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Singular behavior of the Laplace operator in spherical coordinates is investigated. It is shown that
in course of transition to the reduced radial wave function in the Schréodinger equation there appears
additional term including the Dirac delta function, which was unnoted during the full history of physics
and mathematics. The possibility of avoiding this contribution from the reduced radial equation is
discussed. It is demonstrated that for this aim the necessary and sufˇcient condition is the requirement
of the fast enough falling of the wave function at the origin. The result does not depend on character
of potential Å whether it is regular or singular. The various manifestations and consequences of this
observation are considered as well. The cornerstone in our approach is the natural requirement that the
solution of the radial equation at the same time must obey the full equation.
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INTRODUCTION

The aim of this paper is to survey the singular behavior of the Laplacian in spherical
coordinates. Laplacian is encountered almost in all disciplines of theoretical physics as well
as in mathematical physics. In this article, our attention is paid mostly to the Schréodinger
equation, which in the Cartesian coordinates has the form (in units � = c = 1):[

− 1
2m

Δ + V (r)
]

ψ(r) = Eψ(r), (1)

where

Δ ≡ ∇ · ∇ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(2)

is a Laplacian.
In spherical coordinates the variables are separated and the total wave function is repre-

sented as

ψ(r) = R(r)Y m
l (θ, ϕ) =

u(r)
r

Y m
l (θ, ϕ). (3)

The Laplacian is also rewritten in terms of these coordinates and after the substitution of
Eq. (3) into Eq. (1) we derive the radial equations

− 1
2m

[
d2

dr2
+

2
r

d

dr

]
R(r) +

l(l + 1)
2mr2

R(r) + V (r)R(r) = ER(r) (4)

or [
− 1

2m

d2

dr2
+

l(l + 1)
2mr2

+ V (r)
]

u(r) = Eu(r). (5)

All of this is well known from the classical textbooks on quantum mechanics, electrodynamics,
etc. We display them here for further practical purposes. It will be shown below that the
status of Eq. (5) is problematic.

From both mathematical and physical points of view, it is very important that the solutions
of radial equations were compatible with the full Schréodinger equation (1). This is verbally
mentioned in books, not only earlier [1, 2], but also in the modern ones [3]. For example,
Dirac [1] wrote: ©Our equations . . . strictly speaking, are not correct, but the error is
restricted by only one point r = 0. It is necessary perform a special investigation of solutions
of wave equations, that are derived by using the polar coordinates, to be convince are they
valid in the point r = 0 (p. 161)ª.

We are sure that mathematicians knew about this problem (singularity of the Laplacian)
for a long time, but character of singularity has never been speciˇed. It was always underlined
in mathematics that r > 0 strictly, but r = 0 is not somehow prominent point for the three-
dimensional equation. Therefore, reˇnement of the behavior of the radial wave function at
that point has a basic meaning in our opinion.

The ˇrst papers [4Ä7] on this problem appeared recently almost in parallel.
Because of relative novelty of this subject, below we will take some attention to its

substantiation.
To complete the picture, we ˇrst discuss brie	y the essence of this problem, and then

some of its application will be considered.
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In the teaching books and scientiˇc articles two methods were applied in the transition
from Eq. (4) to Eq. (5):

1. Substitution

R(r) =
u(r)

r
(6)

into Eq. (4) or
2. Replacement of the differential expression in the parenthesis of Eq. (4) as [8Ä10] 1:[

d2

dr2
+

2
r

d

dr

]
→ 1

r

d2

dr2
(r). (7)

We demonstrate below that in both cases the mistakes were made.
As all the principal information is concentrated in the Laplace operator, we begin with

consideration of the classical Laplace equation in the vacuum (electrostatic equation).

1. THE LAPLACE EQUATION

Let us consider the Laplace equation in vacuum

∇2ϕ(r) = 0, (8)

which in the Cartesian coordinates has the form

∇2ϕ(r) =
(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
ϕ(x, y, z) = 0. (9)

This equation may be solved simply by separation of variables. The solution has the form [10]:

ϕ(x, y, z) = e±iαx e±iβy e±
√

α2+β2z. (10)

Clearly the solution is regular everywhere and at the origin is constant

ϕ(0) = const. (11)

There are other forms of solution of Eq. (9) depending on alternate ways of separation, but
all of them give the constant values at the origin.

Now, let us ˇnd the spherically symmetric solution. The corresponding equation is
written as [8]: (

d2

dr2
+

2
r

d

dr

)
ϕ(r) = 0. (12)

Certainly, it was possible passing to spherical coordinates in Eq. (9), substituting (3) and
taking zero angular momentum. We will arrive again to Eq. (12).

1In the fundamental book of J. D. Jackson [10], this relation is even exhibited on the cover-page in the list of the
most fundamental forms!
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The operator in parenthesis of Eq. (12) is often rewritten ([8], Ch. 20, [9], etc.) according
to (7), and subsequently, Eq. (12) takes the form

1
r

d2

dr2
(rϕ) = 0, (13)

the solution of which is
u(r) ≡ rϕ = ar + b. (14)

But, determining from here the function

ϕ = a +
b

r
(15)

does not obey Eq. (12), because(
d2

dr2
+

2
r

d

dr

) (
1
r

)
= −4πδ(3)(r), (16)

i.e., the function (15) is the solution everywhere except the origin of coordinates. It does not
satisfy the boundary value (11) as well.

What happens? It seems that we made an illegal action somewhere (see, Feynman [8]).
It is possible to consider this problem by another way also, namely, following the substi-

tution (6), take

ϕ(r) =
u(r)

r
(17)

in order to remove the ˇrst derivative term from Eq. (12). Then, we obtain

1
r

(
d2

dr2
+

2
r

d

dr

)
u(r) + u(r)

(
d2

dr2
+

2
r

d

dr

) (
1
r

)
+ 2

du

dr

d

dr

(
1
r

)
= 0. (18)

The last term cancels the ˇrst derivative term in the ˇrst parenthesis and there remains

1
r

d2u

dr2
+ u

(
d2

dr2
+

2
r

d

dr

) (
1
r

)
= 0, (19)

but, according to Eq. (16), instead of Eq. (13), it follows

1
r

d2u

dr2
− 4πδ(3)(r)u(r) = 0. (20)

The appearance of the delta function here is unexpected. Comparing this one with Eq. (13),
we conclude that the representation of the Laplace operator in the form (7) is not valid
everywhere. The correct form is [5, 7]:

d2

dr2
+

2
r

d

dr
=

1
r

d2

dr2
(r·) − 4πδ(3)(r)r · . (21)

This expression deˇnes the form of the Laplacian precisely everywhere including the origin
of coordinates.
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It is evident, that after substitutions(
d2

dr2
+

2
r

d

dr

)
ϕ ⇒ 1

r

d2

dr2
(rϕ) and u = rϕ, (22)

the solution ϕ = u/r, obtained from Eq. (13), never satisˇes the initial equation (12)
everywhere.

By unknown for us reasons, this simple fact stayed unnoted till now and in all papers as
well as in all books the expression (7) was used. As we made clear above, in this case, the
obtained solution (15) looks like if there is a point source at the origin. However, it is not
so Å mathematical reason is that in spherical coordinates the point r = 0 is absent. The
Jacobian of transformation to spherical coordinates has the form J = r2 sin θ and is singular
at points r = 0 and θ = nπ (n = 0, 1, 2, . . .).

Singularity in angles is eliminated by requirements of continuity and uniqueness, which
lead to spherical harmonics Y m

l (θ, ϕ). As regards of the radial variable r, there is no such a
restriction for it. Therefore, if we want to derive the solution valid everywhere, we are forced
to take the delta function into consideration.

It must be noted that the appearance of the delta function in the Laplace equation was
discussed also in article [6], where the difference between spaces Rn and Rn/{0} is studied
from the positions of distribution theory.

The question is: how to formulate the problem in such a way that to retain all results
derived earlier for the central potentials with the aid of traditional reduced radial equation (5)
containing the second derivative only? One of the reasonable ways is the following: as in

spherical coordinates δ(3)(r) =
δ(r)
4πr2

[11], Eq. (20) can be reduced to

r
d2u

dr2
− δ(r)u(r) = 0 (23)

or

r
d2u

dr2
− u(0)δ(r) = 0. (24)

Let us require that the additional term is not present, i.e.,

u(0) = 0. (25)

Moreover, the delta function is ©overcomeª if at least

lim
r→0

u(r) ≈ r. (26)

Then, owing to the relation rδ(r) = 0, the extra term falls out and the standard equation (13)
follows. Let us look ˇrst what the condition (25) gives in the above-considered solution (14).
Requiring (25), it follows b = 0, i.e., u = ar and ϕ(r) = a = const. Hence, we obtain the
correct, consisting with the full equation (8), value (11). It is consisting also with the real
physical picture.

Therefore, in the reduced radial equation (5) we must consider only such a class of
solutions, which vanish at the origin. The other entire boundary conditions lose the physical
meaning and have only mathematical interest. It is precisely the main result of this section Å
Eq. (5) gives the consistent with the primary equation in Cartesian coordinate's solution only
if the restriction (25) is satisˇed. Appearance of this condition is purely geometrical (not
a dynamical) artefact. In short, Eq. (5) and the condition (25) appear simultaneously.
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2. THE RADIAL SCHRéODINGER EQUATION AND u(0)

As an example, let us consider the radial Schréodinger equation (4).
After the substitution (6), according to the above-mentioned about the Laplace operator,

we obtain the following form of this equation:

1
r

[
d2u(r)

dr2
− l(l + 1)

r2
u(r)

]
− δ(r)

r2
u(r) + 2m [E − V (r)]

u(r)
r

= 0. (27)

To single out the true singularity, let us multiply this equation on r2 and integrate by dr in a
sphere of small radius a. We derive

a∫
0

r
d2u(r)

dr2
dr − l(l + 1)

a∫
0

u(r)
r

dr − u(0) +

a∫
0

(2mE − V (r)) u(r)r dr = 0. (28)

From here we determine

u(0) =

a∫
0

r
d2u(r)

dr2
dr − l(l + 1)

a∫
0

u(r)
r

dr +

a∫
0

(2mE − V (r)) u(r)r dr. (29)

Because of smallness of a, substitute here the asymptotic form of wave function at the origin

u(r)
r→0

≈ rs (30)

and the potential as

V (r)
r→0

≈ g

rn
, n > 0. (31)

Then, the integration in Eq. (29) may be easily performed and we obtain

u(0) =
[
s(s − 1) − l(l + 1)

s
rs +

2mE

s + 2
rs+2 − 2mg

s + 2 − n
rs+2−n

]a

0

. (32)

We must remove the extra delta term from Eq. (27), because, otherwise, we do not get the
usual form of radial equation (5).

If we retain u(0) in Eq. (28), then there are three possible values for it: u(0) = 0, u(0) is
ˇnite, and u(0) = ∞. Note, that all the enumerated values do not contradict the normalization

condition near the origin
a∫
0

u2 dr < ∞, but not all of them are useful.

The ˇrst value is preferable among them, because in opposite cases Å ˇnite u(0) will
give R ≈ const/r at the origin and in Eq. (27) the delta function reappears. Therefore, this
solution will not obey the full Schréodinger equation. The last value, u(0) = ∞ is, of course,
unacceptable, because to have an inˇnite number in equation is senseless.

There remains only one reasonable value, Eq. (25). Moreover, this restriction takes place
in spite of the potential is regular or singular. Singularity of the potential effects only the law
of turning of u(r) to zero. This follows from the relation (32) as all the exponents here must
be positive. We will have therefore

s > 0, s + 2 > 0, s + 2 − n > 0.
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It follows from the last inequality that when the index of singularity of potential n increases,
the index of wave function behavior s must also increase. Moreover, we must have s � 1
in order the wave function at the origin ©overcomesª the delta function in the term u(r) δ(r).
Therefore, there remain the ˇnal allowed inequalities

s � 1, s + 2 − n > 0. (33)

If, in addition, we require this production to be a distribution, it becomes necessary u(r) to
be an inˇnitely smooth function [12, 13], i.e., in Eq. (30) we must have s � 1 and the index
s is an integer number.

Thus, the wave function must be the sufˇciently regular one at the origin. This fact may
have far-reaching consequences.

3. SOME APPLICATIONS

The ˇrst question, that appears here, is the following: under what conditions can we
maintain the standard form of reduced wave equation?

Basing on the previous considerations, we suppose that the equation in the standard
form (5) takes place and clarify for which potentials it happens, i.e., when can we satisfy the
restriction (25)?

3.1. Regular Potentials. Let us consider ˇrst the regular potentials

lim
r→0

r2V (r) = 0. (34)

Then, in the Schréodinger equation (5) the leading asymptotic at the origin is determined by a
centrifugal term and the characteristic equation takes the form s(s − 1) = l(l + 1). So,

u
r→0

∼ c1r
l+1 + c2r

−l, l = 0, 1, 2 . . . (35)

We must retain only the ˇrst solution, because now s = l + 1 � 1, and the derived
representation is satisˇed (s is an integer number!). At the same time, the second solution
with s = −l must be ignored even for l = 0 [14]. The second solution does not satisfy the
three-dimensional Schréodinger equation (1), as after its substitution the Laplacian produces
l-fold derivatives of delta function [14].

Resuming the above-said, we conclude that in case of regular potentials (34) the radial
equation (5) remains, because, in this case, all the requirements are realized and, consequently,
the results obtained earlier by this equation remain valid without any changes!

3.2. Weakly-Singular Transitive Potentials. Let us now consider potentials that are inter-
mediate between singular and regular ones, the so-called weakly-singular potentials of the form

lim
r→0

r2V (r) = −V0 = const. (36)

Here V0 > 0 corresponds to the attraction, while V0 < 0 Å to the repulsion. Now, the
behavior of u(r) at the origin is

u
r→0

∼ d1r
1/2+P + d2r

1/2−P , P =

√(
l +

1
2

)2

− 2mV0 > 0. (37)
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In order that the usual equation (5) will still remain, according to Eq. (33), we must have
(s � 1), i.e., P � 1/2 for all l, including l = 0, and, at the same time, according to
requirement of the distribution theory, 1/2 + P = N , N = 1, 2, 3 . . . So, it results in a
©strange quantizationª of V0, which is also senseless. It follows that, in this case, there are
no solutions except for ©quantizedª V0.

We see that the second solution in Eq. (37) must be discarded. Note, that in scientiˇc
literature there is no deˇnite viewpoint concerning this (see, e.g., book by R.Newton [15]
and various modern articles [16, 17]). Therefore, the above-mentioned derivation is the ˇrst
correct one.

3.3. The Problem of Self-Adjoint Extention (SAE). Last decades the problem of self-
adjoint extension (SAE) of radial Hamiltonian

Hr ≡ − d2

dr2
+

l(l + 1)
r2

+ 2mV (r) (38)

was often considered in cases of singular potentials, like the above one. In this problem the
essential role plays the behavior of radial wave functions u(r) at the origin of coordinates.
For example, the condition of self-adjointicity of Hamiltonian (38) has the form [18]:

∞∫
0

u1Ĥru2 dr −
∞∫
0

u2Ĥru1 dr =
1
2

lim
r→0

[u2(r)u′
1(r) − u1(r)u′

2(r)] = 0, (39)

where u1,2(r) ≡ rR1,2(r) are two linearly independent solutions of the reduced radial equa-
tion (5) corresponding to different eigenvalues of the Hamiltonian (38). There were considered
various boundary conditions such as the ones of Dirichlet, Neumann, and the most general
condition of Robin [19]. As we made clear above, only the Dirichlet condition (25) is right.

In most articles in course of discussion of SAE procedure with the Hamiltonian (38)
the authors pay attention only to square integrability of the wave function [20]. But it
is not sufˇcient in all cases. Still W. Pauli [21] noted that ©the eigenfunction, for which

lim
r→0

(rR) 
= 0, is not permissible (even if
∞∫
0

R∗Rr2 dr exists for such functions)ª. The same

is conˇrmed in the more modern books (for example, in [3, pf 52] the author says: ©It can
be shown that the condition u(0) = 0 follows from the requirement that the solution of the
Schréodinger equation in spherical coordinates must be also solution when the equation is
written in Cartesian coordinatesª). But, unfortunately, this thesis is not shown regularly in
this book, especially for singular potentials.

If we impose the boundary condition with the indices s � 1, we must restrict ourselves only
by the ˇrst (regular) solution, i.e., d2 = 0 (see, Eq. (37)). Then, the radial Hamiltonian (38)
becomes a self-adjoint one automatically and the SAE is not needed. As for the ˇrst solution,
the condition P � 1/2 is achieved only if

l(l + 1) > 2mV0, (40)

i.e., for l = 0 only V0 < 0 is permissible and as regards of other admissible values, from the
condition 1/2 + P = N follows a strange ©quantizationª of V0:

V0 =
(l + 1/2)2 − (N − 1/2)2

2m
, N = 1, 2, 3 . . . (41)
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Hence, even for such a simple singular potential (36) Eq. (5) meets the serious physical
difˇculties.

We do not consider here the other, more singular potentials, because the general tendency
is obvious. The Hamiltonian (38) by itself is always self-adjoint on the regular solutions,
satisfying (25), as it follows from the condition (39) and restrictions (33) for any singular
potentials. For all other boundary conditions the Hamiltonian (38) will not bear a relation to
physics, because this form of Hamiltonian emerges only together with condition (25).

We conclude that the reduced radial equation (5) may be applied for all regular potentials,
nevertheless for singular potentials one must work only with the total radial equation (4) and,
consequently, use the full radial Hamiltonian

HR = − d2

dr2
− 2

r

d

dr
+

l(l + 1)
r2

+ 2mV (r), (42)

but search for regular solutions only. In [4], we have shown that from the ˇniteness of the
differential probability dW = |R(r)|2 r2 dr and the time independence of the norm, it follows
that R(r) is less singular at the origin than 1/r, or

lim
r→0

rR = 0, (43)

which is evidently consistent with u(0) = 0.
Moreover, in case of fulˇllment of this condition, the radial equation (4) for full radial

function R(r) is equivalent to the Schréodinger equation (1). This equivalence takes place
only in nonsingular solutions. In other words, Eq. (4) is equivalent to the three-dimensional
Schréodinger equation only for regular solutions. This was proved also in [6] in the framework
of the distribution theory.

For demonstration of principal difference between the full and reduced radial Hamilto-
nians let us consider now the same problem in view of the full radial function R(r). The
condition (43) is the only boundary restriction for it, which is not so severe. Therefore, there
appears a possibility to retain the second solution as well in the case of singular potentials
behaving like (36).

The following statement can be proved:
Theorem. The radial Schréodinger equation (4) except the standard (nonsingular) solutions

has also additional solutions for attractive potentials, like (36), when the following condition
is satisˇed:

l(l + 1) < 2mV0. (44)

The proof of this theorem is straightforward.
Indeed, for the attractive potential (36) at small distances this equation reduces to

R′′ +
2
r
R′ − P 2 − 1/4

r2
R = 0, (45)

where P is deˇned by (37).
Therefore, Eq. (45) has the following solution:

lim
r→0

R = ast r−1/2+P + aadd r−1/2−P ≡ Rst + Radd. (46)



34 Khelashvili A. A., Nadareishvili T. P.

So, we have two regions for this parameter P . In the interval

0 < P < 1/2 (47)

the second term aadd r−1/2−P = Radd must also be retained, because the boundary condi-
tion (43) is fulˇlled for it. The potential like (36) was ˇrst considered by K.Case [22], but
he ignored the second term in solution. As regards of a region P � 1/2, only the ˇrst term
ast r−1/2+P = Rst must be retained.

From Eqs. (37) and (47) follows the condition (44) for existence of additional states. If
we demand the reality of P (otherwise, ©fallingª to centre takes place [22Ä24]), the parameter
V0 would be restricted by the condition

2mV0 < l(l + 1) +
1
4
. (48)

The last two inequalities restrict 2mV0 in the following interval:

l(l + 1) < 2mV0 < l(l + 1) +
1
4
. (49)

Intervals from the left and from the right sides have no crossing and therefore, if additional
solution exists for ˇxed V0 and for some l, then it is absent for another l.

Thus, we see from (44) that in the l = 0 state, except the standard solutions, there are
additional solutions too for arbitrary small V0, while for l 
= 0 the ©strongª ˇeld is required
in order to fulˇl (44).

As the additional solutions obey all physical requirements in the interval (47), one has to
retain this solution as well and study its consequences.

For deˇniteness consider the potential

V = −V0

r2
, V0 > 0. (50)

When E = 0, the solution of the full radial equation (4) has the form in whole space

R = Ar−1/2+P + Br−1/2−P . (51)

There is only one worthy case, namely, 0 < P < 1/2. We see that the wave function has a
simple zero, determined by

r = r0 =
(
−B

A

)1/P

. (52)

(It is evident from this relation that constants A and B must have opposite signs in order
for r0 to be real number.) Hence, the wave function has only one node and according to
the well-known theorem (the number of bound states coincides with the number of nodes of
radial wave function R(r) in E = 0 state [2]), we have exactly one bound state.

This result differs from that considered in any textbooks on quantum mechanics.
We can give very simple physical picture of how the additional solutions arise. For this

purpose, let us rewrite the Schréodinger equation near the origin for attractive potential (36)
in the form

R′′ +
2
r
R′ + 2m [E − Vac(r)] R = 0, (53)
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where

Vac =
P 2 − 1/4

2mr2
. (54)

Consider the following possible cases:
i) If P > 1/2, then Vac > 0 and it is repulsive centrifugal potential and as we saw, one

has no additional solutions.
ii) If 0 < P < 1/2, then Vac < 0. Therefore, it becomes attractive and is called as quantum

anticentrifugal potential [25]. This potential has Radd states, because the condition (43) is
fulˇlled in this case.

iii) If P 2 < 0, then Vac becomes strongly attractive and one has ©falling to the centerª.
Therefore, the sign of the potential Vac determines whether we need additional solutions

or not.
3.4. SAE Procedure for Full Radial Hamiltonian in ©Pragmaticª Approach. Considering

some consequences from the point of the above-mentioned results, let us ˇrst of all remember
some issues of SAE procedure.

If for any functions u and υ, given operator Â satisˇes the condition

〈υ | Âu〉 = 〈Âυ |u〉, (55)

then this operator is called Hermitian (or symmetric). For self-adjointness it is required in
addition that the domains of functions of operators Â and Â+ would be equal. As a rule,
the domain of Â+ is wider and it becomes necessary to make a self-adjoint extension of the
operator Â.

There exists a well-known powerful mathematical apparatus for this purpose [26, 27].
It may happen that the operator is Hermitian, but its self-adjoint extension is impossible,

i.e., Hermiticity is the necessary, but not sufˇcient condition for self-adjointness. Good exam-
ple is the operator of the radial momentum pr, which is Hermitian on functions that satisfy
the condition (43), but its extension to the self-adjoint one is impossible (see, L. D. Faddeev's
remark in the A.Messiah's book Å Russian translation, footnote in p. 336 [28]).

Our subject of interest is the radial Hamiltonian (42) and, consequently, Eq. (4).
It is easy to see that for any two eigenfunctions R1 and R2 corresponding to the levels

E1 and E2 of the radial Hamiltonian ĤR, the condition (55) takes the following form:

∞∫
0

R1ĤRR2r
2 dr −

∞∫
0

R2ĤRR1r
2 dr = 2m (E2 − E1)

∞∫
0

R1R2r
2 dr. (56)

It follows that a self-adjoint condition is proportional to the orthogonality integral, therefore
these two conditions are mutually dependent. As the self-adjoint operator has orthogonal
eigenfunctions, requirement of orthogonality automatically provides self-adjointness of HR,
which means that this way provides realization of SAE procedure. It is an essence of the
so-called ©pragmatic approachª [29], which is much simpler and gets the same results as
the strong mathematical full SAE procedure, provided the fundamental condition (43) is not
violated. Moreover, this method is physically more transparent. Just this method had been
used by K.Case in his well-known paper [22], but he did consider only the regular solution.

Notice that all above considerations are true only for the radial Hamiltonian operator ĤR,
because for other operators proportionality like (56) does not arise.
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3.5. Explicit Solution of the Schréodinger Equation for the Inverse Squared Potential.
It was thought that potential (50) has no levels out of the region of ©falling to the centerª
(see, e.g., [22, 23]), but in [16, 20, 30] single level was found by complete SAE procedure,
while the boundary condition and the range of parameter like P are questionable there. Here
we will show explicitly that this potential has exactly single level, which depends on the SAE
parameter τ .

Let us now study in which cases the right-hand side of (56) is vanishing. We must
distinguish regular and transitive potentials. As we are interested in bound states, we suppose
that the full radial function decreases sufˇciently fast at inˇnity. So, the behavior at the origin
is relevant for our aims.

In case of regular potentials (34), as was mentioned above, we retain only ˇrst, regular
(or standard) solution at the origin

Rst
r→0

∼ astr
l+1. (57)

Calculating the right-hand side of (56) by this function, we get zero. Therefore, for regular po-
tentials the radial Hamiltonian ĤR is self-adjoint on regular solutions and does not need SAE.

Contrary to this case, for transitive attractive (36) potential one has to retain the additional
solution Radd

r→0
∼ r−1/2−P as well, because there are no reasons to neglect it. Now, for both

solutions, the right-hand sides of (56) are not zero in general. Indeed, they equal to

m(E1 − E2)

∞∫
0

R2R1r
2 dr = P

(
ast
1 aadd

2 − ast
2 aadd

1

)
. (58)

Remark. The case P = 0 must be considered separately, when the general solution of (4)
behaves as

lim
r→0

R = ast r−1/2 + aadd r−1/2 ln r = Rst + Radd. (59)

So, instead of (58) one obtains

m(E1 − E2)

∞∫
0

R2R1r
2 dr = −1

2
(
ast
1 aadd

2 − ast
2 aadd

1

)
. (60)

Thus, retaining additional solution causes the breakdown of orthogonality condition and,
consequently, ĤR is no more a self-adjoint operator.

It is natural to ask Å how to fulˇl the orthogonality condition? It is clear, that in both
P 
= 0 and P = 0 cases, one must require

ast
1 aadd

2 − ast
2 aadd

1 = 0 (61)

or equivalently
a1add

a1st
=

a2add

a2st
. (62)

In this case, the radial Hamiltonian ĤR becomes a self-adjoint operator. This generalizes the
Case result [22], who considered only standard solution.
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So, it is necessary to introduce the so-called SAE parameter, which in our case may be
deˇned as

τ ≡ aadd

ast
, (63)

τ parameter is the same for all levels (for ˇxed orbital l momentum) and is real for bound
states.

Now, let us return to the solution of the Schréodinger equation for potential (50)

d2R

dr2
+

2
r

dR

dr
+

(
−k2 − P 2 − 1/4

r2

)
R = 0, (64)

where P is given by (37) and

k2 = −2mE > 0 (E < 0). (65)

One can reduce Eq. (64) to the equation for modiˇed Bessel functions by substitutions

R(r) =
f(r)√

r
, x = kr, (66)

leading to the following equation:

x2 d2f(x)
dx2

+ x
df(x)
dx

−
(
x2 + P 2

)
f(x) = 0. (67)

This equation has three pairs of independent solutions: IP (kr) and I−P (kr), IP (kr) and
eiπP KP (kr), I−P (kr) and eiπP KP (kr), where IP (kr) and KP (kr) are the Bessel and
MacDonald modiˇed functions, respectively [31].

Careful analysis gives that the relevant pair is the ˇrst one only, i.e., the pair IP (kr) and
I−P (kr).

So, the general solution of (64) is

R = r−1/2 [AIP (kr) + BI−P (kr)] . (68)

Consider the behavior of this solution at small and large distances:
a) In case of small distances (see, [31]),

IP (z)
z→0

≈
(z

2

)P 1
Γ(P + 1)

. (69)

Then, it follows from (68) and (69) that

lim
r→0

R(r) ≈ r−1/2

[
A

(
k

2

)P
rP

Γ(P + 1)
+ B

(
k

2

)−P
r−P

Γ(1 − P )

]
. (70)

From (46), (62), (70) and the deˇnition (63) we obtain

τ =
B

A
22P k−2P . (71)
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b) At large distances, we have [31]:

IP (z)
z→∞

≈ ez

√
2πz

(72)

and

R(r)
r→∞

≈ 1√
2π

{A + B} ekr. (73)

Therefore, requiring vanishing of R(r) at inˇnity, we have to take

B = −A, (74)

and from (71), (74) and (65) we obtain one real level (for ˇxed orbital l momentum, satisfy-
ing (44)),

E = − 2
m

[
−1

τ

]1/P

, 0 < P < 1/2. (75)

Equation (75) is a new expression derived as a consequence of orthogonality condition in the
framework of ©pragmaticª approach.

Reality of energy in (75) restricts τ parameter to be negative τ < 0. In general, τ is a
free parameter, but some physical requirements may restrict its magnitude. Note, that this
level is absent in standard quantum mechanics (τ = 0) Å it appears when one performs
SAE procedure.

To obtain the corresponding wave function, take into account the well-known relation [31]:

KP (z) =
π

2 sin Pπ
[I−P (z) − IP (z)] . (76)

Then, the wave function corresponding to the level (75) is

R = −A
2
π

r−1/2 sin PπKP (kr). (77)

Because of exponential damping

KP (z)
z→∞

≈
√

π

2z
e−z, (78)

the function (77) corresponds to the bound state. It is also known that KP (z) function has
no zeroes for real P (0 < P < 1/2), and therefore (75) corresponds to a single bound state.
Moreover, wave function (77) satisˇes the fundamental condition (43) for 0 < P < 1/2.

Let us make some comments.
a) In [20], it was noticed that single bound state may be observed experimentally in polar

molecules. For example, H2S and HCl atoms exhibit anomalous electron scattering [32,33],
which can be explained only by electron capture. Indeed, for those molecules electron is
moving in a point dipole ˇeld, and, in this case, the problem is reduced to the Schréodinger
equation with a potential (50). Thus, a level (75) obtained theoretically may be observed in
those experiments.
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b) It was commonly believed, that the potential

V = − V0

sh2αr
(79)

has no levels in region (47) (see, for example, problem 4.39 in [34]). In [34], by the
arguments of the well-known comparison theorem [26], which in this case looks like

− V0

sh2αr
� − V0

α2r2
, (80)

it is concluded that the potential (79) cannot have a level in the area (47), because the
potential (50) has no levels in this area. But, as we know, there is τ -dependent one
level (75), therefore the levels for (79) are expected. Indeed, in [35] by using the NikiforovÄ
Uvarov method [36], it was shown that the potential (79) has inˇnite number of levels in the
region (47).

4. OTHER APPLICATIONS

There are physically more realistic potentials, which differ from (50), but behave as r−2

at the origin.
Famous examples are molecular potential (valence electron model), the Coulomb potential

in the KleinÄGordon equation, etc.
4.1. Valence Electron Model. Let us consider a molecular potential, having the follow-

ing form:

V = −V0

r2
− α

r
(V0, α > 0) . (81)

Because of a singular r−2-like behavior at the origin, one must consider equation for the
R(r) function, which in dimensionless variables takes the form(

d2

dρ2
+

2
ρ

d

dρ
− P 2 − 1/4

ρ2
+

λ

ρ
− 1

4

)
R = 0, (82)

where

ρ =
√
−8mEr = ar, λ =

2mα√
−8mE

> 0, E < 0, (83)

and P is again given by Eq. (37).
If we substitute

R = ρ−1/2+P e−ρ/2F (ρ), (84)

the equation for con	uent hypergeometric functions follows

ρF ′′ + (2P + 1 − ρ)F ′ − (1/2 + P − λ)F = 0. (85)

This equation has four independent solutions, two of which constitute a fundamental system
of solutions [37]. They are (in notations of [37]):

y1 = F (a, b; ρ), y2 = ρ1−bF (1 + a − b, 2 − b; ρ),
y5 = Ψ(a, b; ρ), y7 = eρ Ψ(b − a, b;−ρ),

(86)
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where
a = 1/2 + P − λ, b = 1 + 2P. (87)

Only y1 is considered in the scientiˇc articles, as well as in all textbooks (see, e.g., [23, 38]).
Requiring a = −n (n = 0, 1, 2 . . .), the standard levels follow. Other solutions (y2, y5, y7)
have singular behavior at the origin and usually they are not taken into account. But the
singularity in case of attractive potentials like (36) has the form r−1/2−P and in the region
0 < P < 1/2 other solutions must be considered as well. Therefore, the problem becomes
more ©richª.

Let us consider a pair y1 and y2. The general solution of (85) is

R = C1ρ
−1/2+P e−ρ/2F (1/2 + P − λ, 1 + 2P ; ρ)+

+ C2ρ
−1/2−P e−ρ/2F (1/2 − P − λ, 1 − 2P ; ρ). (88)

Considering Eq. (88) at the origin and accounting Eq. (63), we obtain the following expression
for SAE τ parameter:

τ =
C2

C1

1
(−8mE)P

. (89)

On the other hand, R must decrease at inˇnity. From the well-known asymptotic properties
of con	uent hypergeometric function F , we ˇnd the following restriction:

C1
Γ(1 + 2P )

Γ(1/2 + P − λ)
+ C2

Γ(1 − 2P )
Γ(1/2 − P − λ)

= 0. (90)

It gives the equation for eigenvalues in terms of τ parameter

Γ(1/2 − λ − P )
Γ(1/2 − λ + P )

= −τ(−8mE)P Γ(1 − 2P )
Γ(1 + 2P )

. (91)

This is very complicated transcendental equation for E, depending on τ parameter. There are
two values of τ , when this equation can be solved analytically:

i) τ = 0. In this case, we have only standard levels, which can be found from the poles
of Γ(1/2 − λ + P ):

1/2 − λ + P = −nr, nr = 0, 1, 2 . . . (92)

ii) τ = ±∞. In this case, we have only additional levels, obtained from the poles
of Γ(1/2 − λ − P ):

1/2 − λ − P = −nr, nr = 0, 1, 2 . . . (93)

Thus, in these cases, one can obtain explicit expressions for standard and additional levels

Est,add = − mα2

2[1/2 + nr ± P ]2
= − mα2

2[1/2 + nr ±
√

(l + 1/2)2 − 2mV0]2
, (94)

where signs (+) or (−) correspond to standard and additional levels, respectively.
We note that only Eq. (92) was known till now. So, Eq. (91) and its consequences are

new results.
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Notice also that, in case V0 < 0, we obtain the well-known Kratzer potential [38], but now
the condition (44) is not satisˇed. Therefore, there are no additional levels for the Kratzer
potential.

It is remarkable that the function (88) may be rewritten in uniˇed form by using the
following relation for the Whittaker functions [39]:

Wa,b(x) = e−1/2x x1/2+b π

sin π(1 + 2b)
×

×
[
F (1/2 + b − a, 1 + 2b; x)
Γ (1/2 − a − b) Γ (1 + 2b)

− x−2b F (1/2 − a − b, 1 − 2b; x)
Γ (1/2 + b − a) Γ (1 − 2b)

]
. (95)

Then, from (83), (88), (90) and (95) we derive

R(r) = C1Γ (1 + 2P ) Γ (1/2 − P − λ)
sin π(1 + 2P )

πr
Wλ,P

(√
−8mEr

)
. (96)

As the Whittaker function Wa,b(x) has an exponential damping [39]

Wa,b(x)
x→∞

≈ e−1/2xxa, (97)

Eq. (97) corresponds to a bound state wave function, which satisˇes the fundamental condi-
tion (43) for 0 < P < 1/2 interval.

Therefore, for τ = 0, ±∞ the standard and additional levels are obtained from (94) with
corresponding wave functions

Rst = C1ρ
−1/2+P e−ρ/2F (1/2 + P − λ, 1 + 2P ; ρ) , (98)

Radd = C2ρ
−1/2−P e−ρ/2F (1/2 − P − λ, 1 − 2P ; ρ) . (99)

For arbitrary τ 
= 0, ±∞ the energy can be obtained from the transcendental equation (91),
while the wave function is given by (96).

The uniˇed form (96) is also a new result and is a consequence of the SAE procedure.
According to [39], our function (96) takes the following form:

R(r) = C1Γ (1 + 2P ) Γ (1/2 − P − λ)×

× sin π (1 + 2P )
πρ

e−ρ/2ρ1/2−P Ψ
(

1
2
− λ − P, 1 − 2P ; ρ

)
, (100)

where Ψ(a, b, x) is one of the above-mentioned solutions, (86), namely, y5. Its zeros are well-
studied [39]: for real a, b (note, that in our case a = 1/2−λ−P ; b = 1−2P are real numbers)
this function has ˇnite numbers of positive roots. However, for the ground state there are
three cases where this function has no zeros: 1) a > 0; 2) a− b + 1 > 0; 3) −1 < a < 0 and
0 < b < 1. Only the last case is interesting for us, because a = 1/2 − λ − P ; b = 1 − 2P
and P is in the interval (47). It means

−1 < 1/2 − P − 2mα√
−8mE

< 0. (101)
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In other words, the ground state energy, which is given by transcendental equation (91), must
obey this inequality.

The wave function in the form of (100) is also new.
In monograph [38], energy levels for alkaline metal atoms are written in Ballmer's form

En′ = −R
1

n′2 , (102)

where R is the Rydberg constant and n′ is the effective principal quantum number

n′ = nr + l′ + 1 (nr = 0, 1, 2 . . .), (103)

while
l′ = −1/2± P = −1/2±

√
(l + 1/2)2 − 2mV0. (104)

Only (+) sign was considered in front of the square root until now. In [38], V0 was considered
to be small and after expansion of this root, approximate expression for the standard levels
was derived

Est = −R
1

(n + Δl)2
, n = nr + l + 1, (105)

where

Δl ≡ Δst
l = − 2mV0

2l + 1
(106)

is the so-called Rydberg correction (quantum defect) [23, 38].
As regards of additional levels, this procedure is invalid, because V0 is bounded from

below according to (44). Approximate expansion for additional levels is possible only for
l = 0. We have in this case

P =

√
1
4
− 2mV0 ≈ 1

2
(1 − 4mV0). (107)

V0 may be arbitrarily small, but different from zero, because in this case P = 1/2 and we
have no additional levels.

One can easily obtain the existence condition of additional levels from (105) and (44) in
diverse form

l < Δl < l + 1. (108)

If we use data of monograph [38], we obtain that for l = 0 states only Li, for l = 1 only K
and for l = 2 only Cs satisfy (108) (i.e., they have additional solutions and it is necessary
to carry out SAE procedure), and Na and Rb have no additional levels. The condition (108)
helps us to determine which alkaline metals need SAE extension of Hamiltonian.

4.2. The KleinÄGordon Equation. Let us consider the KleinÄGordon equation in a central
potential (

−Δ + m2
)
ψ(r) = [E − V (r)]2 ψ(r). (109)

After the separation of angles, we derive the radial form of this equation[
− d2

dr2
− 2

r

d

dr
+

l(l + 1)
r2

+ m2 − (E − V )2
]

R(r) = 0, (110)
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and for the function u = rR, taking into account the condition (25), we have

u′′ +
[
(E − V )2 − m2 − l(l + 1)

r2

]
u = 0. (111)

It seems that even the Coulomb potential is singular by this equation. Now, the following
classiˇcation must be accounted for this equation:

lim
r→0

rV (r) = 0 Å regular, (112)

lim
r→0

rV (r) = −V0 = const Å singular, (113)

i.e., the area of application of Eq. (111) becomes narrower. It is applicable only for potentials,
satisfying (112). Therefore, Eq. (111) may be used for potentials, which have less singularity
than the Coulomb one, whereas in using of Eq. (110) no troubles appear.

4.3. ©Hydrinoª States in the KleinÄGordon Equation with the Coulomb Potential. We
note that the problems of additional levels were discussed by other authors as well [39Ä42].
In particular, in [40] the KleinÄGordon equation is considered with V = −α/r Coulomb
potential

R′′ +
2
r
R′ +

[
E2 − m2 − l(l + 1)

r2
+

2Eα

r
+

α2

r2

]
R = 0. (114)

The author underlines, that there must be levels below the standard levels (called ©hydrinoª
eigenstates), but he/she did not perform the SAE procedure.

Let us consider this problem in more detail. First of all, note that Eq. (114) coincides with
Eq. (82), but now

ρ = 2
√

m2 − E2, λ =
Eα√

m2 − E2
, P =

√
(l + 1/2)2 − α2 > 0. (115)

We must require m2 > E2 for bound states. Therefore, one can use all the previous relations
from valence electron model taking into account the deˇnitions (115). In particular, the SAE
parameter now is

τ =
C2

C1

1(
2
√

m2 − E2
)P

, (116)

and for eigenstates we have the following equation:

Γ(1/2 − λ − P )
Γ(1/2 − λ + P )

= −τ
(
2
√

m2 − E2
)P Γ(1 − 2P )

Γ(1 + 2P )
. (117)

This is a new form, that follows by SAE procedure in the KleinÄGordon equation. For the
edge points we derive the standard and additional levels in analogy with (94):

Est =
m√

1 +
α2

(1/2 + nr + P )2

, nr = 0, 1, 2 . . ., (118)

Eadd =
m√

1 +
α2

(1/2 + nr − P )2

, nr = 0, 1, 2 . . . (119)
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Exactly these (119) levels are called as ©hydrinoª levels in [39Ä42]. It is evident that the
hydrino levels are analogical to Eadd states of Eq. (94), but these two cases differ from each
other. Particularly, it is possible to pass the limit V0 → 0 in Eq. (82) and obtain hydrogen
problem. Usually, this limiting procedure is used in traditional textbooks to choose between
two signs in (94), while in (114) coupling constants for both terms in potential terms are
mutually proportional (α and α2), and vanishing of one of them causes vanishing of another,
so we turn to the free-particle problem instead of the Coulomb one. Moreover, as we
mentioned above, in those papers [39Ä42] the SAE procedure was not used. They considered
only two signs in front of square root in equation analogous to (94) and only (118) and (119)
levels are considered, which correspond only to cases τ = 0 and τ = ±∞. Contrary to that
case, we performed SAE procedure, derived Eq. (117) and take attention to the hydrino (when
τ = ±∞) problem.

The difference between standard and hydrino states manifests clearly in the nonrelativistic
limit when α → 0, which must be performed with deˇnite caution. The hydrino existence
condition for such states folows from earlier constraints and the restriction 0 < P < 1/2. It
has the form

l(l + 1) < α2, (120)

and it is evident that for states with l 
= 0 in transition to the nonrelativistic α → 0 limit the
additional (hydrino) states disappear. Therefore, we must consider only l = 0 states.

For the ground states (nr = l = 0) we have

E
(0)
st =

m√
2

√
1 +

√
1 − 4α2, (121)

Ehyd ≡ E
(0)
add =

m√
2

√
1 −

√
1 − 4α2. (122)

Expansion in powers of α gives

E
(0)
st = m

(
1 − α2

2
− α4

8

)
, (123)

E
(0)
hyd = m

(
α +

α3

2

)
. (124)

It follows that the hydrino is a very tightly bound system and sensitive to the sign of α.
If we expand l = 0; nr 
= 0 states till the order of α2, we derive

E
(0)
st = m

(
1 − α2

2(nr + 1)2

)
, (125)

E
(0)
hyd = m

(
1 − α2

2(nr)2

)
. (126)

Comparison of these two expressions shows that there appears some kind of degeneracy
between the levels with nr +1 nodes of hydrino and energies for nr nodes of standard states.
This degeneracy disappears in the next order.

The fact that the additional (hydrino [39Ä42] or peculiar [43, 44]) states of the (nr + 1)th
1S0 state are nearly degenerate with the usual nth 1S0 state may facilitate a tunneling transi-
tion. Our description by the uniˇed function analogous of (96), as a result of SAE procedure,
gives a possibility of interpolation between them.
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4.4. The Yukawa Potential. As the last application of Eq. (21), let us consider the Yukawa
potential. According to common viewpoint (see, e.g., [8], Ch. 28), the Yukawa potential is a
spherically symmetric solution of the Helmholz wave equation

∇2ϕ − μ2ϕ = 0. (127)

If we do not pay attention to the appearance of the delta function, we would have a radial
equation like [8]:

1
r

d2

dr2
(rϕ) − μ2ϕ = 0, (128)

the solution of which is rϕ = C e±μr and, in case of decaying asymptotic at inˇnity, the
Yukawa potential follows

ϕ = C
e−μr

r
. (129)

However, the application of the correct relation (21) gives

∇2 e−μr

r
= μ2 e−μr

r
− 4πδ(3)(r) e−μr. (130)

Interesting enough we found this equation in the earlier book [45]. It follows that the Yukawa
potential is not a solution everywhere, but only outside the origin of coordinates. The Yukawa
potential is the solution of the Helmholz wave equation with a source term on the RHS:

∇2ϕ − μ2ϕ = −4πCδ(3)(r). (131)

It was mentioned incorrectly in [7] that there is no need in imposing the boundary condition
u(0) = 0 and it is sufˇcient to require regularity of solutions of the full radial equation. But
it seems that, in this particular case, when the substitution (6) is applied, this requirement is
equivalent to our restriction (25).

It is worthwhile to emphasize one important notion: of course, to make the substitution (6)
is not necessary at all. One can use other substitutions in course of solution of Eq. (127). In
this case, the conclusion of [7] becomes more transparent and leads to a new unexpected result.

Let us discuss this viewpoint in case of the Yukawa potential, i.e., of the Helmholz
equation (127), rewriting it for the spherically symmetric solution as[

d2

dr2
+

2
r

d

dr

]
ϕ − μ2ϕ = 0, (132)

and instead of (6) make the following substitution:

ϕ =
χ(r)√

r
. (133)

Denoting z = μr, we obtain the equation

d2χ

dz2
+

1
z

dχ

dz
−

(
1 +

1
4z2

)
χ = 0. (134)
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The general solution of it is expressed in terms of modiˇed Bessel functions [31]:

χ(z) = aI1/2(z) + bK1/2(z), z > 0. (135)

Let us remember the asymptotic behavior for large and small arguments discussed above

IP (z)z→0 ≈
(z

2

)P 1
Γ(P + 1)

, IP (z)z→∞ ≈ ez

√
2πz

,

(136)

KP (z)z→0 ≈
(z

2

)−P Γ(P )
2

, KP (z)z→∞ ≈
√

π

2z
e−z.

We conclude that the second solution must be chosen owing the falling behavior at large
values of argument. Therefore, the solution of Eq. (132) is

ϕ = br−1/2K1/2(μr). (137)

But [31],

K1/2(z) =
√

π

2z
e−z (138)

or

ϕ(r) = c
e−μr

r
, (139)

i.e., the Yukawa potential again.
However, as we saw above, unfortunately, this is not the solution everywhere, because of

singularity at the denominator.
It seems that this fact has very far-reaching consequences. Namely, it turns out that the

second function KP (z) is not a solution of the Bessel equation in spite of a widespread
belief. Actually, a straightforward transition of one-dimensional results of mathematical
physics (theory of special functions, where the Laplacian is present) does not give necessarily
the same things in three or more dimensions.

CONCLUSIONS

We have found a singularity like the Dirac delta function in process of reduction of
the Laplace equation in spherical polar coordinates, which was not mentioned earlier. The
cornerstone in our consideration was a requirement of Dirac that the solution of the radial
equation at the same time must be a solution of the full three-dimensional equation.

On the basis of this observation we have proved that for removing this extra term from
the radial equation it is necessary and sufˇcient to impose the reduced radial wave function
by deˇnite restriction, which has a form of the boundary condition at the origin, Eq. (25).
Moreover, this condition is independent of whether the potential in the Schréodinger equation
is regular or singular. The singular potential in	uences only the character of turning to zero
of the radial function at the origin.

As regards of the full radial function R(r), its equation is compatible with the primary
(three-dimensional) equation (1) if the restriction (43) is satisˇed. Therefore, to avoid the
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misunderstandings, it is preferable to work with Eq. (4) in nonrelativistic and Eq. (110) in
relativistic (KleinÄGordon equation) cases, correspondingly. Moreover, only nonsingular
solutions of full radial equation must be taken into account, only they are compatible with
the full three-dimensional equations.

The substitution (6) is convenient because the problem reduces to the one-dimensional
one on the semi-axis. The real picture is as follows:

Particle, in principle, is able to move on the whole axis, but the effective potential is
inˇnite for all negative values of argument. In this case, the wave function is identically
zero on the whole negative axis. The condition u(0) = 0 guarantees continuity of the wave
function at r = 0. This provides the compatibility with the full equation and the equivalence
to one-dimensional problem [14].

The above-described situation takes place in spaces with dimensions three and more.
Therefore, in all equations of mathematical physics, where the Laplacian is involved, after
the separation of angular variables the singular solutions, generally speaking, would not be
the solutions of the primary equations.

If we shut eyes to a term with the delta function and formally use the reduced radial
equation, then all results derived till now with the aid of this equation for regular potentials
with regular boundary condition at the origin, remain valid. It is not an insigniˇcant result
from practical point of view.

However, when one considers singular potentials, the use of equation for the full radial
function R(r) in parallel with the SAE procedure of the full radial Hamiltonian is necessary.
The appropriate examples, considered above, elucidate this statement.
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