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A difference scheme of splitting with respect to physical processes for a model of heat and moisture
transfer is proposed. The model involves three physical processes Å heat, liquid and saturated vapor
transfer in the porous material. The density of saturated vapor and the transfer coefˇcients of liquid and
vapor moistures depend on the temperature. At the same time, the heat capacity and conductivity of the
porous material depend on moisture. On the basis of the proposed scheme of the model, a numerical
simulation of the heat and moisture transfer for a drying process has been performed.

‚ · ¡μÉ¥ ¶·¥¤²μ¦¥´  ¸Ì¥³  · ¸Ð¥¶²¥´¨Ö, μÉ´μ¸ÖÐ Ö¸Ö ± Ë¨§¨Î¥¸±¨³ ¶·μÍ¥¸¸ ³ ¤²Ö ³μ¤¥²¨
¶¥·¥¤ Î¨ É¥¶²  ¨ ¢² £¨. �·¥¤²μ¦¥´´ Ö ³μ¤¥²Ó ¢±²ÕÎ ¥É É·¨ Ë¨§¨Î¥¸±¨Ì ¶·μÍ¥¸¸  Å É¥¶²μ, ¦¨¤-
±μ¸ÉÓ ¨ ¶¥·¥¤ ÎÊ ´ ¸ÒÐ¥´´μ£μ ¶ ·  ¢ ¶μ·¨¸ÉÒÌ ³ É¥·¨ ² Ì. �²μÉ´μ¸ÉÓ ¶μ·¨¸Éμ£μ ³ É¥·¨ ²  ¨
±μÔËË¨Í¨¥´ÉÒ ¶¥·¥¤ Î¨ ¦¨¤±μ¸É¨ ¨ ¶ ·  § ¢¨¸ÖÉ μÉ É¥³¶¥· ÉÊ·Ò. ‚ Éμ ¦¥ ¢·¥³Ö É¥¶²μ¥³±μ¸ÉÓ ¨
É¥¶²μ¶·μ¢μ¤¨³μ¸ÉÓ ¶μ·¨¸Éμ£μ ³ É¥·¨ ²  § ¢¨¸ÖÉ μÉ Ê·μ¢´Ö ¢² £¨. 	  μ¸´μ¢¥ ¶·¥¤²μ¦¥´´μ° ³μ¤¥²¨
· §· ¡μÉ ´μ Î¨¸²¥´´μ¥ ³μ¤¥²¨·μ¢ ´¨¥ ¶¥·¥¤ Î¨ É¥¶²  ¨ ¢² £¨ ¤²Ö ¶·μÍ¥¸¸  ¸ÊÏ±¨.

PACS: 44.25.+f; 44.90.+c

INTRODUCTION

We determined a moisture transfer coefˇcient in [1] by solving an inverse problem and
using the experimental data [2]. At the same time, the temperature in the sample and
its surrounding was assumed to be constant and equal to a room temperature during the
experiment run. We solved more complex model in [3] for a temperature variation in the
surrounding environment of a moist sample when the moisture transfer cannot be described
by a single diffusion equation. A classical explicit difference scheme was used in [3].

We suggest new difference scheme of splitting with respect to physical processes [4, 5]
for the model solution in this paper which contains temperature dependencies of the density
of saturated vapor and the diffusion coefˇcients, and moisture dependencies of the heat
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capacity and conductivity. We study these corresponding dependencies in this paper because
of increasing number of new applications [6Ä8]. We consider the heat and moisture transfer
in the sample of a porous wet material with dimensions 3×9×12 cm as in [2,9]. The sample
is sealed on by a self-adhesive aluminum tape from all sides except right side of 3 × 12 cm
which is open. As a consequence, the moisture diffusion occurs only in one direction x Å
along the width of the sample 0 � x � l, where l = 9 cm.

1. BASIC EQUATIONS

We describe the heat and moisture transfer by means of the following equations [10]:

∂wl

∂t
= Ql − I, Ql =

∂

∂x

(
Dl

∂wl

∂x

)
, 0 < x < l, t > 0, (1)

∂wv

∂t
= Qv + I, Qv =

∂

∂x

(
Dv

∂wv

∂x

)
, 0 < x < l, t > 0, (2)

Cs
∂T

∂t
= QT − rI, 0 < x < l, t > 0, (3)

with additional condition [11] for material porosity

Π =
wl

ρl
+

wv

ρv
, 0 � x � l, t � 0,

QT =
∂

∂x

(
λ

∂T

∂x

)
+

(
clDl

∂wl

∂x
+ cvDv

∂wv

∂x

)
∂T

∂x
, (4)

Cs = cdρd + clwl + cvwv, λ = λd0(1 − Π) + clDlwl + cvDvwv.

We have the following quantities in Eqs. (1)Ä(4): T = T (x, t) Å temperature of the
sample; ρi = ρi(T ), Di = Di(T ), ci, wi = wi(x, t) are correspondingly density, diffusion
coefˇcient, heat capacity, and concentration for liquid (i = l) and for vapor (i = v); Π Å
porosity; ρd, cd, λd0(1 − Π), and r are density, heat capacity, heat conductivity of the dry
sample, and latent heat of vaporization; Cs and λ are volumetric heat capacity and heat
conductivity of the wet sample correspondingly. The additional condition (4) used in [11]
has a simple meaning. The pores volume is equal to the sum of the liquid and vapor
volumes, which create a total pores volume. The function I in Eqs. (1)Ä(3) expresses a
rate of variation of the moisture concentration that arises due to the evaporation (I > 0) or
condensation (I < 0). In general, this is a function of I(wl, wv) and it should be written
phenomenologically from a physical consideration. This is, however, not an easy task. That
is why we suggest another way for determination of function I . The second term −rI in the
right-hand side of Eq. (3) expresses a power density of the absorbed heat due to evaporation
I > 0 or a power density of the extracted heat due to condensation I < 0, and the last term
in the equation QT expresses a power density of the heat that arises due to the mass transfer
in the nonuniformly heated body.
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We choose a temperature dependence of the diffusion coefˇcients Dl and Dv accord-
ing to [12]

Dl(T ) = Dl0

(
T

T0

)3/2

, Dv(T ) = Dv0

(
T

T0

)3/2

, (5)

where Dl0 and Dv0 are diffusion coefˇcients for indoor temperature T = T0 = 27 ◦C.
The dependence of liquid density ρl on temperature T is weak, so hereinafter we consider

the density ρl as a constant (∂ρl/∂T = 0). The dependence of the saturated vapor density is
signiˇcant and can be found, for example, in [13] in tabulated form.

2. INITIAL AND BOUNDARY CONDITIONS

We solve the system (1)Ä(5) with the following initial and boundary conditions:

wl(x, 0) = ρlΠ, wv(x, 0) = 0, T (x, 0) = T0, 0 � x � l, (6)

−Dj(T )
∂wj

∂x
(0, t) = 0, j = l, v, −λ

∂T

∂x
(0, t) = 0, 0 � t � t0, (7)

wl(l, t) = ρlΠ + (v0 − ρlΠ)[1 − exp (−αt)], α � 1,

wv(l, t) = ρv(T )
[
Π − wl(l, t)

ρl

]
, (8)

−λ
∂T

∂x
(l, t) = −rDl(T )

∂wl

∂x
(l, t) + β[T (l, t) − T1,out],

for 0 � t � t0, where t0 = 20 days. The initial conditions (6) mean that in the beginning
all pores of the sample are totally ˇlled with liquid (no vapor is present) and the initial
temperature is an indoor temperature. The mass and heat �ux on the left boundary x = 0 are
absent (see conditions (7)). The boundary conditions (8) are written on the right side x = l of
the sample. The ˇrst and second conditions describe the time dependences of the liquid and
vapor concentrations. The last one expresses the heat �ux. The α parameter is introduced
due to the consistency of the initial and boundary conditions and due to the smoothness with
respect to the time of liquid and vapor on the boundary x = l. v0 represents a residual liquid
concentration that we adopted from experiment [2]. β is a heat transfer coefˇcient between
the sample and the outer space.

3. SPLITTING SCHEME

In the beginning, we split the system (1)Ä(3) with unknowns (wl, wv) ≡ w, and I with
respect to liquid transfer wl and vapor transfer wv in the following way:

wk+1/2 − wk

τ
+ Lwk+1/2 + Rwk = 0, (9)

wk+1 − wk+1/2

τ
+ Lwk+1/2 + Rwk+1 = 0, (10)
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where

L =
(

L1 0
0 L2

)
, R =

(
R1 0
0 R2

)
, L1wl = − ∂

∂x

(
Dl

∂wl

∂x

)
,

L2wv = − ∂

∂x

(
Dv

∂wv

∂x

)
, R1wl = I, R2wv = −I.

Equation (9) represents two parabolic equations from which we determine wk+1/2 assuming
that wk is given, for example, by the initial conditions (6). Equation (10) in its component
form can be written as

wk+1
l + τI = w

k+1/2
l − τL1w

k+1/2
l ,

wk+1
v − τI = wk+1/2

v − τL2w
k+1/2
v .

(11)

If we add the last two equations, then we get

wk+1
l + wk+1

v = w
k+1/2
l + wk+1/2

v − τ(L1w
k+1/2
l + L2w

k+1/2
v ).

Next, we rewrite Eq. (4) in the form

1
ρl

wk+1
l +

1
ρv

wk+1
v = Π.

As ρv �= ρl, the system of two last equations has a unique solution, and thus we deter-
mine wk+1. Having wk+1, we can determine the unknown I , for example, from (11) as

I =
1
τ
(wk+1

v − wk+1/2
v + τL2w

k+1/2
v ).

And ˇnally, we split the scheme with respect to heat transfer. Namely, we write Eq. (3) in the
difference form for inner points xi = ih, i = 1, 2, . . . , n − 1, h = 1/n in the interval [0, 1]:

Cs(wk+1
i )
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i

τ
=

1
h

[
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i

T k+1
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i
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i−1
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h

]
+

+

[
clDl(T k

i )
wk+1
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2h
+ cvDv(T k

i )
wk+1

v,i+1 − wk+1
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2h

]
T k

i+1 − T k
i−1

2h
− rIi,

Gk+1
i =

[
λ(T k+1

i+1 , wk+1
i+1 ) + λ(T k+1

i , wk+1
i )

]
/2.

4. RESULTS

The following additional parameters were set: Dl0 = 4.68 · 10−9 m2/s, Dv0 = 2.34 ×
10−9 m2/s, Π = 0.2, ρl = 1000 kg/m3, r = 2.25 · 106 J/kg, cd = 850 J/(kg ·K), cl =
4200 J/(kg ·K), cv = 1996 J/(kg ·K), λd0 = 0.14 W/(m ·K), β = 23 W/(m2 ·K), α = 60,
v0 = 3.928 kg/m3, for calculation purposes. The constructed difference scheme has the
approximation order O(τ + h2), where the time step τ was chosen as τ = 0.432 s and the
space step h was chosen as h = 0.09 cm.
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Fig. 1. Dynamics of the proˇles of liquid wl (a) and vapor wv (b)

The numerical experiment was conducted in order to determine the dynamics of the proˇles
of liquid and vapor, wl(x, t) and wv(x, t), temperature of the moist sample T (x, t), and the

Fig. 2. Dynamics of the temperature T

dynamics of the temperature on the left and right
sides of the sample T (0, t) T (l, t). Here, we pro-
vide the results of the drying process when the
outer temperature is T1,out = 27 ◦C.

Figure 1 shows that the liquid concentration
(plot a) decreases with time, while the vapor con-
centration (plot b) increases. This is explained
by the fact that the removal of the liquid out of
the pores of the sample leads to the growth of
the pores volume occupied by the vapor, i.e., the
liquid releases a space for the vapor in the pores.
During the drying process we supposed that on
the right boundary the liquid releases in the vapor

form and due to the phase transition a heat absorption should take place. Figure 2 re�ects
this process. On the right boundary two kinds of the heat �ux compete. The former re�ects
the heat that takes away moisture due to evaporation to the outer space. The latter re�ects
the heat so that the sample gets from the outer space. In the beginning, the ˇrst kind of the

Fig. 3. Dynamics of the temperature T on the sides (a) and dynamics of the source I (b)
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heat dominates the second kind, later on the ˇrst kind of the heat gets weaker. Figure 3, a
displays a cooling and a heating of the sample on its sides. As can be seen, the temperature
decreases from 27 ◦C of about threeÄfour degrees and later increases up to 27 ◦C. Figure 3, b
shows a source function I , the values of which in the beginning are rapidly increasing and
later are slowly decreasing.
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