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OU3UKA BJIEMEHTAPHBIX YACTUII 1 ATOMHOI'O SOPA. TEOPUA

REMARKS ON SIMPLE MODIFIED
PERTURBATION THEORY

D. V. Shirkov
Joint Institute for Nuclear Research, Dubna

The goal is to devise a pQCD modification that should be regular in the low-energy region and could
serve practically for the data analysis below 1 GeV up to the infra-red limit. The recently observed
“pblow-up” of the 4-loop pQCD series for the Bjorken sum rule form factor around @ < 1 GeV and
partial resolving of the issue with the help of the Analytic Perturbation Theory (APT) until @ ~ 0.6 GeV
provided the impetus for this attempt.

The “massive pQCD” under construction has two grounds. The first is pQCD with only one parame-
ter added, an effective “glueball mass” m, S Mg, < 1 GeV, serving as an infra-red regulator. Roughly,
we introduce it by changing the ultra-violet In Q for a massive log, In (Q2 + MgQIb) regular in the low-
energy region and finite in the infra-red limit. The second stems from the ghost-free APT comprising
non-power perturbative expansion that makes it compatible with linear integral transformations.

Ipennoxen MoxuuK IHs TEOPHU BO3MYIIEHHH 171 KB HTOBOH XxpomoguH Mmuku (pQCD), perymsip-
H s B 00JI CTH HU3KUX DHEPTHH U I IOLI S NP KTUYECKUI MeTox H Ju3 1 HHbIX HEXe 1 [9B BrioTs 10
uH(p Kp CHOU rp HHULBL MMITymbcoM ms 3TOI MOMBITKY MOCTYXUIN Hel BHO OTKpPHITHIA pocT pQCD-
PSIOB H YHH 1 ¢ 4-mieTens 1yis ip Bl cymMMm Boepkern nipu Q@ < 1 T9B w9 cTHYHOE pereHue poGeMbl
IpH NOMOILIM H JIMTHYECKOW Teopun Bo3myieHuit (ATB) Bmtors no @ ~ 0,6 I'»B.

P ccm tpuB em g «M ccuBH g pQCD» umeer a8 ocHoB Hu4. Ilepoe coctout B ToM, uTo K pQCD
100 BISIETCS TOJNBKO ONMH HOBBIA I p MeTp — 3(EKTHBH I «M cC TM000aI » m, S Mgp S 1 9B,
KOTOp § SIBIeTCs MH(P KP CHBIM peryasaTopoM. I'py6o roBopsi, Mbl BBOIHM ee, 3 MeHss YIbTp (hHOle-
ToBbie Tor pucmsl In Q M ccuBHbIM, In (Q2 + Ms.lb), KOTOPBIH peryiisipeH B 00J1 CTH HU3KHX dHEPrHid
U KOHeYeH B MH(ppP Kp cHOM mpenene. Bropoe ocHOB HHE CBI3 HO CO CBOOOJHON OT DyXOB M HECTEIEH-
Hoit ATB. Dr0 ien er TeopHIo BO3MYILIEHHI COBMECTHMOI C JIMHEHHBIMU UHTETP JIBHBIMU IIpeobp 30B -
HHSIMU.

PACS: 11.10Jj; 11.15.Tk; 12.38.Aw

1. INTRODUCTION: MOTIVATION AND OUTLINE

The perturbative QCD (pQCD)? is a firmly established part of particle interaction theory.
Starting with gauge-non-invariant quantization, it correlates several dozens of experiments at
quite different scales from a few up to hundreds of GeV. At the same time, pQCD meets
troubles in the low-energy (large-distance) domain, below a few GeV, at the scales marked
by the QCD parameter A < 380 MeV. This Achilles’ heel is related to its ultra-violet origin
essence.

'E-mail: mikhs@theor jinr.ru
The renormalization group improved QCD perturbation expansion taken in the ultra-violet limit.
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To avoid the unwanted singularity in the low-energy region, several modifications [1-5]
of the pQCD have been devised. Recently, one of them, the Analytic Perturbation The-
ory (APT) ([6,7] and a later review paper [8]), has proved to be good [9] in describing the
polarized T? ™" (Q?) = I'1(Q?) form factor of the Bjorken Sum Rules (BjSR) amplitude down
to a few hundred MeV.

The difference of proton and neutron Bjorken moments is usually presented as a sum of
perturbation theory (PT) and higher twist (HT) non-perturbative contributions:

r(Q%) = %‘ [1- AR (@%)] +Tur, Tur = Z %7 (1
i=2

with APJT, including the N3LO ~ (a4(Q?))* term. However, an attempt to fit rather precise
JLab data by expression (1) with appropriate higher twist coefficients failed as the perturbation
theory part exploded (Fig. 1) in the region 0.7-1 GeV and the extracted (via comparison with
fitted JLab data) uo; values turned out to be unstable with respect to higher loop terms in the
first perturbation theory sum. This prevented data description below 1 GeV (Fig.2). Along
with Eq. (1), in [9] the perturbation theory sum was changed for the APT one ':

AR Q%) =Y erles(@)F = ARTT(Q) = Y ex Ar(Q), 2)

k<4 k<4

where Ak(QQ) is the APT [6,7] ghost-free expansion functions. The change resulted in
good fitting of the JLab data down to a few hundred MeV (Fig.2) with stable higher twist

parameters.
Ni(Qzl) - < This result begets hope for the global fit-
L ] ting down to the infra-red limit. Unfortunately,
PT . .
08k 4 none of the above-mentioned ghost-free modi-

L | fications [1-5] is suitable for this purpose. The
common drawback is the use of ultra-violet logs
in the infra-red region.

To approach the global fitting of data (like
these for the BjSR form factor), one needs a
modified perturbation theory (MPT) with two
essential properties:
oLt 111 e correspondence with common pQCD in
05 10 15 20 25 30 35 40 ygra-violet limit (that is above a few GeV);

0.6

0.4

0.2

2 2 . . .
@, GeV e regularity and finiteness of the modified
. : MPT :
Fig. 1. Relative contributions N; of perturbation ~effective coupling ay (Q) and matrix ele-
theory terms to ART(Q?) ments in the low-energy domain.

As a primary launch pad for this construc-
tion, the above-mentioned APT seems good. It satisfies the first condition and, partially,
the second one. To exempt the APT-like scheme from its last drawback — the singularity
(infinite derivatives) in the infra-red limit, one has to disentangle it from the ultra-violet logs.

'In the current paper, we change the original notation Ay, for the Ay one.
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Fig. 2. The pQCD anti-progress below Q) < 1 GeV as 2 — 3 — 4-loops

For this purpose, in the first version of this research [10], the infra-red regulator has been
introduced just by the shift of the Q? scale,

Q> — Q*+ M, 3)

with the only fitting parameter added, an effective glueball mass Mgy,
Here, we are going to address one more trick evoked by unitarity [11,12] arguments ':

z+1 z \? z+1
Inz — J(z) =2 - arctanh T2 =2 . In (Vo + vV +1),

where x = Q?/Mpy,. This “quasi-rapidity” .J(z) tends to the usual ultra-violet log at high
Q%> Mp,

1
J(x>>1):1n91:—|—21r12—|—§1nx7 4

and behaves as 9 4
)=2+ -2 — —a? 5
J(x < 1) + 3T (5)

in the infra-red limit.

2. GENERAL RELATIONS

2.1. Two-Loop Massive Renormalization Group Solution. At low energy (below m.) we
use the two-loop massive renormalization group solution in the denominator representation
(see [14])

Qo

" 1+ a0fed+agbln (14 @fod)’

Ai(z) = a(9) ©)

"The J(x) differs from rapidity by factor \/(z + 1)/z = E/Q, which provides it with correct Q2-analyticity
(see, e.g., Eq.(24.4) in the text [13]).
For a more precise two-loop solution, see Subsec. 2.5 below.
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Fig. 3. Quantity apyj vs. Ai(z) = ajy Fig. 4. Quantity ¢(z) vs. dqr(z)

which corresponds to the perturbation theory expansion in the form

() = apr(0) = ap — 028 6(z) + ad [Bo(2))? — af Bro(x), @)

that reflects our ansatz on the functional equality of one- and two-loop massive contributions
which we take in a simple form

¢ =In(1+pz). ®)
Below, we use the 3-flavor values of coefficients in (7): By = 0.716, 81 = 0.405, b =
51/ B0 = 0.566.
The 1-loop expression is also of interest:
a(¢) < apy(9) = ———— < 1.16a(9) ©
~ 9[1] 71+Oé()ﬁ()¢N . )

with maximum relative deviation (see Fig.3) from apy = a (¢) at prmax = € — 1 = 1.72.
The p parameter can be estimated by comparing ¢(x) (Fig.4) with the “quasi-rapidity”
model:
z+1

() =2 . In(vz + Vo +1)-2. (10)

This gives for the parameter p the following value: p ~ 0.6010.05, \/ZTmax ~ 1.7. For the ag
parameter assess, one can use the BjSR threshold condition

% +0.36302 + 065208 + 1.80402 > 1 = of'T > 0.69. (11)

2.2. Condition on A; (m). The normalization (conjunction) condition
Ai(z,) = 0.330 £ 0.014, (12)

combined with (6), yields a relation, at fixed p = 0.6, between two quantities oy and Mgjp:

1
X;+bInX; =3.03+£0.134+bln (a_) , (13)
0



Remarks on Simple Modified Perturbation Theory 303

or in the following form:

M2

1 m2
X7 = X7 (ag, Mgy,) = o +bln(1+p—5|. (14)
glb

Under plausible assumption o 2 0.7 (1/ap < 1.43), one gets X, = 2.70. In turn, this gives
M1, 2 450 MeV. For more detailed information, see Figs.5 and 6. The tendency is simple:

d Mglb

~ —0.5 GeV. 15)
dao

However, one has to mind that estimate (11) in the MPT case is under suspicion as it
does not account for non-powerness of the MPT expansion. Some more information on
A;i(x) = a(¢(z)) can be learnt from Figs.5 and 6. From there we have

My(ap = 1.0) ~ (512 + 43) MeV, Mg (ao = 2/3) ~ (661 £ 61) MeV.  (16)

To conclude this part, we give the A; low-energy behavior vs. common &g and APT A; ones,
on the one hand (Fig.7), and vs. lattice simulation results [15] (Fig. 8), on the other hand.

0.55 — — - 0.55
osob TR Ty A 0=
Ay(z), 0 =23~ 050F & () R
0458 —— Ay(z,), apg = 05,7 0458 (137 /.’
a [ 2/3 .
= 0.40 I _--| & o040F a7 -
’ - ] -
I 035 e 1035k L e
= 0.30 - s 030F ] _-T
— — r == ap(z,),
< 0.25 o 025F a[ll(:T35
0.20 020 7/ o=
0.15 0.15
010 nnnlsswlssnlsdenlinninslsnnlonnls 010 snnlowbhisdnlionsllsnnlsnnlnnnls
0 02 04 06 08 10 12 14 "0 02 04 06 08 1.0 12 1.4
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Fig. 5. Parameter Mg, estimate vs. three ag  Fig. 6. The same as in Fig.5 but for the 1-loop
values case
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Fig. 7. Various couplings at low-energy domain Fig. 8. Quantity .4;(Q) vs. lattice results [15]
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2.3. Recurrent Relation. In the construction under devising, we intend to preserve an
essential APT feature, namely, the non-polynomiality of “perturbative” MPT-expansion over
a set' of functions {A(Q?)}.

2.3.1. Differential Recurrency. In the APT, higher functions are connected by the differ-
ential recurrent relation

22D () = BoAkrs (@) + Brksa(a) + (17)
To the arguments ascending to the 1980s (see Ref. 11 in [16] and papers [17,18]) and related
to the 72-term summation procedure in the s-channel (see also [1-5]), one can add a fresher
reasoning [19,20].

This differential recurrency ensures compatibility [21-23] with linear transformations in-
volved in transition to the distance picture (Fourier-conjugated with the momentum-transfer
one) and to the annihilation s-channel (reverse Adler transformation).

2.3.2. Comment on Eq.(17). This simple recurrent operator (the log derivative) is an
ansatz mainly motivated by the structure of w*-terms [17, 18] generated, in turn, by the UV
log branching. Generally, it is an open question how to modify this log-derivative for the
mass-dependent structures relevant to the low-energy domain. E.g., one can write instead

1
—% 6p-/4k(33) = ﬁo.A;H.l(a?) + ﬁl.A]H_Q(J?) +..., 5,) = (18)

dp(x)

Here, p(x) is an appropriate function, defined for a real positive argument, with log asymp-
totics.
For the recurrence function, we start with the simplest option without additional parameter

pl@)=¢(x) —Inp=In(1+px)—lnp=1In(z+ x.), (19)

where = = Q? /MgQIb and z, = 1/p. Then, technically

0, =04:=0, 0Ak(2) = (z+z:)AL(2), (20)
and
0% A () = (z + 2.)° Af (2) + (z + 2.) A, @21
Our recurrent ansatz
1
BoAk+1(z) = % 0A,(z) — BrAk+2(z),  Arss(r) =0 (22)

leads to three equations for the three expansion functions As 3 4 in terms of the given A, (x) =

a(e),
1 1 1
Ay =——0 —bA3, A3 =-——0A> —bAy, As=-——0A3. 23
2 o a(¢) 3 3 57 02 4 4 35,074 (23)

!The same symbol A as in the minimal APT is used.
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2.4. Higher SiMPT Functions. Higher Simplest MPT (SiMPT) expansion functions Az 5 4
are defined by Eqgs. (23). Their combination yields linear differential equation for .43 (in the
¢ variable)

b
Agm——j%fﬁa¢y+£%aAng A5 — kAs = —f(0), 24)
where
_ 660 _ _3 _ o
k= =152, q= S = 148,  f(¢) = qd%a(9). (25)

Its solution with AF boundary condition
As(z) = as(¢) = qek¢/52 a(f)e ™ df = —q [0a(¢) +ka(9)] + kal(¢)  (26)
¢

contains integral

H@zk/aun“%”#, 27)
¢

which is calculated numerically — see Fig.9 and Table 1. Below, in Figs.10 and 11, all
higher functions A3 3 4 are given numerically via Egs. (23).
1(¢)
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Fig. 9. Integral I(¢)

=y =1
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Table 1. The values of integral I(¢) for definite ¢ at fixed parameter o

ao ¢

00 | 05 1.0 1.5 20 | 25 30 | 35 4.0 | 45 50 | 55 6.0

0.5 ]0.667|0.49210.397 | 0.335] 0.292 0.259| 0.233 | 0.213 | 0.196 | 0.181 | 0.169 | 0.158 | 0.149
1 10.502]0.404]0.342|0.297 | 0.263 | 0.237 | 0.216 | 0.198 | 0.183 | 0.171 | 0.160 | 0.150 | 0.142

2/310.402 | 0.340 | 0.296 | 0.263 | 0.237 | 0.218 | 0.198 | 0.184 | 0.171 | 0.160 | 0.151 | 0.142 | 0.135
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Fig. 10. Functions A1,23,4(¢) for different val- Fig. 11. Functions Ay 23,4 () for different val-
ues of parameter ap ues of parameter ap

Now, one can verify the preliminary estimate aOPT ~ 0.686, Eq.(11). To this end, on the
basis of Tables 2 and 3, we found the perturbation theory sum

1
Avpr(Q) =Y cp Ay = — A1 +0.36342 + 0.65245 + 1.804.4,, (28)
k

Table 2. Quantities A; 2 34 as functions of ¢ and x

d) T Qg = 1 Qo = 2/3
Q, GeV | A Ao As As | Q, GeV | A; As As Ay

0.00 | 0.00 0.00 1.000 | 1.050 | 0.911 | 1.289 0.00 0.667 | 0.454 | 0.279 | 0.240
0.15 | 0.27 0.27 0.858 | 0.774 | 0.600 | 0.717 0.34 0.607 | 0.377 | 0.215 | 0.166
0.25 | 0.47 0.35 0.786 | 0.649 | 0.470 | 0.509 0.46 0.574 | 0.337 | 0.183 | 0.133
0.50 | 1.08 0.53 0.653 | 0.447 | 0.278 | 0.245 0.69 0.505 | 0.261 | 0.127 | 0.080
1.00 | 2.86 0.87 0.495 | 0.255 | 0.125 | 0.080 1.12 0.410 | 0.172 | 0.069 | 0.035
1.25 | 4.15 1.04 0.443 | 0.204 | 0.090 | 0.051 1.35 0.376 | 0.144 | 0.054 | 0.024
1.50 | 5.80 1.23 0.402 | 0.168 | 0.068 | 0.034 1.59 0.347 | 0.123 | 0.042 | 0.018
1.70 | 7.46 1.40 0.375 | 0.145 | 0.055 | 0.026 1.81 0.328 | 0.109 | 0.036 | 0.014

Table 3. Quantities 41 2 3 4 as functions of )

Q7 GeV a0:1 a0:2/3 00:1/2
Al A2 A3 A4 Al A2 AS A4 Al A2 A3 A4

0.00 [ 1.000 | 1.050|0.911 | 1.289 | 0.66(6) | 0.454 | 0.279 | 0.239 | 0.500 | 0.253 | 0.120 | 0.073
0.20 [0.911]0.873|0.707 | 0.904 | 0.644 |0.424|0.253|0.209|0.494 | 0.247| 0.116 | 0.070
0.40 [0.74710.586 | 0.408 [ 0.418 | 0.591 |0.357|0.198|0.149 | 0.477|0.230| 0.105 | 0.061
0.60 [0.612]0.392|0.231|0.189 | 0.530 |0.288|0.146 | 0.097 | 0.454 | 0.209 | 0.091 | 0.050
0.80 [0.519]0.280|0.143 | 0.097 | 0.476 |0.232|0.107 | 0.063 | 0.428 | 0.186 | 0.077 | 0.040
1.00 |0.454{0.214 ] 0.097 | 0.056 | 0.432 |0.191|0.081 | 0.043 | 0.404 | 0.165 | 0.065 | 0.031
1.40 |0.374{0.145]0.055|0.026 | 0.369 |0.139|0.051|0.023 |0.361 | 0.132 | 0.047 | 0.020
1.78 {0.330(0.112 {0.038 | 0.015| 0.330 |0.111]0.037|0.014|0.330|0.110 | 0.036 | 0.014




Remarks on Simple Modified Perturbation Theory 307

which gives the following values at the infra-red limit:
Anvpr(Q? = 0;00 = 1) =3.619 and  Anmpr(0; a9 = 2/3) = 0.991. (29)
Linear extrapolation gives slightly more accurate bounds
agMPT <0.67, Mgy, > 650 MeV. (30)

The last limitation on My, does not contradict the current lattice estimate (see re-
view [24]).

2.5. On Exact Two-Loop Massive Solution. The massive renormalization group solution,
more precise than (6), is expressible via a special Lambert function W (z).

In this connection, we are reminded that the Lambert function naturally arises in the course
of exact solving of the two-loop renormalization group equation for the running coupling in
the massless, pure log case. Under simple reservation, the same is true for the massive case.

For this purpose, we analyze massive renormalization group (mRG) solution for the
functional equality input. Omitting technical details (see [25,26]), one gets the transcendental

relation for as(x)E]RG = a(¢):

F (0u(@)iha ) = Flao) + fod(x), G31)
F(a) = —f a da_ B(a) = Boa® + Bra® (32)
- 0 ﬂ(a) i - 0 1 .
If, as usual, the expansion (5y/3(a) ~ 1/a® — b/a is used, then
Fex(a) = 1 +blna=Vi(a). (33)
a
Hence, )
as(@)mra = Fi ' (Fi(a) + By 6(a)) (34)
At the same time, a straightforward calculation of the integral in (31) yields
1 1 1
Fg(a):——bln(—+b) ::V_(——i—b)—b (35)
a a a
and .
as(@)mng,2 = Fy ' (Fa(o) + fo 6(a)). (36)

The functions reverse to the just introduced V. are simply related to the Lambert function.

3. LONGITUDINAL AND TRANSVERSE SPIN STRUCTURE AT LOW Q?

For the purpose of a smooth continuation of T%""(Q?) to the non-perturbative region
0<QR*< A(QQCD [27,28], it is convenient to consider the Q?-evolution of the integral

2M*?

1
= / dz g1 (z, Q%), (37

0
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which is equivalent to the integral over all energies of the spin-dependent photon—nucleon
cross section, whose value at Q? = 0 is defined by the Gerasimov-Drell-Hearn (GDH) sum
rule [29,30]

2

L) = -4, (38)

4
where 114 is the nucleon anomalous magnetic moment. Then the function I;(Q?) can be
written as a difference

L(Q?) = In(Q%) - 1(Q?) (39)
between the transverse and “longitudinal minus transverse” structures, where
2M? 2M? /
Ir(Q%) = WFT(QQ) = o7 /dﬂ? g1z, Q%), (40)
0
2M? h
L(Q?) = 7/dgcgh(x,cg?). 41)
0

The well-known Burkhardt—Cottingham (BC) sum rule [31] provides us with an exact expres-
sion for IQ(QQ), in terms of familiar electric Gg and magnetic Gp; Sachs form factors as

pGu(Q?) — Ge(Q?)

(Q%) = lMGM(QQ) T+ Q24

4

(42)

where 4 is the nucleon magnetic moment. As a consequence of the strong Q? behavior of
the right-hand side of Eq. (42), we get for large Q>

1
[ e @¥yis e =0 “3)
0

so I» is much smaller than I; for large QQ. Now from the BC sum rule (42), it follows that

2
+ e
I,(0) = FAZEAS, (44)
where e is the nucleon charge. Then the GDH value (38) is reproduced with
e
I7(0) = %. (45)

This slope is essentially larger than the one for I;, explaining the observed excess of the
slope of the latter over the GDH value. In practice, as there is currently no evidence that the
BC sum rule has any perturbative or non-perturbative corrections, one may apply the SiIMPT
series to I'p(Q?) instead of I';(Q?), which will allow matching to the GDH value.
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4. LAMBERT FUNCTION

Generally, the multi-branch Lambert function W (z) of the complex variable z is defined
by the relation
W(z)e"® =2, W(z)+In W(z)=In 2. (46)

One of its asymptotics is

W(z)| —1In z —In(In 2). (47)

zZ—00
Our interest is with a particular branch, W_;(z), real on a real negative semi-axis —z =t >

1/e. Farther in this text we shall omit lower index, always having in mind this branch. Then,
in the massless case (see [32,33] and references therein),

22y P 1 _ LN (9 _h
a# Q) = G 1T W) z = eXp( B 1), L—ln(A2 , B—ﬂg. (48)

According to (47), its asymptotics can be presented as follows:

1

~ BoL+ B InL’ “9)

aPl(Q?)
In our massive SiMPT case, we can use this expression with the change of the log
argument, L — ¢(z), that is In = to In (x + 1/p). For a quantitative estimate, look at the
numerical table of Lambert in spirit of Egs. (8) and (19).
In paper [14], in the course of solving, one meets ' an equation like

Ax () A (¢(x))

d d
Boola) = J(A@) = Jan) = =0 [ oo == [

ao ao

(50)

If the integrand is expanded,
1 1 b
—_—— — — 51
g +bg® g* g eb
or exact 3(g) is equal to a formally expanded expression (like in some 2-dim soluble models),
then after integration one gets

1 1 1
L) +bmb) = = —n (53)
b WA T M ea

Exponentiating the last relation, we get

p (% + —J(ZO) + lnb> = exp (@ + lnb) =bAexp <biA> ) 54

ISee p-31 in our JINR Preprint P2-2008-107, Dubna, 2008 (in Russian).
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where B = $3,/62 = 0.790 and we used (50) to express .J(A) in terms of J(ap). After
rearrangement of (54) we get

L O () R S N ¢z) 1
bAexp<b—A>exp< 5 +ba0 lnbao)bao exp( 5 +ba0>’ (55)

and, using the definition of the Lambert function W (z) (i.e., W (z) e *) = 2), we can write

the result as 1
1 1 B

If not expanded, it is still calculable and expressible (a bit differently!) via the W Lambert

function
1 1 b b2

92+bg3:?_g 1+ bg

) 57)

and
1

JQ(A)—Z—b1n<%+b> —b<biA+1—1n<biA+1)>—b(1+1nb). (58)

Again after exponentiation we get

¢(x) | J2(ao) J2(A) e!/ (b
— 141 = 1+1 =—\
eXp( 5 + 5 +1+1Ind exp 5 +1+Inb A 1 (59)
And the solution is the following:
1
bA(x):—W _Lbaoe —fi)(x)_i_l +1. (60)
bag *p B bag
The difference between the two expressions:
Ay(a) = 1 (6)
T bW —Le —o(z) 1\
bao *P B bao
1
As(z) = — (62)

O

could be essential when the cubical term in 3(g) is a leading one. This can happen in the
low-energy region at ag ~ 1. There, the difference Ao(x)— A;(z) is positive and could reach
several tenths.

5. OUTLOOK: ON 3-LOOP LONG-LOG

One more way to realize the accuracy of SiMPT is to estimate the possible influence of
three-loop effects. This can be done with a specific trick proposed in [34]:

L—L"=L4+B+L?4+272, (63)
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