
�¨¸Ó³  ¢ �—�Ÿ. 2014. ’. 11, º7(191). ‘. 1572Ä1576

”ˆ‡ˆŠ� �‹…Œ…�’���›• —�‘’ˆ– ˆ �’�Œ��ƒ� Ÿ„��. ’…��ˆŸ

INSTANTONS AND HOLOMORPHIC SPHERES
D. Bykov 1

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow,
Max-Planck-Institut féur Gravitationsphysik, Albert-Einstein-Institut, Potsdam-Golm, Germany

We discuss the relationships between instantons and complex algebraic and differential geometry,
which turn out to be useful in certain physical problems.
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In this note we will focus mainly on the geometric setup when a complex sphere ��1

is embedded holomorphically in a complex surface (a complex manifold of dimension two).
We will be mainly dealing with the case that the embedded sphere is rigid; i.e., its embedding
cannot be deformed in a holomorphic fashion (this means that the normal bundle to the
sphere is negative). In this case we shall say that the sphere has been ©blown upª. Blow-ups
are a widespread phenomenon in geometry and are somewhat less known in physics, but
we will argue here, using two examples, that there are physical situations where they are
indispensable.

For an extended account of some of the topics covered here, see [1].

1. WHAT IS A BLOW-UP?

Consider a two-dimensional complex space �2 with coordinates (z1, z2). The blow-up is
a replacement of one of the points in �2, say, the origin (0, 0) by a ©sphereª ��1. This ��1

encodes the angle at which we approach the point.

Formally speaking, the blown-up manifold �2, denoted �̃2, may be deˇned by means of
the equation

�̃2 = {z1w2 = z2w1 ⊂ �
2 × ��1}, (1)

where (w1 : w2) are the homogeneous coordinates on the ��1. Clearly, there is a projection

map π : �̃2 → �
2, which is singular at the point z1 = z2 = 0 Å its Jacobian is zero at this

point. However, the manifold �̃2 is nonsingular. It is evident from (1) that the paths in �2,
which approach the origin at distinct angles, end up at distinct points of the ��1.

At ˇrst it may seem like an artiˇcial construction, but the examples below will serve to
convince the reader that this is not so.

1E-mail: dbykov@mi.ras.ru
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2. THE DEFORMED ADHM EQUATIONS

It has been an observation of [3] that blown-up spacetime �̃2 appears inevitably if one
considers a natural deformation of the ADHM equations [2] Å the equations that describe
the moduli space of instantons (gauge connections with self-dual ˇeld strength) on �4.

The simplest way to describe the moduli space Mn,k of instantons for gauge group U(n)
and instanton charge k is to regard it as a hyper-Kéahler quotient �2k(n+k)//

H

U(k). We will

view �2k(n+k) as a collection of two k × k matrices B0, B1 and two matrices I, J of sizes
k × n and n × k, respectively. Then the action of U(k) on these matrices can be described
as follows:

B0,1 → gB0,1g
†, I → gI, J → Jg†, where g ∈ U(k). (2)

Upon deˇning the moment maps for the U(k) action, μR and μ�, one can write down the
ADHM [2] equations:

ADHM : μR = μC = 0. (3)

From a mathematical standpoint, they are not completely natural. Indeed, nothing prohibits
a ©centralª term in the r.h.s.: μR = ξ1 �k, μC = (ξ2 + iξ3)�k, and, therefore, generically it
is natural to include it. For ξ �= 0 these equations, however, no longer describe the moduli
space of instantons on �

4 (the curvature is no longer self-dual). One possible physical
interpretation of the deformed equations, due to [3], is that they decribe instantons on a new
manifold Y �= �4.

For ξ �= 0 the problem turns out to be nontrivial even for Abelian U(1) instantons. In
the case n = k = 1 one can build, however, the gauge potential explicitly and check that the

corresponding ˇeld strength is self-dual on a manifold �̃2 described by (1), with the metric
simply being the metric induced by the embedding (1) in �2 ×��1. The physical reason for
the appearance of the blow-up is that the U(1) instanton carries not just the instanton charge,
but also a monopole charge, whose magnetic 	ux ©in	atesª the sphere ��1 around itself.

For what follows we document that the Kéahler potential of the induced metric is

K = log x + x, (4)

where
x := |z1|2 + |z2|2 (5)

is a U(2)-invariant combination that we will encounter frequently.

3. EFFECTIVE ACTIONS, ADE SINGULARITIES AND ALE SPACES

Another physics realm where the blow-up appears naturally is in the framework of effective
supersymmetric ˇeld theories on D-branes placed at singularities of CalabiÄYau manifolds. In
this section we describe N = (1, 0) supersymmetric theories in 6D, which arise as effective
theories for the 	uctuations of six-simensional D-branes located at ADE-singularities of a
transverse K3-surface (CalabiÄYau space) [4]. The so-called Higgs branch of such theories
naturally leads to manifolds (the so-called ©gravitational instantonsª) which include copies of
��

1 glued in with normal bundle O(−2).
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In six dimensions the gauge ˇeld strength superˇeld (Wa)A is of opposite chirality to the
supercharge and may be expanded in elementary ˇelds as follows, up to linear order in the
Grassmann coordinates (θa)A

1:

W a
A = λa

A + F abθb
A + (Diσi)ABCabθb

B + . . . , (6)

and the matrix of ˇelds F ab is ©tracelessª: CabF
ab = 0 (C is a non-degenerate charge

conjugation matrix). The reality property for the symplectic-Majorana spinor W a
A translates

into the reality properties of the component ˇelds. In particular, λa
A is a symplectic-Majorana

spinor as well, (Fab)∗ is linearly related to Fab, hence it has only 15 real components, which
can be packed into a skew-symmetric real-valued tensor Fμν , and Di are a triplet of real
auxiliary ˇelds.

It is precisely the appearance of this triplet, in place of a singlet D, that is important for
us here. Assuming that the theory includes M hypermultiplets with scalar components mφa

A,
where a is an U(N) gauge index and m labels the hypermultiplet (m = 1, . . . , M ), let us
now write out the part of the supersymmetric Lagrangian, where the Di ˇelds enter:

L ∼ 1
2
D2

i + Di

[
M∑

m=1

(mφa
A)∗(σi)AB mφa

B + ζi

]
, (7)

where ζi is a triplet of FayetÄIliopoulos terms. The ˇelds Di are auxiliary, in the sense that
they have no kinetic terms, so they can be integrated out of (7) to produce

L ∼ 1
2

[
M∑

m=1

(mφa
A)∗(σi)AB mφa

B + ζi

]2

. (8)

The locus of points in ˇeld space where this function reaches a (zero) minimum is given
by the hyper-Kéahler moment map equations μi = 0, i = 1, 2, 3. Since ˇeld conˇgurations
related by gauge transformations are equivalent, we need to take the quotient with respect
to the gauge group U(N), hence the space of physical ˇeld conˇgurations saturating the
minimum of the potential is the hyper-Kéahler quotient { μ−1

i (0), i = 1, 2, 3 }/U(N). These
hyper-Kéahler quotients are Ricci-	at asymptotically locally Euclidean (ALE) spaces, which
have ©blown-upª spheres embedded in them.

The physical interpretation of the situation elaborated in this section is quite remarkable:
the smooth ALE metrics provided by the hyper-Kéahler quotients are, in fact, metrics on the
resolutions of the ADE-singularities at which we place our D-branes!

The EguchiÄHanson space is a special case when N = 1, M = 2. It is described by a
Kéahler potential that, in principle, is known explicitly, but for us the only important thing
will be its expansion around the origin:

K = log x + x2 + . . . , as x → 0. (9)

The important difference between (4) and (9) is the x vs. x2 terms in the expansions of the
Kéahler potentials. Our point is that they are different because the ��1's in the two cases are
embedded with different normal bundles: O(−1) and O(−2), respectively.

1Here a = 1, 2, 3, 4 is the SU(4) index, A = 1, 2 is the SU(2) R-symmetry index.



Instantons and Holomorphic Spheres 1575

4. EINSTEIN METRICS ON BLOWN-UP SPACES

A natural question, which arises from the above analysis, is what happens in the case of
a sphere ��1 embedded with a normal bundle O(−m) for higher m, i.e., m � 3. From the
adjunction formula it follows that this can only happen for a ��1 in a surface Y of ©negative
curvatureª, i.e., c1(Y ) < 0, Å this is in contrast to the O(−1) case (in a surface of ©positive
curvatureª) and the O(−2) case (CalabiÄYau).

It is interesting to note that in the negative-curvature case it is possible to build KéahlerÄ
Einstein metrics on the total spaces of the O(−m), m � 3 line bundles over ��1. Indeed,
we look for the metrics gij̄ satisfying

Rij̄ = −gij̄ . (10)

The metric is assumed to be U(2)-invariant and originating from a Kéahler potential: gij̄ =
∂2K

∂zi∂z̄j
with K = K(x). For such an ansatz Eq. (10) with the boundary condition (chosen

by analogy with (4) and (9))

K(x) = log x + a xm + . . . as x → 0 (11)

may be solved explicitly. Introducing a new function Q := xK ′, we can write the solution
as follows:

Ym :

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
m > 3: x =

3∏
i=1

(Q − yi)
1

2+yi ,

where y3
i + 3y2

i − (m − 2)2(m + 1) = 0,

m = 3: x = exp
(
− 2

Q + 2

) (
Q − 1
Q + 2

)1/3

.

The interesting fact is that, for m � 3, the Kéahler potential tends to inˇnity as |z1|2+|z2|2 → 1.
Moreover, asymptotically near |z1|2 + |z2|2 � 1 the metric behaves as the Lobachevsky space
H4 metric near the boundary. However, the requirement that the topological characteristics of
this space Å the Euler characteristic and signature Å are integers, implies1 that the boundary
cannot be S3 = ∂H4, but it rather has to be a quotient thereof, more precisely the lens space
L(m, 1) = S3/Zm. Requiring that the boundary is the appropriate lens space, we ˇnd that
Ym has the topological numbers of a line bundle over ��1.

To summarize, we have described the neighborhood of a sphere ��1 embedded with
an arbitrary negative normal bundle O(−m), m > 0. The m = 1 case corresponds to the
classical ©blow-upª (1).
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