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REMARKS ON SIMPLE MODIFIED
PERTURBATION THEORY

D. V. Shirkov 1

Joint Institute for Nuclear Research, Dubna

The goal is to devise a pQCD modiˇcation that should be regular in the low-energy region and could
serve practically for the data analysis below 1 GeV up to the infra-red limit. The recently observed
©blow-upª of the 4-loop pQCD series for the Bjorken sum rule form factor around Q � 1 GeV and
partial resolving of the issue with the help of the Analytic Perturbation Theory (APT) until Q ∼ 0.6 GeV
provided the impetus for this attempt.

The ©massive pQCDª under construction has two grounds. The ˇrst is pQCD with only one parame-
ter added, an effective ©glueball massª mρ �Mglb � 1 GeV, serving as an infra-red regulator. Roughly,
we introduce it by changing the ultra-violet ln Q2 for a massive log, ln

(
Q2 + M2

glb

)
regular in the low-

energy region and ˇnite in the infra-red limit. The second stems from the ghost-free APT comprising
non-power perturbative expansion that makes it compatible with linear integral transformations.

�·¥¤²μ¦¥´  ³μ¤¨Ë¨± Í¨Ö É¥μ·¨¨ ¢μ§³ÊÐ¥´¨° ¤²Ö ±¢ ´Éμ¢μ° Ì·μ³μ¤¨´ ³¨±¨ (pQCD), ·¥£Ê²Ö·-
´ Ö ¢ μ¡² ¸É¨ ´¨§±¨Ì Ô´¥·£¨° ¨ ¤ ÕÐ Ö ¶· ±É¨Î¥¸±¨° ³¥Éμ¤  ´ ²¨§  ¤ ´´ÒÌ ´¨¦¥ 1 ƒÔ‚ ¢¶²μÉÓ ¤μ
¨´Ë· ±· ¸´μ° £· ´¨ÍÒ. ˆ³¶Ê²Ó¸μ³ ¤²Ö ÔÉμ° ¶μ¶ÒÉ±¨ ¶μ¸²Ê¦¨²¨ ´¥¤ ¢´μ μÉ±·ÒÉÒ° ·μ¸É pQCD-
·Ö¤μ¢ ´ Î¨´ Ö ¸ 4-¶¥É¥²Ó ¤²Ö ¶· ¢¨² ¸Ê³³ 	Ó¥·±¥´  ¶·¨ Q � 1 ƒÔ‚ ¨ Î ¸É¨Î´μ¥ ·¥Ï¥´¨¥ ¶·μ¡²¥³Ò
¶·¨ ¶μ³μÐ¨  ´ ²¨É¨Î¥¸±μ° É¥μ·¨¨ ¢μ§³ÊÐ¥´¨° (�’‚) ¢¶²μÉÓ ¤μ Q ∼ 0,6 ƒÔ‚.

� ¸¸³ É·¨¢ ¥³ Ö ®³ ¸¸¨¢´ Ö pQCD¯ ¨³¥¥É ¤¢  μ¸´μ¢ ´¨Ö. �¥·¢μ¥ ¸μ¸Éμ¨É ¢ Éμ³, ÎÉμ ± pQCD
¤μ¡ ¢²Ö¥É¸Ö Éμ²Ó±μ μ¤¨´ ´μ¢Ò° ¶ · ³¥É· Å ÔËË¥±É¨¢´ Ö ®³ ¸¸  £²Õ¡μ² ¯ mρ � Mglb � 1 ƒÔ‚,
±μÉμ· Ö Ö¢²Ö¥É¸Ö ¨´Ë· ±· ¸´Ò³ ·¥£Ê²ÖÉμ·μ³. ƒ·Ê¡μ £μ¢μ·Ö, ³Ò ¢¢μ¤¨³ ¥¥, § ³¥´ÖÖ Ê²ÓÉ· Ë¨μ²¥-
Éμ¢Ò¥ ²μ£ ·¨Ë³Ò ln Q2 ³ ¸¸¨¢´Ò³, ln

(
Q2 + M2

glb

)
, ±μÉμ·Ò° ·¥£Ê²Ö·¥´ ¢ μ¡² ¸É¨ ´¨§±¨Ì Ô´¥·£¨°

¨ ±μ´¥Î¥´ ¢ ¨´Ë· ±· ¸´μ³ ¶·¥¤¥²¥. ‚Éμ·μ¥ μ¸´μ¢ ´¨¥ ¸¢Ö§ ´μ ¸μ ¸¢μ¡μ¤´μ° μÉ ¤ÊÌμ¢ ¨ ´¥¸É¥¶¥´-
´μ° �’‚. �Éμ ¤¥² ¥É É¥μ·¨Õ ¢μ§³ÊÐ¥´¨° ¸μ¢³¥¸É¨³μ° ¸ ²¨´¥°´Ò³¨ ¨´É¥£· ²Ó´Ò³¨ ¶·¥μ¡· §μ¢ -
´¨Ö³¨.

PACS: 11.10.Jj; 11.15.Tk; 12.38.Aw

1. INTRODUCTION: MOTIVATION AND OUTLINE

The perturbative QCD (pQCD) 2 is a ˇrmly established part of particle interaction theory.
Starting with gauge-non-invariant quantization, it correlates several dozens of experiments at
quite different scales from a few up to hundreds of GeV. At the same time, pQCD meets
troubles in the low-energy (large-distance) domain, below a few GeV, at the scales marked
by the QCD parameter Λ � 380 MeV. This Achilles' heel is related to its ultra-violet origin
essence.

1E-mail: mikhs@theor.jinr.ru
2The renormalization group improved QCD perturbation expansion taken in the ultra-violet limit.
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To avoid the unwanted singularity in the low-energy region, several modiˇcations [1Ä5]
of the pQCD have been devised. Recently, one of them, the Analytic Perturbation The-
ory (APT) ([6, 7] and a later review paper [8]), has proved to be good [9] in describing the
polarized Γp−n

1 (Q2) = Γ1(Q2) form factor of the Bjorken Sum Rules (BjSR) amplitude down
to a few hundred MeV.

The difference of proton and neutron Bjorken moments is usually presented as a sum of
perturbation theory (PT) and higher twist (HT) non-perturbative contributions:

Γ1(Q2) =
gA

6
[
1 − ΔPT

Bj (Q2)
]
+ ΓHT, ΓHT =

∞∑
i=2

μ2i

Q2i−2
, (1)

with ΔPT
Bj , including the N3LO ∼ (αs(Q2))4 term. However, an attempt to ˇt rather precise

JLab data by expression (1) with appropriate higher twist coefˇcients failed as the perturbation
theory part exploded (Fig. 1) in the region 0.7Ä1 GeV and the extracted (via comparison with
ˇtted JLab data) μ2i values turned out to be unstable with respect to higher loop terms in the
ˇrst perturbation theory sum. This prevented data description below 1 GeV (Fig. 2). Along
with Eq. (1), in [9] the perturbation theory sum was changed for the APT one 1:

ΔPT
Bj (Q2) =

∑
k�4

ck(αs(Q2))k ⇒ ΔAPT
Bj (Q2) =

∑
k�4

ck Ak(Q2), (2)

where Ak(Q2) is the APT [6, 7] ghost-free expansion functions. The change resulted in
good ˇtting of the JLab data down to a few hundred MeV (Fig. 2) with stable higher twist

Fig. 1. Relative contributions Ni of perturbation
theory terms to ΔPT

Bj (Q2)

parameters.
This result begets hope for the global ˇt-

ting down to the infra-red limit. Unfortunately,
none of the above-mentioned ghost-free modi-
ˇcations [1Ä5] is suitable for this purpose. The
common drawback is the use of ultra-violet logs
in the infra-red region.

To approach the global ˇtting of data (like
these for the BjSR form factor), one needs a
modiˇed perturbation theory (MPT) with two
essential properties:

• correspondence with common pQCD in
ultra-violet limit (that is above a few GeV);

• regularity and ˇniteness of the modiˇed
effective coupling αMPT

s (Q) and matrix ele-
ments in the low-energy domain.

As a primary launch pad for this construc-
tion, the above-mentioned APT seems good. It satisˇes the ˇrst condition and, partially,
the second one. To exempt the APT-like scheme from its last drawback Å the singularity
(inˇnite derivatives) in the infra-red limit, one has to disentangle it from the ultra-violet logs.

1In the current paper, we change the original notation Ak for the Ak one.
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Fig. 2. The pQCD anti-progress below Q < 1 GeV as 2 → 3 → 4-loops

For this purpose, in the ˇrst version of this research [10], the infra-red regulator has been
introduced just by the shift of the Q2 scale,

Q2 → Q2 + M2
glb (3)

with the only ˇtting parameter added, an effective glueball mass Mglb.
Here, we are going to address one more trick evoked by unitarity [11,12] arguments 1:

ln x → J(x) = 2

√
x + 1

x
arctanh

[(
x

1 + x

)1/2
]

= 2

√
x + 1

x
ln

(√
x +

√
x + 1

)
,

where x ≡ Q2/M2
glb. This ©quasi-rapidityª J(x) tends to the usual ultra-violet log at high

Q2 � M2
glb,

J(x � 1) = lnx + 2 ln 2 +
1
2x

ln x, (4)

and behaves as

J(x � 1) = 2 +
2
3
x − 4

15
x2, (5)

in the infra-red limit.

2. GENERAL RELATIONS

2.1. Two-Loop Massive Renormalization Group Solution. At low energy (below mτ ) we
use the two-loop massive renormalization group solution in the denominator representation 2

(see [14])

A1(x) = a(φ) =
α0

1 + α0β0φ + α0 b ln (1 + α0β0φ)
, (6)

1The J(x) differs from rapidity by factor
√

(x + 1)/x = E/Q, which provides it with correct Q2-analyticity
(see, e.g., Eq. (24.4) in the text [13]).

2For a more precise two-loop solution, see Subsec. 2.5 below.
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Fig. 3. Quantity a[1] vs. A1(x) = a[2] Fig. 4. Quantity φ(x) vs. φqr(x)

which corresponds to the perturbation theory expansion in the form

αs(x)[2]MPT = aPT(φ) = α0 − α2
0β0 φ(x) + α3

0 [β0φ(x)]2 − α3
0 β1φ(x), (7)

that re
ects our ansatz on the functional equality of one- and two-loop massive contributions
which we take in a simple form

φ = ln (1 + px). (8)

Below, we use the 3-
avor values of coefˇcients in (7): β0 = 0.716, β1 = 0.405, b =
β1/β0 = 0.566.

The 1-loop expression is also of interest:

a(φ) � a[1](φ) =
α0

1 + α0β0φ
� 1.16 a(φ), (9)

with maximum relative deviation (see Fig. 3) from a[2] = a (φ) at p xmax = e − 1 = 1.72.
The p parameter can be estimated by comparing φ(x) (Fig. 4) with the ©quasi-rapidityª

model:

φqr(x) = 2

√
x + 1

x
ln(

√
x +

√
x + 1) − 2. (10)

This gives for the parameter p the following value: p ∼ 0.60±0.05,
√

xmax ∼ 1.7. For the α0

parameter assess, one can use the BjSR threshold condition

α0

π
+ 0.363α2

0 + 0.652α3
0 + 1.804α4

0 > 1 ⇒ αPT
0 � 0.69. (11)

2.2. Condition on A1(mτ ). The normalization (conjunction) condition

A1(xτ ) = 0.330 ± 0.014, (12)

combined with (6), yields a relation, at ˇxed p = 0.6, between two quantities α0 and Mglb:

Xτ + b ln Xτ = 3.03 ± 0.13 + b ln
(

1
α0

)
, (13)
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or in the following form:

Xτ = Xτ (α0, Mglb) =
1
α0

+ b ln

(
1 + p

m2
τ

M2
glb

)
. (14)

Under plausible assumption α0 � 0.7 (1/α0 � 1.43), one gets Xτ � 2.70. In turn, this gives
Mglb � 450 MeV. For more detailed information, see Figs. 5 and 6. The tendency is simple:

dMglb

dα0
∼ −0.5 GeV. (15)

However, one has to mind that estimate (11) in the MPT case is under suspicion as it
does not account for non-powerness of the MPT expansion. Some more information on
A1(x) = a (φ(x)) can be learnt from Figs. 5 and 6. From there we have

Mglb(a0 = 1.0) ∼ (512 ± 43) MeV, Mglb(a0 = 2/3) ∼ (661 ± 61) MeV. (16)

To conclude this part, we give the A1 low-energy behavior vs. common ᾱs and APT A1 ones,
on the one hand (Fig. 7), and vs. lattice simulation results [15] (Fig. 8), on the other hand.

Fig. 5. Parameter Mglb estimate vs. three a0

values

Fig. 6. The same as in Fig. 5 but for the 1-loop

case

Fig. 7. Various couplings at low-energy domain Fig. 8. Quantity A1(Q) vs. lattice results [15]
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2.3. Recurrent Relation. In the construction under devising, we intend to preserve an
essential APT feature, namely, the non-polynomiality of ©perturbativeª MPT-expansion over
a set 1 of functions

{
Ak(Q2)

}
.

2.3.1. Differential Recurrency. In the APT, higher functions are connected by the differ-
ential recurrent relation

−x

k

∂

∂x
Ak(x) = β0Ak+1(x) + β1Ak+2(x) + . . . (17)

To the arguments ascending to the 1980s (see Ref. 11 in [16] and papers [17,18]) and related
to the π2-term summation procedure in the s-channel (see also [1Ä5]), one can add a fresher
reasoning [19,20].

This differential recurrency ensures compatibility [21Ä23] with linear transformations in-
volved in transition to the distance picture (Fourier-conjugated with the momentum-transfer
one) and to the annihilation s-channel (reverse Adler transformation).

2.3.2. Comment on Eq. (17). This simple recurrent operator (the log derivative) is an
ansatz mainly motivated by the structure of π2-terms [17, 18] generated, in turn, by the UV
log branching. Generally, it is an open question how to modify this log-derivative for the
mass-dependent structures relevant to the low-energy domain. E.g., one can write instead

−1
k

ðρAk(x) := β0Ak+1(x) + β1Ak+2(x) + . . . , ðρ =
d

dρ(x)
. (18)

Here, ρ(x) is an appropriate function, deˇned for a real positive argument, with log asymp-
totics.

For the recurrence function, we start with the simplest option without additional parameter

ρ(x) = φ(x) − ln p = ln (1 + px) − ln p = ln (x + x∗), (19)

where x = Q2/M2
glb and x∗ = 1/p. Then, technically

ðρ = ðφ :≡ ð, ðAk(x) = (x + x∗)A′
k(x), (20)

and
ð

2 Ak(x) = (x + x∗)2A′′
k(x) + (x + x∗)A′

k. (21)

Our recurrent ansatz

β0Ak+1(x) = −1
k

ðAk(x) − β1Ak+2(x), Ak�5(x) = 0 (22)

leads to three equations for the three expansion functions A2,3,4 in terms of the given A1(x) =
a(φ),

A2 = − 1
β0

ð a(φ) − bA3, A3 = − 1
2β0

ðA2 − bA4, A4 = − 1
3β0

ðA3. (23)

1The same symbol A as in the minimal APT is used.
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2.4. Higher SiMPT Functions. Higher Simplest MPT (SiMPT) expansion functions A2,3,4

are deˇned by Eqs. (23). Their combination yields linear differential equation for A3 (in the
φ variable)

A3(x) =
1

2β2
0

ð
2a(φ) +

5b

6β0
ðA3(x), ðA3 − kA3 = −f(φ), (24)

where

k =
6β0

5b
= 1.52, q =

3
5β1

= 1.48, f(φ) = qð
2a(φ). (25)

Its solution with AF boundary condition

A3(x) = a3(φ) = q ekφ

∞∫
φ

ð
2 a(f) e−kf df = −q [ð a(φ) + k a(φ)] + kqI(φ) (26)

contains integral

I(φ) = k

∞∫
φ

a(f) ek(φ−f) df, (27)

which is calculated numerically Å see Fig. 9 and Table 1. Below, in Figs. 10 and 11, all
higher functions A2,3,4 are given numerically via Eqs. (23).

Fig. 9. Integral I(φ)

Table 1. The values of integral I(φ) for deˇnite φ at ˇxed parameter α0

α0
φ

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

0.5 0.667 0.492 0.397 0.335 0.292 0.259 0.233 0.213 0.196 0.181 0.169 0.158 0.149

1 0.502 0.404 0.342 0.297 0.263 0.237 0.216 0.198 0.183 0.171 0.160 0.150 0.142

2/3 0.402 0.340 0.296 0.263 0.237 0.218 0.198 0.184 0.171 0.160 0.151 0.142 0.135
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Fig. 10. Functions A1,2,3,4(φ) for different val-

ues of parameter α0

Fig. 11. Functions A1,2,3,4(x) for different val-

ues of parameter α0

Now, one can verify the preliminary estimate αPT
0 ∼ 0.686, Eq. (11). To this end, on the

basis of Tables 2 and 3, we found the perturbation theory sum

ΔMPT(Q) =
∑

k

ckAk =
1
π
A1 + 0.363A2 + 0.652A3 + 1.804A4, (28)

Table 2. Quantities A1,2,3,4 as functions of φ and x

φ x α0 = 1 α0 = 2/3

Q, GeV A1 A2 A3 A4 Q, GeV A1 A2 A3 A4

0.00 0.00 0.00 1.000 1.050 0.911 1.289 0.00 0.667 0.454 0.279 0.240
0.15 0.27 0.27 0.858 0.774 0.600 0.717 0.34 0.607 0.377 0.215 0.166
0.25 0.47 0.35 0.786 0.649 0.470 0.509 0.46 0.574 0.337 0.183 0.133
0.50 1.08 0.53 0.653 0.447 0.278 0.245 0.69 0.505 0.261 0.127 0.080
1.00 2.86 0.87 0.495 0.255 0.125 0.080 1.12 0.410 0.172 0.069 0.035
1.25 4.15 1.04 0.443 0.204 0.090 0.051 1.35 0.376 0.144 0.054 0.024
1.50 5.80 1.23 0.402 0.168 0.068 0.034 1.59 0.347 0.123 0.042 0.018
1.70 7.46 1.40 0.375 0.145 0.055 0.026 1.81 0.328 0.109 0.036 0.014

Table 3. Quantities A1,2,3,4 as functions of Q

Q, GeV α0 = 1 α0 = 2/3 α0 = 1/2

A1 A2 A3 A4 A1 A2 A3 A4 A1 A2 A3 A4

0.00 1.000 1.050 0.911 1.289 0.66(6) 0.454 0.279 0.239 0.500 0.253 0.120 0.073
0.20 0.911 0.873 0.707 0.904 0.644 0.424 0.253 0.209 0.494 0.247 0.116 0.070
0.40 0.747 0.586 0.408 0.418 0.591 0.357 0.198 0.149 0.477 0.230 0.105 0.061
0.60 0.612 0.392 0.231 0.189 0.530 0.288 0.146 0.097 0.454 0.209 0.091 0.050
0.80 0.519 0.280 0.143 0.097 0.476 0.232 0.107 0.063 0.428 0.186 0.077 0.040
1.00 0.454 0.214 0.097 0.056 0.432 0.191 0.081 0.043 0.404 0.165 0.065 0.031
1.40 0.374 0.145 0.055 0.026 0.369 0.139 0.051 0.023 0.361 0.132 0.047 0.020
1.78 0.330 0.112 0.038 0.015 0.330 0.111 0.037 0.014 0.330 0.110 0.036 0.014
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which gives the following values at the infra-red limit:

ΔMPT(Q2 = 0; α0 = 1) = 3.619 and ΔMPT(0; α0 = 2/3) = 0.991. (29)

Linear extrapolation gives slightly more accurate bounds

αSiMPT
0 � 0.67, Mglb � 650 MeV. (30)

The last limitation on Mglb does not contradict the current lattice estimate (see re-
view [24]).

2.5. On Exact Two-Loop Massive Solution. The massive renormalization group solution,
more precise than (6), is expressible via a special Lambert function W (z).

In this connection, we are reminded that the Lambert function naturally arises in the course
of exact solving of the two-loop renormalization group equation for the running coupling in
the massless, pure log case. Under simple reservation, the same is true for the massive case.

For this purpose, we analyze massive renormalization group (mRG) solution for the
functional equality input. Omitting technical details (see [25,26]), one gets the transcendental

relation for αs(x)[2]mRG = a(φ):

F
(
αs(x)[2]mRG

)
= F (α0) + β0φ(x), (31)

F (a) = −β0

a∫
da

β(a)
, β(a) = β0a

2 + β1a
3. (32)

If, as usual, the expansion β0/β(a) ∼ 1/a2 − b/a is used, then

Fex(a) =
1
a

+ b ln a = V+(a). (33)

Hence,
αs(x)[2]mRG,1 = F−1

1 (F1(α0) + β0 φ(x)) . (34)

At the same time, a straightforward calculation of the integral in (31) yields

F2(a) =
1
a
− b ln

(
1
a

+ b

)
:= V−

(
1
a

+ b

)
− b (35)

and
αs(x)[2]mRG,2 = F−1

2 (F2(α0) + β0 φ(x)). (36)

The functions reverse to the just introduced V± are simply related to the Lambert function.

3. LONGITUDINAL AND TRANSVERSE SPIN STRUCTURE AT LOW Q2

For the purpose of a smooth continuation of Γp,n
1 (Q2) to the non-perturbative region

0 � Q2 � Λ2
QCD [27,28], it is convenient to consider the Q2-evolution of the integral

I1(Q2) ≡ 2M2

Q2
Γ1(Q2) =

2M2

Q2

1∫
0

dx g1(x, Q2), (37)
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which is equivalent to the integral over all energies of the spin-dependent photonÄnucleon
cross section, whose value at Q2 = 0 is deˇned by the GerasimovÄDrellÄHearn (GDH) sum
rule [29,30]

I1(0) = −μ2
A

4
, (38)

where μA is the nucleon anomalous magnetic moment. Then the function I1(Q2) can be
written as a difference

I1(Q2) = IT (Q2) − I2(Q2) (39)

between the transverse and ©longitudinal minus transverseª structures, where

IT (Q2) =
2M2

Q2
ΓT (Q2) ≡ 2M2

Q2

1∫
0

dx gT (x, Q2), (40)

I2(Q2) =
2M2

Q2

1∫
0

dx g2(x, Q2). (41)

The well-known BurkhardtÄCottingham (BC) sum rule [31] provides us with an exact expres-
sion for I2(Q2), in terms of familiar electric GE and magnetic GM Sachs form factors as

I2(Q2) =
1
4
μGM (Q2)

μGM (Q2) − GE(Q2)
1 + Q2/4M2

, (42)

where μ is the nucleon magnetic moment. As a consequence of the strong Q2 behavior of
the right-hand side of Eq. (42), we get for large Q2

1∫
0

g2(x, Q2)dx
∣∣
Q2→∞ = 0, (43)

so I2 is much smaller than I1 for large Q2. Now from the BC sum rule (42), it follows that

I2(0) =
μ2

A + μAe

4
, (44)

where e is the nucleon charge. Then the GDH value (38) is reproduced with

IT (0) =
μAe

4
. (45)

This slope is essentially larger than the one for I1, explaining the observed excess of the
slope of the latter over the GDH value. In practice, as there is currently no evidence that the
BC sum rule has any perturbative or non-perturbative corrections, one may apply the SiMPT
series to ΓT (Q2) instead of Γ1(Q2), which will allow matching to the GDH value.
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4. LAMBERT FUNCTION

Generally, the multi-branch Lambert function W (z) of the complex variable z is deˇned
by the relation

W (z) eW (z) = z, W (z) + ln W (z) = ln z. (46)

One of its asymptotics is
W (z)|z→∞ → ln z − ln (ln z). (47)

Our interest is with a particular branch, W−1(z), real on a real negative semi-axis −z = t >
1/e. Farther in this text we shall omit lower index, always having in mind this branch. Then,
in the massless case (see [32,33] and references therein),

α[2]
s (Q2) = −β0

β1

1
1 + W (z)

, z = − exp
(
−L

B
− 1

)
; L = ln

(
Q2

Λ2

)
, B =

β1

β2
0

. (48)

According to (47), its asymptotics can be presented as follows:

α[2]
s (Q2) ∼ 1

β0 L + β1 ln L
. (49)

In our massive SiMPT case, we can use this expression with the change of the log
argument, L → φ(x), that is ln x to ln (x + 1/p). For a quantitative estimate, look at the
numerical table of Lambert in spirit of Eqs. (8) and (19).

In paper [14], in the course of solving, one meets 1 an equation like

β0φ(x) = J(A(x)) − J(a0) = −β0

A1(x)∫
a0

dg

β0g2 + β1g3
= −

A1(φ(x))∫
a0

dg

g2 + bg3
. (50)

If the integrand is expanded,
1

g2 + bg3
	 1

g2
− b

g
, (51)

or exact β(g) is equal to a formally expanded expression (like in some 2-dim soluble models),
then after integration one gets

J(A) =
1
A

+ b ln A = b

(
1

b A
− ln

1
b A

)
− b ln b, (52)

1
b

(J(A) + b ln b) =
1

b A
− ln

1
b A

. (53)

Exponentiating the last relation, we get

exp
(

φ(x)
B

+
J(a0)

b
+ ln b

)
= exp

(
J(A)

b
+ ln b

)
= bA exp

(
1

bA

)
, (54)

1See p. 31 in our JINR Preprint P2-2008-107, Dubna, 2008 (in Russian).
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where B = β1/β2
0 = 0.790 and we used (50) to express J(A) in terms of J(a0). After

rearrangement of (54) we get

bA exp
(

1
bA

)
= exp

(
φ(x)
B

+
1

ba0
− ln

1
ba0

)
= ba0 exp

(
φ(x)
B

+
1

ba0

)
, (55)

and, using the deˇnition of the Lambert function W (z) (i.e., W (z) eW (z) = z), we can write
the result as

bA(x) = −
[
W

(
− 1

ba0
exp

(
−φ(x)

B
− 1

ba0

))]−1

. (56)

If not expanded, it is still calculable and expressible (a bit differently!) via the W Lambert
function

1
g2 + bg3

=
1
g2

− b

g
+

b2

1 + bg
, (57)

and

J2(A) =
1
A

− b ln
(

1
A

+ b

)
= b

(
1

bA
+ 1 − ln

(
1

bA
+ 1

))
− b (1 + ln b). (58)

Again after exponentiation we get

exp
(

φ(x)
B

+
J2(a0)

b
+ 1 + ln b

)
= exp

(
J2(A)

b
+ 1 + ln b

)
=

e1/(bA)+1

1/(bA) + 1
. (59)

And the solution is the following:

bA(x) = − 1

W

[
−1 + b a0

ba0
exp

(
−φ(x)

B
− 1

ba0
− 1

)]
+ 1

. (60)

The difference between the two expressions:

A1(x) = − 1

b W

[
− 1

ba0
exp

(
−φ(x)

B
− 1

ba0

)] , (61)

A2(x) = − 1

b

{
W

[
−1 + ba0

ba0
exp

(
−φ(x)

B
− 1

ba0
− 1

)]} (62)

could be essential when the cubical term in β(g) is a leading one. This can happen in the
low-energy region at a0 ∼ 1. There, the difference A2(x)−A1(x) is positive and could reach
several tenths.

5. OUTLOOK: ON 3-LOOP LONG-LOG

One more way to realize the accuracy of SiMPT is to estimate the possible in
uence of
three-loop effects. This can be done with a speciˇc trick proposed in [34]:

L → L∗ = L + B
√

L2 + 2 π2. (63)
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