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1 Introduction

Orbital magnetism in atomic clusters is a subject of special interest.
Clusters can contain many atoms and, therefore, single-particle orbital
moments of valence electrons can reach very big values. This can result
in huge orbital effects, for example, in strong orbital magnetic giant
resonances (specific orbital oscillations of valence electrons, see review
[1).

Some of these resonances are of a general character and have to exist
in different finite Fermi systems (atomic nuclei, atomic clusters, etc).
M1 scissor mode (SM) in deformed systems [2]-[4] and M2 twist mode
(TM) in systems of arbitrary shape [5]-[8] are most famous examples.
They have been observed in atomic nuclei but not yet in clusters where
they should manifest themselves as specific oscillations of valence elec-
trons. We outline here both macroscopic and microscopic treatments
of these two modes.

2 SCISSORS MODE

In the first approximation, SM in axially-deformed clusters can be
treated as small-angle rotations of the spheroid of valence electrons
against the spheroid of ions (see Fig.1, a) [3].

More precisely, the displacement field of this mode includes a rigid

(a) (b)

Figure 1: Macroscopic view of scissors mode: a) rigid rotation [2], b) rotation within
a rigid surface [3]
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Figure 2: M1 strength calculated within the RPA in the interval 0-1 eV for axial
deformed sodium clusters [4]. The deformation parameter §, the energy centroid @,
and the summed M1 strength (3 B(M1)) are given for each cluster. M1 strength is
smoothed out with the Lorentz weight using the averaging parameter A =0.05 eV.

rotation plus a quadrupole term to vanish the velocity on the surface
[3]: }
d(F) = Q x 7+ 6(1+6/3)7'V(yz). (1)
SM is characterized by low-energy K™ = 17 states (K is magnetic
quantum number) connected by strong magnetic dipole transitions
with the ground state [3, 4]:
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where NN, is the number of valence electrons and 4 is the parameter of
the quadrupole deformation. Following the macroscopic estimations
(2) and (3), both the exitation energy wy; and the reduced transi-
tion probability B(M1) are proportional to §. So, SM exists only in
deformed systems. This mode can serve as a sensitive indicator of
cluster’s quadrupole deformation.

First RPA calculations for SM have been recently performed|[4].
Some of the results for sodium clusters are presented in Fig. 2. Our
analysis shows that in small clusters SM is promoted by one or two



particle-hole configurations. In heavy ones the resonance demonstrates
a collective character. The reduced transition probabilities B(M1) in
these clusters can be huge. It can reach the impressive value of 350-
400 p? already at N, ~ 300. The observation of such a strength is the
challenge for future experiments.

The matrix element for the orbital M1 transition has a form

A 1
< Wb, >= S0mvre i1 S af K11+ 1) — K(K + 1)

nl

(4)
where the wave function of a deformed state U5, = >, aXf Ry, (r) -
Yik (€2)x1/2v is a superposition of spherical (nl)-configurations (n, ! are
the node number and orbital moment, respectively). Eq. (4) shows
that SM is generated by the transitions between the components of
the wave function, which belong to one and the same spherical ni-
configuration but have the projections K differing by one. Certainly,
such transitions cannot take place in spherical clusters where all the
states belonging to one and the same (nl)-configuration are degener-
ated. The heavier the cluster, the larger orbital moments [ of valence
electrons and, so, the bigger the matrix element (4).

The realistic calculations [4] show that the SM energies and B(M1)
values scale with ¢ and N, basically according to the trends (2) and
(3). However, strong fluctuations of B(M1) values around the trend
(3) have been revealed for small clusters. These fluctuations reflect
the single-particle nature of the transitions and can lead, as is shown
below, to some new effects for the magnetic susceptibility.

The total orbital magnetic susceptibility is the sum of Langevin
diamagnetic and van Vleck paramagnetic terms:

X]c d1,a+ para (5)
where
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Figure 3: Normalized diamagnetic, paramagnetic and summed moments y = xB
(B = 4T) in axial deformed clusters Nagd (§ = 0.38), Naj;(6 = 0.32), Nafy(d =
—0.22), Na3;(6 = 0.21), Naj;(6 = —0.23), and Naf4(6 = 0.25). The moments are
given for x- and z-directions.

Here k = z,y, z are the coordinate axises (z is the symmetry axis),

Oy =250 —M is the moment of inertia and GR =N, < pi’y >
is its rigid valuen

It is easy to see that just the low-lying SM mainly contributes to
xbee. The schematic model [3] gives 6, = 6%  which results in the
complete compensation of dia- and para-terms in x;,. Due to the
symmetry of the problem, one also has x£** = 0. Finally, the total
susceptibility has to be strictly anysotropic [3]:

Xz = Xy = 07 Xz thiwy (8)

i.e. runs from zero to diamagnetic values. As it is seen from Fig. 3,



Figure 4: Nodeless (left) and one-node (right) branches of twist mode [5].

the fluctuations in B(M1) values modify this result. Namely, some
particular small clusters (Naj; and Naj;) may demonstrate the dia-
para anysotropy. This result is rather sensitive to the calculations
scheme and has to be check in more involved studies. However, it is
very desirable to check this exciting prediction in experiment.

3 TWIST MODE

TM is generated [5] by the operator T' = e~iesk — “%V with the
velocity field @ = (yz,—z2,0) [5]. This mode can be viewed as a
rotation of different layers of the system against each other with a
rotational angle proportional to z (projection to the axis of rotation).
Fig. 4 demonstrates nodeless and one-node branches of TM.

The twist can exist in both spherical and deformed systems. It
represents one of the most bright examples of elastic-like excitations
in finite Fermi systems. TM has been predicted [5] and then observed
experimentally [8] in atomic nuclei. Without any doubts, TM must
exist in atomic clusters as well [9].

The external field zl, o r(Y1ol,) is a part of the orbital term in the
operator of M2(p = 0) transition:

F(M2, 1= 0) = upvV10r[gs{ Y18} 20 + ggl{YlZ}ZO} 9)

So, it is natural to consider TM as a part of the orbital M2 resonance.
Investigations of orbital ML resonances in atomic nuclei show that
they very slightly depend on spin-multipole residual interaction and
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Figure 5: M2 orbital resonance in K and Na spherical clusters.[9].

this dependence is mainly caused by spin-orbital coupling. This is
even more the case for small atomic clusters where the spin-orbital
coupling can be safely neglected. Our study for SM shows that the
influence of multipole residual forces also should not be strong. For
these reasons, the simple particle-hole consideration of TM seems to be
quite realistic. The corresponding results are presented in Fig. 5. It is
seen that the heavier the cluster, the lower the energy of the resonance.
It lies safely below the overwhelming dipole plasmon, which favours
its experimental observation. It is remarkable that the resonance is
dominated by one kind of a particle-hole peak. The analysis shows
that in all the cases this peak corresponds to the transition between
nodeless levels which are placed in the vicinity of Fermi level and have



maximal orbital momenta. These transitions are 1p — 1d,1f — 1g
and 1h — 143 in Nag, Naf; and Nags, respectively. They exhaust from
100% (Nag) to 80% (Nags) of the total M2 strength and correspond
to the nodeless branch of TM (see Fig. 4, left side). A few weak
peaks in Fig. 5 represent one-node, two-node, and etc. TM branches.
The heavier the cluster, the larger the contribution of these branches.
Due to the strict domination of the nodeless branch, TM can serve
as a valuable source of information about single-particle levels with
maximal orbital momenta near the Fermi surface.

The other peculiarity of the orbital M2 resonance is that its total
energy-weighted strength can be estimated by an accurate and simple
way. Just (and only) in the case of M2, the corresponding sum rule
does not include any radial integrals and, therefore, can be derived
by a model-independent way. As a result, the following novel energy-
weighted sum rule can be proposed [9]:

EWSR =Y w,| < n|Fuy(M2)]0 > |2
1 . .
= —2~ < 0|[Fm~b(M2), [H, Forb(MQ)]HO >

~ % < O|[Boa(M2), [T, By (M2)]]J0 > (10)
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Here, F,. is the orbital part of the M2 operator (9) and n,l are
node number and orbital moment, respectively. The calculation of
the EWSR is extremely simple: it is enough to know the orbital
moments [ of occupied single-particle levels. Since different models
predict the same set of occupied levels, the estimation (10) indeed is
model-independent. It gives the values 121, 728, and 2546 u?A%eV
for Nag, Naj; and Naf;, respectively. The same values take place for
corresponding potassium clusters.



4 CONCLUSIONS

Orbital M1 (scissors) and M2 (twist) modes are predicted in alkali
metal clusters [4, 9].

The scissors mode (SM) exists only in deformed clusters and can
serve as a reliable fingerprint and measure of cluster quadrupole defor-
mation. The larger the cluster, the stronger the M1 strength. Already
in clusters with the number of valence electrons N, ~ 300 the summed
low-energy M1 strength can reach 350 — 400u2. SM in small clusters
provides a valuable information on the single-particle spectrum. SM
gives a dominant contribution to the van Vleck paramagnetism and
leads to a strong anysotropy of the magnetic susceptibility. Strong
fluctuations of M1 strength predicted in small clusters can, in princi-
ple, lead to dia-para anysotropy in some particular clusters.

The twist mode (TM) constitutes a part of the M2 orbital resonance
and can exist in clusters of any shape. In spherical clusters of small
and moderate size up to 80-100% of the total M2 strength is provided
by one transition between the nodeless (n=1) single-particle levels.
This transition has lowest energy and involves levels with maximal
orbital momenta in the Fermi region. As a result, TM can provide
a valuable information about these particular levels. Since the twist
mode involves orbitals with highest orbital moments, it represents
essentially a surface mode.

The novel model-independent energy-weighted sum rule (EWSR)
has been derived for M2 orbital excitations in spherical atomic clusters
[9]. It provides very simple and, at the same time, explicit estimations.
Both low-energy SM and TM lie safely below the overwhelming dipole
plasmon and so have a good chance to be observed experimentally.
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Hecrepenko B.O. u ap. E17-2000-14
Hunamuyeckue a¢peKTs! OpOUTAIPHOIO MarHeTH3Ma
B KJ1acTepax ILUENOYHBIX METa/UIOB

IpenckaszaHo cylecCTBOBaHHE B KJIaCTEpax IBYX OpOUTaTIbHBIX MArHUTHBIX pe-
30HaHCOB — M1 «HOXHHUYHOTO» (B 1e()OPMUPOBAHHBIX Kj1acTepax) u M2 TBUCTO-
Boro. [TokazaHo, 4TO 3TU pPEe30HAHCHI MO3BOJISAIOT MOTYYUTh LIEHHYI0 HH(pOpMAaLHIO
0 MHOTMX CBOMCTBax KJacTepoB (KBaapynoJsibHad AeopMaliys, MarHMTHas BOC-
MIPUUMYUBOCTh, OMHOYACTUYHBIH CHEKTpP U T.A.).

Pabora BeimonHeHa B Jlaboparopuu Teoperuueckoit ¢uszuku um. H.H.Boro-
nmobosa OMSIH.
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Nesterenko V.O. et al. E17-2000-14
Orbital Magnetism and Dynamics in Alkali Metal Clusters

Two remarkable orbital magnetic resonances, M1 scissor mode and M2 twist
mode, are predicted in deformed and spherical metal clusters, respectively. We
show that these resonances provide a valuable information about many cluster
properties (quadrupole deformation, magnetic susceptibility, single-particle spec-
trum, etc.)

The investigation has been performed at the Bogoliubov Laboratory of Theo-
retical Physics, JINR.
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