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The agent-based multileader model of the stock price dynamics on the directed evolving complex
network is studied by direct simulation. The resulting stationary regime follows from the balance of
extremal dynamics, adaptivity of the strategic variables and reconnection rules. For the given parametric
combination the network displays a small-world phenomenon with high clustering coefˇcients and
power-law node degree distribution. The ˇtness exploration by the mechanism of repeated random walk
is used to violate dominance of centralized leadership. The simulation suggests that ultraslow dynamics
of ˇtness implies explanation of the long-time volatility of the log-price returns.
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INTRODUCTION

The design of decentralized systems of autonomous interacting agents with abilities to
automatically devise societies so as to accommodate their behaviour via social and economic
norms in emergent ways is highly challenging. As a general framework for starting of
statistical considerations of interacting agents that act in a way to increase their own utility
we take the Ising model. Looked at from the perspective of the macroeconomics, the model
has a great importance, because it demonstrates that a basic interaction between the spins
(also agents) can bring nontrivial collective phenomena. The parallels between �uctuations in
the economic and magnetic systems afford an application of Ising model to the stock market
statistics [1]. Particularly important for socioeconomic applications are works [2, 3] setting
the context with the minority game theory [4]. It has been conˇrmed that the spin analogs
are able to shed light on aspects of ˇnancial data complexity. In our present formulation
we incline closer to the spin variable reinterpretation [3, 5]. We concretize the concept by
deˇning the system of L interacting traders (spins, agents) that occupy enumerated sites
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(nodes) i = 1, 2, . . . , L on lattice (or network) Γ. The agent's state is deˇned by spin variable
S(t)(i) ∈ {−1, 0, 1}; the upper index (t) of S(t)(i) labels the market time. Each agent has an
attitude to place buy order S(t)(i) = 1, sell order S(t)(i) = −1 or stay inactive [S(t)(i) = 0].
The variable S(t)(i) is updated by stochastic dynamics according to local effective ˇeld.

Naturally, the reinterpretation of magnetization m(t) =
1
L

L∑
i=1

S(t)(i) has been introduced.

According to it, the predominance of buy orders manifests itself throughout m(t) > 0, while
m(t) < 0 corresponds to under-valued stock. The view assumes direct proportionality between
the logarithm of the stock price returns ln [p(t+1)/p(t)] and m(t+1) − m(t).

1. THE CO-EVOLUTIONARY MODEL

An attempt we use here is roughly analogous structurally dynamic cellular automata [6]
in which the conventional rules are generalized to formalism where geometry and matter
are dynamically coupled. We assume that the behaviour of market is determined by the
underlying complex network deˇned by dynamical rules for links between buyers and sellers.
Formally, the stochastic co-evolutionary dynamics of agents is described by the recursive
formula

Π
(t+1)

= Û(Π
(t)

) (1)

including the composed conˇguration Π
(t) ≡ {Π(t)(1), Π(t)(2), . . . , Π(t)(L)} that consists

of intra-agent spins Π(t)
ss (i) ≡ {s(t)(i, q)}q=1,...,Nintr , with s(t)(i, k) ∈ {−1, 1}; strategic

variables Π(t)
J (i) = {J (t)

intr(i, k, q), J
(t)
ext(i), h

(t)
0 (i) , κ(t)(i)}, where k, q ∈ {1, 2, . . . , Nintr},

network links Π(t)
X (i) ≡ {X(t)

n (i)}, n ∈ Iout ≡ {1, 2, . . . , Nout}. The nonlinear operator Û
acts as an arrangement of single-agent operators of: (a) local ˇeld Ûss(i) acting on Πss(i);
(b) adaptivity ÛAd(ia) acting on ΠJ(ia), ia ∈ Γ; (c) reconnection ÛRe(ir), ir ∈ Γ, acting on

Π(t)
X (ir); (d) extremal dynamics ÛEx(imin F ) acting on Πss(imin F ) and ΠJ (imin F ), where

imin F = arg minj∈Γ F (j) belongs to agent with a minimum of the ˇtness F (·) (see deˇnition
Eq. (3)). The comments to the role of above variables are provided in below.

Suppose the directed network of labeled nodes Γ ≡ {1, 2, . . . , L}, where node i ∈ Γ
attaches via Nout directed links to its neighbors Xn(i) ∈ Γ, n ∈ Iout, i.e., the graph is
Nout-regular. Two outgoing links X1(i) = 1 + i modL, X2(i) = 1 + (L + i − 2)mod L of
node i create the bidirectional cycle static subgraph (L-gon). This guarantees the preservation
of connectedness at any stage t. The reconnection rules are applied exceptionally to the links

X
(t)
n (i), 3 � n � Nout. The links are mediators of the J

(t)
ext(i) pair couplings through which

agent i reacts to game-relevant information about the sell/buy orders of linked neighbors.

The random ˇeld term h
(t)
0 (i) expresses the effort to preserve decision sign (h0), the term

κ(t)(i)m(t) synchronizes actions of agents. The novel feature of the model presented in this
paper is that it goes beyond the elementary single-spinÄsingle-agent conception. The intra-

agent small-scale fully connected intranet is considered with the variables J
(t)
intr(i, . . .) slowly

tuned by the self-organizing learning governed by adaptivity principles. Thus, the whole
complexity of agent is bounded by 2Nintr states allowed by Πss(i).
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The effective local ˇeld h
(t)
ss (i, k) is deˇned as a superposition of the large-scale (inter-

agent) and small-scale (intra-agent intranet) contributions

Ûss(i) : h(t)
ss (i, k) ← J

(t)
ext(i)
Nout

∑
n∈Iout

S(t)(X(t)
n (i)) + κ(t)(i)m(t) + h

(t)
0 (i)+

+ h
(t)
stoch(i, k) +

1
Nintr − 1

Nintr∑
q=1,q �=k

J
(t)
intr(i, k, q)s(t)(i, q), (2)

where h
(t)
stoch(i, k) is the Gaussian stochastic variable of dispersion σhstoch and J

(t)
intr(i, k, q)

is the system of Nintr × Nintr pair couplings. The time step belongs to asynchronous spin

update s(t+1)(i, k) ← sign
(
h

(t)
ss (i, k)

)
. Two-neuron output of intranet is considered with

neurons s(t)(i, 1), s(t)(i, 2). We designed the intranet architecture where the agent's sell/buy

order S(t)(i) ← 1
2

[
s(t)(i, 1) + s(t)(i, 2)

]
, where 1/2 yields state space {−1, 0, 1} of S(t)(i).

The principles governing the co-evolution enter through the local ˇtness (score, popularity)
that expresses an ability/inability to survive in the competitive environment. The local ˇtness
is deˇned in an indirect manner as an integral over the history of orders

F (t+1)(i) ← F (t)(i) − S(t)(i)m(t). (3)

The dynamics of Π(t)
J comes from the concept that real agents are partially rational [7]. The

main principle we pursue is the mechanism of adaption. According to it, the agent ia starts
with the choice of the prototype node iprot = Xna(ia) (with randomly picked na ∈ Iout).
The adaption to prototype is described by updates

ÛAd(ia) : J (t+1)(ia) ← J (t)(ia)(1 − η) + ηJ (t)(iprot) (4)

performed for alternatives J (t)(i) from the tuple Π(t)
J (i); η ∈ (0, 1) is the plasticity parameter.

Recently, the research in complex networks has been extended to the local rules governing
dynamics of social and technological networks [8]. The core of the most approaches is
grounded on mechanism of preferential attachment [9]. The reason for the revision of our
antecedent concept of attachment to single leader [10] is that the larger the market is, the more
demanding the effort of agent to localize an unique leader has to be. Here, we are testing the
indirect method for generation of net with varying number of leaders. The process is modeled
by random walk on the net [11]. The information involved in {F (i); i ∈ RRW(ir); i ∈ Γ} is
gathered by random walker performing the repeated random walk (RRW) supplemented by
the search for agent (iB) that holds highest locally recognizable ˇtness. The RRW(ir) ⊂ Γ
is constructed by including Npath steps Nrep times repeated from the actual origin ir ∈ Γ.

The reconnection consists of edge X
(t)
nW (ir), nW ≡ arg minn∈Iout F (X(t)

n (ir)) disconnection
composed with subsequent connection to the locally ®best¯ node iB(ir) ∈ Γ

ÛRe(ir) : XnW (ir) ← iB ≡ arg max
j∈RRW(ir)

F (j), RRW(ir) ≡
Nrep⋃
z=1

pathz(ir), (5)
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where pathz(ir) ≡ {i1,z(ir), . . . , iNpath,z(ir)} ⊂ Γ is composed of iterations ip = X
(t)
np (ip−1),

i0 ≡ ir with random np ∈ Iout, (p = 1, 2, . . .Npath). Moreover, ÛRe(ir) is conditioned by
the requirement that no multiple links can attach iB from ir, while Xn(ir) �= ir for all
n ∈ Iout.

Further mechanism decisive for co-evolution is extremal dynamics [12]. Here extremal-
ity means that the instant value of the strategic variable owned by node imin F is im-
mediately replaced by Gaussian distributed random numbers N(0, σ...) of dispersion σ...:
h0(imin F ) ← N(0, σh0), κ(imin F ) ← N(0, σκ), Jext(imin F ) ← N(0, σJext),
Jintr(imin F , k, q) ← N(0, σJintr), F (imin F ) ← N(0, σF), generated according to dispersions
σκ, σh0 , σJext , σJintr , σF.

2. SIMULATION RESULTS

The selection of relevant combination within the parametric space is nontrivial task that
would be the theme of our future work. To attain at least qualitative agreement with known
economic patterns [13], the appropriate values L = 500, Nout = 10, Ndepth = 6, Ndepth = 6,
σJext = 6, σJintr = 1, σh0 = 4, σκ = 1, σhstoch = 0.05, σF = 0.1, PRe = 0.01, PAd = 0.2,
η = 0.025 have been inferred from parameter sweeps and extensive simulations. (Here PRe,
PAd denote the probability of ÛRe and ÛAd, respectively.) The particular requirement has
been to keep the spin dynamics much faster than adaptivity that should be more frequent than
reconnections. The additional requirement aims at attaining the vicinity of a critical point,
where the power-law probability density functions (pdf's) are generated [14]. The statistics
for calculation of averages has been collected from 3 · 107 Monte Carlo steps per node.

The node degree k(in)(j) =
∑
i∈Γ

∑
n∈Iout

δj,Xn(i) accounts for incoming links of node j. The

stationary regime permits the sequence of networks with broad-scale pdf(k(in)) described

local exponents γin � −1.23 (as k(in) > 20) of the dependence pdf(kin) ∼ [k(in)]γ
in
. The

valuable information on network structure is provided by the clustering coefˇcient C(i) [16],
which expresses the strength of social relationships Å social transitivity [17]. Customarily,
it is meaningful to compare the mean value 〈C〉 of distinct network reconnection modes. For
partially random net (only the links n � 3 are randomized) we obtained 〈Crand〉 � 0.02, while
〈C〉 � 0.51, and thus 〈C〉/〈Crand〉 � 25.5. For comparative reasons, the average of minimum

a) The time-dependence of iB (see Eq. (5)) shows the punctuated equilibrium. One can see how the

epochs dominated by a group of leaders switch rapidly to epochs governed by few leaders. b) The
corresponding time-dependence of the log-price returns
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path lengths have been computed for random net 〈lmin,rand〉 � 2.9. In contrast, ÛRe yields
〈lmin〉 � 16. The combination of the above-mentioned network attributes indicates what is
known as small-world behaviour. The main outcome of our analysis is plotted in the Figure.
It conˇrms the emergence of time-varying multileader market with distributed leadership.

The statistical treatment of simulation data (see the Figure) leads to the fat-tailed pdf
that can be ˇtted by the stretched exponential pdf(x) � exp (3.48 − 53.94 |x|z), z � 1 of
the log-price returns [15]. The ˇnding is in accordance with pdf's obtained for returns of
ˇnancial indexes NASDAQ, DJIA and S&P500. The time scales of simulated model can
be highlighted by the autocorrelation functions of m(t+1) − m(t), |m(t+1) − m(t)|, J

(t)
ext(i)

and F (t)(i). The autocorrelations of sign (m(t)) are signiˇcantly stronger than m(t+1) −m(t)

in conformity with empirics [18]. In addition, the analysis of |m(t+1) − m(t)| conˇrms the
volatility clustering [13]. Surprisingly, very slow time scale (∼ 104 MC steps) belongs
to F (t)(i).

CONCLUSIONS

The simultaneous production of the power-laws of the topological and price distributions
has been attained as an exceptional consequence of extremal dynamics. Our general remark in
this context is that indexes are parametrically dependent and it is disputable if universal in the
context of phase transitions. The simulations conˇrmed that community (modular) building
blocks can emerge due to combined effect of RRW and reconnections. There is a clear need
for more comprehensive research that would systematize abundant macroscopic phases.

Acknowledgements. The authors would like to express their thanks to Slovak Grant
agency VEGA (grant No. 1/2009/05), grants IT2005/IT2006 and agency APVT-51-052702
for ˇnancial support.

REFERENCES

1. Cont R., Bouchaud J. P. // Macroecon. Dynam. 2000. V. 4. P. 170;
Chowdhury D., Stauffer D. // Eur. Phys. J. B. 1999. V. 8. P. 477;
da Silva L. R., Stauffer D. // Physica A. 2001. V. 294. P. 235.

2. Ponzi A., Aizawa Y. // Physica A. 2000. V. 287. P. 507;
Bornholdt S. // Intern. J. Mod. Phys. C. 2001. V. 12. P. 667;
Kaizoji T., Bornholdt S., Fujiwara Y. // Physica A. 2002. V. 316. P. 441.

3. Takaishi T. // Intern. J. Mod. Phys. C. 2005. V. 16. P. 1311.

4. Challet D., Marsili M. // Phys. Rev. E. 1999. V. 60. P. R6271.

5. Greco A., Sorriso-Valvo L., Carbone V. cond-math0601047. 2006.

6. Ilachinski A., Halpern P. // Complex Syst. 1987. V. 1. P. 503.

7. Gigerenzer G., Selten R. Bounded Rationality. Cambridge MIT Press, 2002.

8. Zhu H., Wang X., Zhu J. Y. // Phys. Rev. E. 2003. V. 68. P. 056121.



The Emergence of Network Communities by the Action of Coevolving Market Agents 373

9. Albert R., Barab�asi A.-L. // Rev. Mod. Phys. 2002. V. 74. P. 47.

10. Horv�ath D., Kuscsik Z., Gmitra M. // Physica A. 2006. V. 369. P. 780.

11. Bray A. J., Rodgers G. J. // Phys. Rev. B. 1988. V. 38. P. 11461;
Almaas E., Kulkarni R. V., Stroud D. // Phys. Rev. E. 2003. V. 68. P. 056105.

12. Bak P., Sneppen K. // Phys. Rev. Lett. 1993. V. 71. P. 4083.

13. Mantegna R. N., Stanley E.H. An Intoduction to Econophysics: Correlations and Complexity in
Finance. Cambridge: Cambridge Univ. Press, 1999.

14. Sol�e R. V., Manrubia S. C. // Phys. Rev. E. 1996. V. 54. P. R42ÄR45.

15. Sornette D. Why Stock Markets Crash: Critical Events in Complex Financial Systems. Princeton
Univ. Press, 2003; cond-mat/0301543. 2003.

16. Dorogovtsev S. N., Mendez J. F. F. cond-mat/0404593.

17. Ebel H., Davidsen J., Bornholdt S. // Complexity. 2003. V. 8. P. 24.

18. Lillo F., Mike S., Farmer J. D. // Phys. Rev. E. 2005. V. 7106. P. 287.


