariant under isometries of AdS2 × S2, we conclude that the 6 con-
formal transformations preserving the circle become now 6 isometries of AdS2 × S2. Let us
consider the correlator 〈Wc O〉/〈Wc〉 in AdS2 × S2. Since it is invariant under isometries,
it is a constant which we will denote Cc(λ). Transforming it back to R4 and using the fact
that the Weyl factor is given by 	 in (11), we obtain

〈Wc O(�a)〉
〈Wc〉

=
Cc(λ)
[	(�a)]Δ

= Cc(λ)
(

4R2

(r2 + h2 − R2)2 + 4R2h2

)Δ/2

, dim O = Δ. (13)

Here �a = (a1, a2, a3, a4), r2 = a2
1 + a2

2, h2 = a2
3 + a2

4. Computation of this correlator is,
hence, equivalent to computation of a singe constant Cc(λ).

Now we will consider
〈Wc O1(�a1)O2(�a2)〉

〈Wc〉
. Again, ˇrst, we will consider it in AdS2×S2.

Since it is invariant under isometries, it has to be a function Fc of two geodesic distances s1

and s2 in AdS2 and S2, respectively. Transforming it back to R4, we obtain

〈Wc O1(�a1)O2(�a2)〉
〈Wc〉

=
1

[	(�a1]Δ1 [	(�a2]Δ2
Fc(u, v; λ), (14)

1In this counting, we view the circle as a ˇxed object and consider only those conformal transformations which
preserve it. As we will see below, these conformal transformations have a clear geometric meaning.



1438 Buchbinder E. I.

where Δ1 and Δ2 are dimensions of the two operators, and u and v are functions of the
geodesic distances in AdS2 and S2. It is convenient to choose

u = cosh s1 = cosh ρ1 cosh ρ2 − sinh ρ1 sinh ρ2 cos (ψ2 − ψ1),
v = cos s2 = cos θ1 cos θ2 + sin θ1 sin θ2 cos (φ2 − φ1).

(15)

Equation (14) is the general form of the correlator based only on symmetry considera-
tions. As an example, let us consider the case of two chiral primary operators in N = 4
supersymmetric YangÄMills theory1

O1(�a1) = c2Tr [Z2(�a1)], O2(�a2) = c2Tr [Z̄2(�a2)], Z = Φ1 + iΦ2, c2 =
4π2

√
2N

. (16)

At week coupling there is a disconnected contribution proportional to the 2-point function

〈O1(�a1)O2(�a2)〉 =
1

|a1 − a2|4
=⇒ Fc,0(u, v) =

1
4(u − v)2

. (17)

Note that from (15) it follows that u � 1, v � 1, and u = v ⇔ u = v = 1, which implies
s1 = s2 = 0. That is, the limit u = v is the limit when the two points coincide. The ˇrst
nontrivial connected contribution at weak coupling can be computed to be [3]

Fc,1(u, v) =
λ

16N2

1
u − v

. (18)

At strong coupling it can be shown that the correlator factorizes to the leading order [3]

〈Wc O1(�a1)O2(�a2)〉
〈Wc〉

=
〈Wc O1(�a1)〉

〈Wc〉
〈Wc O2(�a2)〉

〈Wc〉
. (19)

Recalling (13), we conclude that the function F in this limit is independent of u and v and
is given by Fc(u, v) = Cc,1(λ)Cc,2(λ). In fact, the factorization (19) is universal and is
independent of the choice of the operators as long as their dimensions are much less than

√
λ

in the large λ limit. For the above operators we get

Cc,1(λ) = Cc,2(λ) =
√

2
√

λ

8N
. (20)

Additional examples can be found in [3].
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1The normalization is chosen in the standard way so that their 2-point function is canonically normalized.
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