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GLAUBER MONTE-CARLO PROGRAM
FOR NICA/MPD AND CBM EXPERIMENTS

A. S. Galoyan 1, V. V. Uzhinsky
Joint Institute for Nuclear Research, Dubna

A program code widely applied at RHIC and LHC for calculations of geometrical properties of
nucleusÄnucleus interactions is adapted for NICA/MPD and CBM energies. A parameterization of
pp-elastic scattering amplitude earlier proposed by the authors and valid at

√
s � 3 GeV is used for

the setting of the nucleonÄnucleon collision proˇle. An approach well-known in physics of low and
intermediate energies is used for a determination of nuclear parameters. The code is enlarged by a
possibility to account for the Gribov inelastic screening.

�·μ£· ³³ , Ï¨·μ±μ ¶·¨³¥´Ö¥³ Ö ´  RHIC ¨ LHC ¤²Ö ¢ÒÎ¨¸²¥´¨° £¥μ³¥É·¨Î¥¸±¨Ì Ì · ±-
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PACS: 25.75.-q; 25.75.Ag; 24.10.Lx; 02.70.Uu

The Glauber Monte-Carlo simulations [1] have become a basic tool in the analysis of
relativistic heavy-ion collisions. The approach is mainly used at experimental studies for a
determination of multiplicities of participating nucleons (Npart) or multiplicities of binary
nucleonÄnucleon collisions (Nbin) at a given centrality class2. The quantities are needed
for a quantiˇcation of the particle production and the jet quenching effect in the created
hot deconˇnement matter. As known, the quarkÄgluon plasma is produced in high-energy
nucleusÄnucleus interactions. Conditions of its creation are not known exactly, and the
NICA/MPD and CBM experiments are aimed to study them in detail at sufˇciently low
energies (

√
sNN � 10 GeV). Thus, an extension of the Glauber calculations into low-energy

domain is required.

1E-mail: galoyan@lxpub01.jinr.ru
2A connection between Npart, Nbin and experimental measurements used for a centrality deˇnition depends on

many circumstances (see, for example, [2]): acceptance of a setup, energy of collisions, particle identiˇcation, and
so on. Thus, it is very often assumed that for estimations of general geometrical properties of interactions it is quite
sufˇcient to study dependencies of the quantities on impact parameter.
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Last decade it was experimentally observed that there is a strong correlation between
azimuthal anisotropy of particle production and azimuthal anisotropy of interaction region
predicted by the Glauber approach. This found its explanation in the framework of the
hydrodynamical model [3] at the assumption that the quarkÄgluon plasma is an ideal liquid!
One can expect that the property will be changed at low energies, at the creation of a mixed
phase. To distinguish the change, one needs estimations of the anisotropy of the interaction
region at low energies.

The aim of our paper is the extension of the Glauber Monte-Carlo simulations into low-
energy domain.

Cross section of new particle production in nucleusÄnucleus interactions is given in the
Glauber approximation [4] by the well-known expression:

σprod
AB = σtot

AB − σel
AB − σq.el

AB =
∫

d2b

{
1 −

A∏
i=1

B∏
j=1

(1 − pij(b − si + τj))

}
×

×
∣∣ψA(r1, . . . , rA)

∣∣2 ∣∣ψB(t1, . . . , tB)
∣∣2 A∏

i=1

d3ri

B∏
i=1

d3ti, (1)

where A and B are mass numbers of the nuclei; b is the impact parameter;

pij(b) = CiCjγ(b) + CiCjγ
∗(b) − (CiCj)2γ(b)γ∗(b);

γ(b) is an amplitude of elastic nucleonÄnucleon scattering in the impact parameter represen-
tation; Ci is a shower enhancement coefˇcient in the vertex of pomeronÄnucleon interaction;
{si}, i = 1, 2, . . . , A and {τj}, j = 1, 2, . . . , B are sets of coordinates of nucleons of A
and B nuclei in the impact parameter plane; ri = (si, zi); ti = (τi, ζi); ψA and ψB are
wave functions of the nuclei in the ground states. At Ci = 1 one has the standard Glauber
expression. At Ci �= 1 the Gribov inelastic screenings are taken into account. At this, each
nucleon can be in an ©activeª state with a probability 1/C and Ci = C, or in a ©passiveª
state with a probability 1 − 1/C and Ci = 0.

Equation (1) can be rewritten in a form where each term of the expansion can be interpreted
as a cross section of processes with ˇxed multiplicity of nucleonÄnucleon collisions:

σprod
AB =

∫
d2b

{
A∑

i=1

B∑
j=1

pij(b − si + τj)
1 − pij(b− si + τj)

A∏
k=1

B∏
l=1

(1 − pkl(b− sk + τl))+

+
1
2

A∑
i=1, j=1

ı�=j

B∑
k=1

pik(b − si + τk)
1 − pik(b − si + τk)

pjk(b − sj + τk)
1 − pjk(b − sj + τk)

×

×
A∏

l=1

B∏
m=1

(1 − plm(b− sl + τm)) + . . .

}
×

×
∣∣ψA(r1, . . . , rA)

∣∣2 ∣∣ψB(t1, . . . , tB)
∣∣2 A∏

i=1

d3ri

B∏
i=1

d3ti. (2)
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For example, the ˇrst term is a cross section of processes with one inelastic nucleonÄ
nucleon collision. The second term is a cross section of processes with two inelastic nucleonÄ
nucleon collisions, and so on.

A complexity of Eqs. (1) and (2) prevents their analytical evaluation at a realistic choice of
the scattering amplitude and nuclear densities with an exception A, B � 4. Thus, it was pro-
posed in papers [5,6] to use Monte-Carlo averaging methods for the aim. This direction found
its continuation in papers [7, 1, 8]. Especially, in paper [1] a program code was proposed,
which uses modern computational tools Å the ROOT system [9]. The code is intensively
used in experiments at high energies, and is called ©Glauber Monte Carloª. Though, the code
is not free from some drawbacks: the proˇle of inelastic nucleonÄnucleon collisions is chosen
in a simpliˇed form (pij(b) = θ(rNN − |b|), rNN =

√
σin

NN/π), a set of allowed nuclei is
strongly restricted. These mean that one needs to point out, working with the code, a cross
section of inelastic nucleonÄnucleon collisions at a given energy of the collisions, and nuclei
from a deˇned list. Some drawbacks of the code were erased in paper [8].

Recently, we have proposed [10Ä12] the following parameterization of the nucleonÄ
nucleon elastic scattering amplitude which can be used in the Glauber calculations:

γ(b) = A1

{
1

1 + e(b−R̃)/d
+

1
1 + e−(b+R̃)/d

− 1
}
− iρA1

R̃2/2 + π2d2/6
R̃d

×

×
{

e−(b−R̃)/d

[1 + e−(b−R̃)/d]2
+

e−(b+R̃)/d

[1 + e−(b+R̃)/d]2

}
− i

A2

2πB2 · 25.64
e−b2/(2B2·25.64), (3)

R̃ = R + (0.07 + d + 0.2d2) e−1.2R/d, (4)

A1 = 1.077 − 0.175 e−0.001s0.5
+ 0.45/s0.25, (5)

R = 0.9/s0.25 + 0.053 ln (s) [fm], d = 0.379− 0.26/s0.25 [fm], (6)

ρ = 0.135− 3√
s

+
4
s

+
80
s3

, (7)

A2 = 1.77 · 10−4 [ln (s/225)]2 + 0.05/s [fm2], (8)

B2 = 0.283 ln (s) + 30/s− 0.75 [(GeV/c)−2]. (9)

The real part of the amplitude (3) is the symmetrized Fermi distribution. The imaginary
part of the amplitude, which is small at high energies, has rather a complicated form due
to usage of dispersion relations in differential forms. The last term of the amplitude is
needed for a description of nucleonÄnucleon elastic scattering at large momentum transfers
(|t| > 1.75 (GeV/c)2). The parameterization allows one to describe rather well experimental
data on differential cross sections of protonÄproton elastic scattering at

√
s � 3 GeV [11].

Important structure elements of Eqs. (1) and (2) are squared modules of the nuclear wave
functions in the ground states. Very often they are represented as

∣∣ψA(r1, . . . , rA)
∣∣2 =

[
A∏

i=1

ρA(ri)

]
δ

(
1
A

A∑
i=1

ri

)
. (10)

Usually, at Monte-Carlo simulations the nucleon coordinates are sampled independently
of each other according to the ρA distribution. After that the coordinates are redeˇned
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as ri → r′i = ri −
1
A

A∑
j=1

rj , in order to take into account the center-of-mass correlations

(δ function in Eq. (10)). As was shown in [13], this leads to a one-particle nuclear density
different from ρA. It should be noted that a one-particle nuclear density is different from a
charge nuclear density measured in electronÄnucleus scatterings. Thus, some cautions have
to be undertaken at an extraction and a usage of nuclear parameters.

A systematical analysis of electron-nuclear data and a comparison with theoretical calcu-
lations (DHB approximation) have been done in paper [14] for an extraction of one-particle
densities of nuclei. As a result, the densities were parameterized in the standard form:

ρA(r) =
ρ0

1 + exp
(

r − RA

dA

) , RA = 1.31A1/3 − 0.84 [fm], dA = 0.5 [fm]. (11)

The paper [14] is well-known in low- and intermediate-energy physics, especially in physics
of exotic nuclei, because parameterizations of one-particle densities of protons and neutrons
in nuclei were also presented in the paper.

The parameters of the distribution (11) have to be redeˇned in the following manner Å
RA → RA · A/(A − 1), dA → dA · A/(A − 1), according to paper [13] for usage in Monte-
Carlo calculations. In the case, a resulting density will coincide with ρA after the above-said
redeˇnition of ri. We have used this prescription.

The shower enhancement coefˇcient was determined according to paper [15] as

= 1.23 − 0.97/
√

s. (12)

All speciˇcations mentioned above were introduced in our Monte-Carlo program of the
Glauber calculations. Results of calculations with the code are presented below.

Figure a shows dependencies of average multiplicities of the participating nucleons on
a centrality of Au +Au collisions at

√
sNN = 9 and 200 GeV (closed and open points,

respectively). Dispersions of the quantities are presented as ©experimental error barsª. As
seen, the multiplicities of the participating nucleons at low and high energies are differed
in 3Ä5%. It is explained by the fact that high-energy collisions are differed from the low-
energy one only due to larger radius of NN interactions from geometrical point of view.
The radiuses are small compared with nuclear sizes. Though, the change of the radius at a
transition from low to high energies has signiˇcant in	uence on the average multiplicities of
the binary collisions (see Fig. b) and the anisotropy of nuclear interaction region (see Fig. c).

Usually, interactions of nuclei events are subdivided into the following centrality classes:
0Ä5, 5Ä10, 10Ä20, 20Ä40, 40Ä60, 60Ä80, 80Ä100% at experimental studies of superhigh en-
ergies. As seen in Figs. a and b, distributions on multiplicities of the participating nucleons
and the binary collisions are inessential overlapping at high and low energies in neighboring
intervals of the centrality at such subdivisions. Thus, the corresponding quantities for neigh-
boring intervals Å 〈Npart〉 and 〈Nbin〉 can be used for revelations of scaling properties of the
interactions and the jet quenching in the collisions. Such applications become problematic at
a more narrow interval subdivision due to a possible strong overlap of the distributions. As
also seen, distributions on anisotropy of the interaction regions are strongly overlapping at all
centrality classes (see Fig. c).

The anisotropy of the interaction region is characterized by the eccentricity in the last
decade Å εpart =

(
〈y2〉 − 〈x2〉

)
/
(
〈y2〉 + 〈x2〉

)
, where x and y are coordinates of the



Glauber Monte-Carlo Program for NICA/MPD and CBM Experiments 235

Mean multiplicities of the participating nucleons, binary collisions and the eccentricity as functions of

the centrality (ˇgures a, b and c, respectively). Dispersions of the quantities are presented as error bars

participating nucleon in the impact parameter plane counted from a center of the interaction
region. We have used the deˇnition in our calculations. εpart in superhigh energy interactions
is proportional to the magnitude of an elliptic 	ow, which is unambiguously connected with
the properties of the quarkÄgluon plasma. One can expect a violation of the regularity and
strong 	uctuations of the collective 	ows at low energies and at an appearance of the mixed
phase. Studies of such 	uctuations are topics of modern experimental efforts of the last time.

The authors are grateful to B.V. Batyunya and G.Adam for stimulating discussions and
interest in the work.
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