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1. Introduction

The problem of the reparametrization-invariant description of relativistic sys-
tems (particles, string, n-branes, general relativity) has a long history 1, 2,
3, 4, 5]. There are two opposite solutions of this problem in the generalized
Hamiltonian approach [6, 7, 8]: the reduction of the extended phase space
by the fixation of gauge which breaks reparametrization-invariance from very
beginning [1, 4] and the reduction of an action by the explicit resolving of
the first class constraints so that one of variables of the extended phase space
(with a negative contribution to the energy constraint) converts into the invari-
ant evolution parameter, and its conjugate momentum becomes the invariant
Hamiltonian of evolution [2, 3, 5]. The application of the invariant reduction of
extended actions in cosmology and general relativity [3, 5] allows one to formu-
late the dynamics of reparametrization-invariant systems directly in terms of
the proper time (as the time-reparametrization-invariant functional) with the
nonzero Hamiltonian of evolution (instead of the non-invariant coordinate time
with the generalized zero Hamiltonian of evolution in the gauge-fixing method).

An important element of the invariant reduction is the Levi-Civita - Shanmu-
gadhasan canonical transformation [9, 10] that linearizes the energy constraint
as the generator of reparametrizations of the coordinate time.

In the present paper, we apply the method of the invariant Hamiltonian
reduction (with resolving the first class constraints and the Levi-Civita - Shan-
mugadhasan canonical transformations) to express dynamics of a relativistic
string {11, 12] in terms of the proper time and to consider the correspondence
of this dynamics to the unitary representations of the Poincare group [13].

The content of the paper is the following. Section 2 is devoted to the gen-
eralized Hamiltonian formulation of a relativistic string and the statement of
the problem. In Section 3, local excitations are separated from the "center of
mass” coordinates of the string. In Section 4, the Levi-Civita transformations
and the invariant Hamiltonian reduction are performed to resolve the global
constraint and to convert the time-like variable of the global motion into the
proper time. In Section 5, the dynamics of local excitations is described in
terms of the proper time. Section 6 is devoted to the generating functional for
the Green functions.



2.  The generalized Hamiltonian formulation

2.1. Constrained systems

We begin with the action for a relativistic string in the geometrical form [14]
W = -%/dzu\/—ggaﬁ(?ax“@;;xu, Uy = (ug, u) (1)

where the variables x, are string coordinates given in a space-time with a di-
mension D and the metric (z,2" := 23 — 22); gop is a second-rank metric tensor
given in the two-dimensional Riemannian space u, = (ug,u).

The Hamiltonian scheme is based on the Dirac-Arnovitt-Deser-Misner para-
metrization of the two-dimensional metric

PY DYDY .
ga,ﬁzﬁg( e _“’1), VEa= 2N 2)

with the invariant interval [15]
ds® = gapdu®du’ = QY NMdr? — (do + ModT)Y] . ug = (ug = 1y u1 = a) (3)

where Ay and Ay are known in general relativity (GR) as the lapse function and
shift ” vector”, respectively [16, 17]. The action (1) after the substitution (3)
does not depend on the conformal factor 2 and takes the form

T2 a3(7) 2
, Dr
W = —% [dr [ do {(—A”T)— — Aw’Q] (4)
1 a1(7) 1

where

D, =i, — A, (¢ =0z, 2' = d,1) (5)
is the covariant derivative with respect to the two-dimensional metric (3). The
metric (3), the action (4), and the covariant derivative (5) are invariant under

the transformations (see Appendix A)
T= 7= fi(7), 0= = fyr,0). (6)

A similar group of transformation in GR is well-known as the "kinemetric”
group of diffeomorphisms of the Hamiltonian description [18].
The variation of action (4) with respect to A\; and Ay leads to the equations

oW  2'D.x zz'

—— = T Ao = — 7

O/\Q /\1 0 = 2 .’L’/QV ( )
SW  (D.x)? (22")? — 222"

— J2 2 _
E— /\% +2°=0 = )\]—
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The solutions of these equations convert the action (4) into the standard Nambu-
Gotto action of a relativistic string [12, 19]
T o2(7)
W= —7/([7’ / dov/(ka')? — 222”2
n (7)
The generalized Hamiltonian form [6] is obtained by the Legendre transforma-
tion [8] of the action (4)

o1

o 0a7) T o27)
W= [dr [ do(—p,Dea"+\iéy) = [dr [ do(=p,i* + M\g1 + Aags),
! o1 (7) n o1(r)
(8)
where )
1= oolp+ (), b2 = "p,, (9)
and the generalized Hamiltonian
H =X o1+ Mg (10)

is treated as the generator of evolution with respect to the coordinate time T,
and Ay, A; play the role of variables with the zero momenta

Py, =0, P, =0 (11)

considered as the first class primary constraints [6, 8]. The equations for Ay, Ay
oW oW

ih o1 =0; i, 9 (12)

are known as the first class secondary constraints [6, 8]. The Hamiltonian
equations of motion take the form

ow ; ! _ oW _ /DTZ’M _
W =Pu — 80[’7)\1(17,1 + A?Pu] =0, d—pﬂ— =pu—" . =0 (13)

The problem is to find solutions of the Hamiltonian equations of motion (13)
and constraints (12) which are invariant with respect to the kinemetric trans-
formations (6).

2.2. Gauge-fixing method

The standard method of solving the problem is to fix of the second class con-
straints (i.e. gauges) that accompany the first class constraints (11), (12). The
primary first class constraints (11) are accompanied by the following orthonor-
mal gauge

W=a=1, =2 =05 (14)



it breaks the kinemetric symmetry (6) from the beginning. In this case, the
classical equations of motion (13) reduce to the D’Alambert ones for r,

02w, — 0z, =0 (15)

with definite boundary conditions. We choose here the case of an open string
2'(1,012) =0, 01 = 0,0, = 7 with the solution [12]

P 1 , ,
2u(1,0) = Xu(1) + &u(r, 0) =Qu + W—f;r + 2—\/7?_7 [Wu(T+0) + Yt —0)]),
(16)
where 10, are periodic functions with a period 27 with the Fourier series
dulz) =i T exp(=inz) 2 a,,=aj, . (17)
n#0 n
The quantity X,(7) = (), +7F,/77y represents the "center of mass” coordinate

m

X,(r)= %/dmcu(r,a); (18)
0

whereas &, are local excitations given in the class of functions with the nonzero
Fourier harmonics

/dafﬂ (1, o) Yu(t+0)+(r—0)]=0. (19)

/da
The initial momenta P, and the function ¢, satisfy the first class secondary

constraints (12)

, . P
¢1i@220 = [£u+¢;1(7:ta)]2:07 Eu:ﬁ:aou' (20)
The Fourier series of these constraints are written as
1 £ )
¢ £ ¢y = -— Y. Lyexp(—izgn) =0, (z4 =T+ 0) (21)

with the Fourler coefficients

PZ .
Ly=-=+ LO =0, Ln;éo = —Bﬂa’,f +L,=0, (22)

where L, are the contributions of the nonzero harmonics
- 1 1

Ly = 5 > ey L"¢0 > My - (23)
2 40 2 kA0n



and L, according to (22), is identified with the mass of a string
2_ o T Yo :
MZ = ——27[-7-[’0 - _50/(10— {(w/lt(Z-F))Q + (WL(Z—))Q] . (24)

In quantum theory, the Fourier coefficients L, (22) form the closed Virasoro
algebra with the conformal anomaly [11, 12].

The first class secondary constraints (20) are accompanied, as was men-
tioned above, by the second class gauge constraints chosen, for example, in the
form [12, 7]

X2 =n,en =0, X =n,t =0, (25)
where n, is an arbitrary time-like vector. (The algebra of the secondary con-
straints X(l?%,gbl,g (20), (25) is given in [7].)

There is the problem of the solution (16) of the linearized ”gauge-fixing”
equation (15) in terms of the evolution parameter T (as the object reparame-
trizations in the initial theory) being adequate to the initial kinemetric invariant
and relativistic invariant system. In particular, the constraints (20), (25) mix
the global motion of the "center of mass” coordinates with local excitations of
a string ¢,, which contradicts to the relativistic invariance of internal degrees
of freedom of a string. In this context, it is worth to clear up a set of questions:
Is it possible to introduce the reparametrization-invariant evolution parameter
for the string dynamics, instead of the non-invariant coordinate time (7) used
as the evolution parameter in the gauge-fixing method? Is it possible to con-
struct the observable nonzero Hamiltonian of evolution of the ”center of mass”
coordinates? What is relation of the "center of mass” evolution to the unitary
representations of the Poincare group?

2.3. Invariant Hamiltonian reduction

To answer the above-mentioned questions for a relativistic string, we use the
time-reparametrization-invariant Hamiltonian reduction [3].

To illustrate this invariant reduction and its difference from the gauge-fixing
method, let us consider a reparametrization-invariant form of a classical me-
chanical system [3]

W = [ dr (pi = T = Tl + H(p.q)]). (26)

We show (using nothing but the equations of motion) that this system is com-
pletely equivalent to the conventional mechanics in the reduced phase space
T(r)=Ty d
wh= [ ar (pzj: - H(p,q)> . (27)
T(Tl):Tl



in terms of the proper time T defined as
dT = M7, T = [dr'\(7) (28)
0

and invariant with respect to reparametrizations of the coordinate time

=7 =17(r), A= /\’:/\ﬁ . (29)
dr’

The problem is to obtain the evolution of the physical variables in the in-
variant parameter T, or to present the effective action (of the equivalent uncon-
strained theory) directly in terms of T', the equations of which reproduce this
evolution. The solution of this problem will be called the invariant Hamiltonian
reduction.

The wnvariant Hamiltonian reduction is the explicit resolving of three equa-
tions of the extended system (26) i) for the variable A

W
=T+ H(p,q) =0 (30)
P
i) for the momentum IIy with a negative contribution to the constraint (30)
W dQq
— =0 = —==) 1
31, dr ’ (31)

and iii) for its conjugate variable Qg

SW _dIl,

@g_:ﬁ:o (32)

The resolving of the constraint (30) expresses the "ignorable” momentum II;
through H(p,q) with a positive value IIy = H(p, q) > 0.

The second equation (31) identifies the dynamic evolution parameter Qg with
the proper time (28) )y = 7. It is not the gauge but the invariant solution of
the equation of motion (31). The third equation (32) is the conservation law.

As a result of the invariant reduction (i.e., a result of the substitution of
Iy = H and @ = T into 26) the initial action (26) is reduced to the action
of the conventional mechanics (27) in terms of the proper time 7" where the
role of the nonzero Hamiltonian of evolution in the proper time T is played
by the constraint-shell value of the "ignorable” momentum Iy = H(p,q). In
other words, this constraint-shell action W (constraint) = W* determines the
nonzero Hamiltonian H(p, ) in the proper time T, instead of the zero gener-
alized Hamiltonian in the coordinate time 7 in (26) A(—IIy + H). Thus, the
equivalent unconstrained system was constructed without any additional con-
straint of the type: A =1, 7 =1T.



Now we can compare the "gauge-fixing” A = 1, 7 = T with the gaugeless
invariant reduction: first of all, there is the contradiction of the gauge-fixing
identification of the coordinate time and proper time 7' = 7 with the difference
of their Hamiltonians A(—IIy + H) # H(p,q). The second difference is more
essential, namely, the formulation of the theory in terms of the invariant proper
time (28) is achieved by the explicit resolving of the constraint (30) and equation
of motion (31), as a result of which ”ignorable” variables Iy, )y are excluded
from the initial action (26) and from the phase space.

In the present paper, we apply the invariant Hamiltonian reduction to a
relativistic string.

3. The separation of the ”center of mass” coordinates

To apply the reparametrization-invariant Hamiltonian reduction discussed be-
fore to a relativistic string, one should define the proper time in the form of the
reparametrization-invariant functional of the lapse function (of type (28)), and
to point out, among the variables, a dynamic evolution parameter, the equa-
tion of which identifies it with the proper time of type (31). We identify this
dynamic evolution parameter with the time-like variable of the center of mass
of a string (18) defined as the total coordinate

1 o)

— / dox,(r,0), I(1) = o9(1) — 01(7). (33)
)t

Therefore, the invariant reduction requires to separate the "center of mass”
variables before variation of the action. We consider this separation on the
level of the action (4) which after the substitution

.TH(T, ‘7) = ‘X’/J(T) + Eu(Tv J)a xiL(Tv (7) = 5;/;(7—’ (7) (34)

Xu(r) =

takes the form

72 2 3(7) 73(7) 2
; " XZU(r) - D¢+ (D-¢) 2

=—= 2X lo——— do | ———— A ;

W 2+1/ dr No(7) + #Ul(/T) do "y —f—al(/r) o y 1€ ,
(35)

where the global lapse function Ny(7) is defined as the functional of A;(7, o)
1 1 0

=— do———. 36
No[M]  Ur) 014) 0‘/\1(7_7 o) (36)

To exclude the superfluous coordinates and momenta, the local variables £, are
given (according to (33) and (34) ) in the class of functions (with the nonzero
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Fourier harmonics) which satisfy the conditions

oa(7)

[ dog,=o. (37)

o (7)

A definition of the conjugate momenta is consistent with (33) and the equation
for the momentum p,, (13) if the local momentum is given in the same class (37)

oa(T)
D &+
[ do S (38)
Al
o1(7)
Then we get
o9(7) ; ' CTI7
_ _ oW Xl _ 0w DgH

P, ——0(/T) dop,(r,0) = ST A i = L (39)

This separation conserves the group of diffeomorphisms of the Hamiltonian [3]
and leads to the Bergmann-Dirac generalized action

T 2(7) 2
? - P
W= [dr K | dol-m, D¢ - Aﬂﬂ) ~ BAM Nt (7 =11(7) (40)
! o1(7)
where H is the Hamiltonian of local excitations
L .
H= _Q—V[WZ +(16.)7] - (41)
The variation of the action (40) with respect to A; results in the equation
oW 1\ P?
— =H-|=]—=0 42
o (M%) 2y 7 .
where M (7 0)
3 17,0
= 4
A(r,0) No(7) (43)

is the reparametrization-invariant component of the local lapse function. Here
we have used the variation of the functional Ny[A;] (36)

SNo[M] 1

In accordance with our separation of dynamic variables onto the global and local
sectors, the first class constraint (42) has two projections onto the global sector
(zero Fourier harmonic) and the local one. The global part of the constraint (42)

8



can be obtained by variation of the action (40) with respect to N, (after the
substitution of (43) into (40))

W pe @
SN == - H" =0, H = [dodH (44)

or, in another way, by the integration of (42) multiplied by A1. Then, the local
part of the constraint (42) can be obtained by the substitution of (44) into (42)

- 1 7P - 5
MH - EU/ doMH = 0. (45)

The integration of the local part over o is equal to zero if we take into account
the normalization of the local lapse function

1 X
[(T)U(/T) do—=N"=1. (46)

>
=

This follows from the definition of the global lapse function (36). We see that
the local part (45) takes the form of an integral operator, orthogonal to the
operator of integration over ¢.

Finally, we can represent the action (40) in the equivalent form

Ty o2(7) 2
. P
W = /dT [( / dO'[_ﬂ’uDrgﬂ]) - RHYH - 17\70(_2_; +-/VHR> ’ (47)

0'1(7')

where the global lapse function Ny and the local one \; are treated as inde-
pendent variables, with taking the normalization (46) into account after the
variation.

The invariant proper time 7" measured by the watch of an observer in the
"center of mass” frame of a string is given by the expression (according to (6)
and (36))

r o (7) -
P S 1
VAT = Nodr = d7, 7= O/ dr [WU (/ dam S (48)

We include the constant /7 to provide the dimension of the time measured by
the watch of an observer.

Now we can see from (47) that the dynamics of the local degrees of freedom
m,¢, in the class of functions of nonzero harmonics (37), is described by the
same kinemetric invariant and relativistic covariant equations (13) where x,p



are changed by ¢, m, with the set of the first class (primary and secondary)
constraints

Py=0, P,=0, m,£" =0, \H — —/da/\l?{ = 0. (49)
A1,
We see that the separation of the ”center of mass” (CM) variables on the level
of the action removes the interference terms which mix the CM variables with
the local degrees of freedom; as a result, the new local constraints (49) do not
depend on the total momentum P,, in contrast to the standard ones (20). In
other words, there is the problem: when can one separate the CM coordinates
of a relativistic string; before the variation of the action or after the variation
of the action? The relativistic invariance dictates the first one, because an
observer in the CM frame (which is the preferred frame for a string) cannot
measure the total momentum of the string.
The first class local constraints (49) can be supplemented by the second class
constraints (25)

M=1=0, X=0, n",=0, nr, =0, n, = (1,0,0,0)  (50)

so that the equations of the local constraint-shell action

To 2(7) 2
2 . . P
W (loc.constrs.) = /dT / dom&; | — P,X" — NO(—T‘_’ + HR) (51)
7 Y
o1(7)

coincide with the complete set of equations and the same constraints (49), (50)
of the extended action, i.e., the operations of constraining and variation com-
mute. The substitution of the global constraint (44) with A; = 1 into the
action (51) leads to the constraint-shell action

XoT2
wP= [ dx /d Ky pN L PR (52
=7 0 X, | T, TV A )
Xo(m1) o1(7)

This action describes the dynamics of a relativistic string with repect to the
time measured by an observer in the rest frame with the physical nonzero
Hamiltonian of evolution. However, in this system, the local equations become
nonlinear. To overcome this difficulty, we pass to the ”center of mass” frame.

4. Levi-Civita geometrical reduction

To express the dynamics of a relativistic string in terms of the proper time (48)
measured by an observer in the comoving (i.e. ”center of mass”) frame, we use
the Levi-Civita-type canonical transformations [9, 20]

(Pquu) = (H#aQu);
10



they convert the global part of the constraint (44) into a new momentum I

1 P;
My = §§[PU2 — P, =P, Q= Xo , Qi=X;— Xop- (33)

0
The inverted form of these transformations is

V2910, + M7 I1,
= /231 + 1, B =10, Xo=+Q Y220 v 040, (5
Y
As a result of transformations (53), the extended action (47) in terms of the
Levi-Civita geometrical variables takes the form (compare with (26))

Ty oa(T) .
W :T[dT K / (lO’[—ﬂ'HDrfl‘]) ~ T1,Q" — Ny(~TI, +HR) _ C%_(QUHO) .

o1(7)

(53)
The Hamiltonian reduction means to resolve constraint (44) with respect to the
momentum I ST
=0=Iy=H". 56
0N T T (56)
The equation of motion for the momentum II,
ow dQ
ﬁE=O:>E£:A5 (i-e.,dQy = Nydr := d7) (57)

identifies (according to our definition (48)) the new variable )y with the proper
time 7 = /3T, whereas the equation for Q,

ow dTl, . dH%

g S0y e, BT _9 58

5Q0 T dr TV o g =0 (58)
in view of (56), gives us the conservation law.

Thus, resolving the global energy constraint Il = H?, we obtain, from (55),
the reduced action for a relativistic string in terms of the proper time (g = 7

:]zdf l:(ajde'[—WﬂDrgu]) +Hidd2i _ HR, d‘i( HR) (59)

where in analogy with (43) we introduced the factorized "shift-vector” A,
No(T)Ao(7,0); in this case, the covariant derivative (5) takes the form

D,
rgu = 0 E/L - 5/ = 6#

= 60
TN (60)

The reduced system (59) has trivial solutions for the global variables IT;, Q;

6VVR d h JWR dHZ

(SIL-:Oi dQ_O (); = const; TQZ-—:O:}E:Q IT; = const

which have the meaning of initial data. (61)

11



If the solutions of equiibns (56), (57), and (61) for the system (09)

M?
2_ 3

Iy = H .= I = P, Qo =7, Qi=X0), (62)

are substituted into the inverted Levi-Civita canonical transformations (54)
5 P, P;
Py=4/M?+ P2, Xo(7) =7, Xi(f)=Qi+7—,  (63)
v v
the initial extended action (47) can be described in the rest frame of an observer
who measures the energy Py and the time X and sees the rest frame evolution

of the "center of mass” coordinates

Xi(Xo) = Qi + Xo Z (64)

The Lorentz scheme of describing a relativistic system in terms of the time
and energy (X, Fy) in the phase space P;, X;, m,,£, is equivalent to the above-
considered the Levi-Civita scheme in terms of the proper time and the evolution
Hamiltonian (7, H®) in the phase space II;, Q;, 74, &,y where the variables IT;, Q);
are cyclic.
We identify the Levi-Civita scheme with the comoving frame with the energy
dwtt  M?  dste  M? M?

Eyn= — - — . Slc:—_.
0 dr 2’7+df 3’ ( TZW)

(65)

This energy includes the time-surface S’ term in the action (59). Then, the
inverted Levi-Civita canonical transformations (54) (obtained on the level of
the extended theory) plays the role of the Lorentz transformation from the
comoving frame to the rest frame

A/[

5

~ XOPO = £Xy|Py| - X;P. (66)

4.1. Dynamics of the local variables
4.2. Reparametrization-invariant reduction of an open string
We restrict ourselves to an open string with the boundary conditions
o1(7) =0, 09(7) = m, (r)y=m. (67)

In the gauge-fixing method, by using the kinemetric transformation (see Ap-
pendix A), we can put

St
It
—

; Ao =0. (68)

12



This requirement does not contradict the normalization of \; (46).
In view of (49), it means that the reduced Hamiltonian H® (44) coincides
with its density (41)

B =H— l/daH =0, y=meh=0 (69)
™o

In this case, the reparametrization-invariant equations for the local variables
obtained by varying the action (59)
SWE < 6WR
56” =0 = 8‘7'7r;1_80'()‘27r,u) :78 ( 15 )
again lead to the D’Alambert equations (15) where 7 is changed by the proper
time T

=0= 7Dr£u—/\l7r;t ( )

026, — 026, = 0. (71)
The general solution of these equations of motion in the class of functions (37)
with the boundary conditions (67) is given by the Fourier series (17)

5/1(7_-’ o) = %[%(@) + ¢M(2—)]» ( = ZT;O —inz O:;u Fio
(72

51‘(7_—’0—) = 2\/1ﬂ[wl/l(z+) - IF/J;L(Z—)L 2\/7 w Z+ + 'U )]

The total coordinates QLO) and momenta P, are determined by the reduced
dynamics of the ”center of mass” (61), (62), (63), and the string mass M
obtained from (44)

P! = M*=27yH" = 277 / doH. (73)
0
The substitution of ¢, and , from (72) into (41) leads to the density

]' = f
H=— Wi +o)+ui(F o)

and from (73) we obtain, for the mass, the expression (24).
The second constraint (69) in terms of the vector ¥y, in (72) takes the form

, 1

£ = yp [wf(i +0) - ’I/)LQ(T' - O‘” =0 = 1,/)/’,2(?4— o) = @Df(f —0) = const. ,

(74)

and the first constraint (69) ¢; = 0 is satisfied identically. After the substitution

of the constant value (74) into (24) we obtain that const. = —M?/7y; thus,
finally

M? = —myyi? (75)

13



It means that ¢, is the modulo-constant space-like vector. The constraint (75)
in terms of the Fourier components (72) takes the form

, o M?
pr=2 3 L,=- (76)

3
n=-—oo Ty

where L, is given by (23). From (76) we can see that the zero harmonic of this
constraint determines the mass of a string

M?=2myLy = -7y 30 Wy (77)
k£0

and coincides with the gauge-fixing value. However, the nonzero harmonics of
constraint (77)

1 - -
-5 Z QpQp—py = 07 L—n = L:L (78)
2 k#0,n

En#o =
strongly differ from the gauge-fixing constraints (20), as (78) do not depend on
the global motion of the center of mass P, and include only the contributions
of the nonzero Fourier harmonics QnAo.

Thus, instead of the standard constraints (20), the invariant dynamics of a
relativistic string leads to other local constraints (78) including only the nonzero
Fourier harmonics, in the agreement with the Poincare invariance of the local
degrees of freedom. The algebra of these constraints (78) is not closed, as it
does not contains the zero Fourier harmonic of the energy constraint (which
has been resolved to express the dynamic equations in terms of the proper
time). The reparametrization-invariant version of the Virasoro algebra (with
all its difficulties, including the D = 26 - problem and the negative norm states)
appears only in the case of the massless string —2ryLy = M? = 0.

4.3. The explicit resolving of constraints

The ideology of the invariant reduction (with the explicit resolving of constraints
to exclude the superfluous variables of the type of the time-like component of
the CM coordinates) can be extended onto the local constraints (69). These
constraints in the form (75) can be also used to exclude the time component
of the local excitations &y, my (with the negative contribution into energy) from
the phase space, to proceed the stability of the system and the positive norm
of quantum states.

& = .2%[%(@) —Yp(z)], &= %/Zwsw (=)l (79)
where
viles) = £l - Ly

14
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The constraining (79) means that only the spatial components ;, 7; are inde-
pendent variables.

The choice of gauge § = 7, = 0 50 fixes a contribution of the time-like
component into the string mass. In this case, as it was mentioned above, the
equations for the reduced action coincide with the set of equations and the same
constraints of the initial extended action. Finenally, the explicit resolving of
the local constraints takes the form

2
i)y =2

- (81)

4.4.  Operator level: the Rohrlich approach

The reparametrization-invariant dynamics of a relativistic string in the form of
the first and second class constraints (49), (50) coincides with the Réhrlich
approach to the string theory [21]. This approach is based on two points: i)
the choice of the gauge condition

G, = P,at =0, n#0

and ii) the use of that condition for eliminating the states with negative norm,
the physical state vectors being constructed in the ”center of mass” (CM) frame
(in our scheme, the CM frame appears as a result of the geometric Levi-Civita
reduction). This reference frame is the only preferred frame for quantizing such
a composite relativistic object as the string, as only in this frame one can quan-
tize the initial data. This is a strong version of the principle of correspondence
with classical theory: the classical initial data become the quantum numbers
of quantum theory. All previous attempts for quantization of the string fully
ignored this meaning of the CM frame.

The Réhrlich approach distinguishes two cases: M2 = 0 and M?2 # 0.

The first case, in our scheme, the equality M? = 0 together with the local
constraints (78) form the Virasoro algebra.

The second case M? # 0 allows us to exclude the time Fourier components
@0, and it is just these components that after quantization lead to the states
with negative norm because of the system being unstable. This means that the
state vectors in the CM frame are constructed only by the action on vacuum of
the spatial components of the operators ati = a_ni/v/mn >0
B, sy F () (05" (0 )
n=1 m \/ITUI Vnz!
where the three-dimensional vectors v, = (Vnz» Vny, Vnz) have only nonnegative
integers as components. These state vectors automatically satisfy the constraint

0>, (82)

Ozno|‘i’,, >cu=0, n>0 (83)
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The physical states (82) are subjected to further constraints (78) withn > 0

L|®, >cy=0, n>0, P’=M =ry<®d, > it i|®, >, (84)
m#0

where L, can be represented in the normal ordering form

_ o0 n—1
Lyso= Y of jomip; + 3 D Qi (85)
k=0 k=1
Constraints G, = ayg,n > 0 (83) and L,,, m > 0 (84), taken together, represent
the first class constraints, in accordance with the Dirac classification [6] as they
form a closed algebra for (n,m > 0)

(G, Gr] =0, [Ly, L) = (n—m)Lyym, [Gy, L) = nGmpn . (86)

Therefore the conditions (83) eliminating the ghosts and the conditions (84)
defining the physical vector states are consistent. Note that the commutator
[Ln, Ln] does not contain a c-number since n > 0and m > 0.

On the operator level, equations determining the resolution of the constraints
are fulfilled in a weak sense, as only the ” annihilation” part of the constraints
is imposed on the state vectors.

5. The causal Green functions

Now we can construct the causal Green function for a relativistic string as the
analogy of the causal Green function for a relativistic particle [13]

. d'P R 1
Ge(X) = G4(X)8(Xo) + G (X)0(-Xp) = Z/Wexp(—sz)m,
(87)
where G (X) = G_(—X) is the "commutative” Green function [13]
. a*p ‘ 9 5
Go(X) = [ Wexp(_zPX)a(P —m)0(Py). (88)

The latter can be represented in the form of the functional integral over the
complete phase space P,, X, [22]

X(r)=X ...
G+(X) _ / d1N0(7(—22)7Td)43P(T2) (89)
X(m)=0

II {dNO(T) 1;[ (w) } exp(iW [P, X, Ny, m])



where Ny = No/276(0), 6(0) = [dN, is the infinite volume of the group of
reparametrization of the coordinate time, and

T . AN
WIP.X, No.m] = [[dr{=B, %" = 20— P2 1 )] (90)

is the extended action for relativistic mechanics (3, 22] in the Hamiltonian form.
The Veneziano-type causal Green function is the spectral series with the
Hermite polynomials < ¢|v > over the physical state vectors [®, >=|v >

Ge(X[E1 &2) = Gy (X[61,£2)0(X0) + G- (X [1,6)0(~Xy) = (91)

. a*pP . < §1|Z/ >< I/lfg
G PPN SR
The commutative Green function for a relativistic string G4 (X|€1,&2) can be
represented in the form of the Faddeev-Popov functional integral [23] in the
gauge (50)

Gi(X[6,61) = (92)
X(Tz):XdNO(Tz)dAIP(TQ) B AP, (1)dX, ()
X("'{ZO TW)?)—HSI;LW {dNO(T) 1;[ (‘ﬂ\%H—_) } F+(52’£1)"
where
Fi(69,6)) = EU: < &olv > exp {iW[P, X, No, M1} < v|é >= (93)

)
/ D¢, ﬂ')AfP eXp {inP} )
&

WI[P, X, Ny, M,] is the action (90) with the mass M,

m(Xo)

T . . PQ
W, = 0/ dr [— (0/ daﬂ'#f“) - P X"~ N, (‘ﬂ + HR)J (94)

is the constraint-shell action (51),

D(.m) =TI e (95)
T, U v
and

App =T16(61))0(m0)8(¢h2))0(&0)det B, detB = det{¢1, ¢2, 710,60} (96)

7,0

is the FP determinant given in the monograph [7].
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6. Conclusion

We have described a relativistic string in terms of the invariant parameter of
evolution with the nonzero Hamiltonians of evolution H® in agreement with
the equations of motion of the initial system.

Recall that the fixing of gauge A\; = 1 identifies the proper time 7 = VAT
with the noninvariant coordinate time r that corresponds to the zero generalized
Hamiltonian of evolution of the constrained system.

The definition of the proper time consistent with the group of diffeomor-
phisms of the Hamiltonian description requires to separate the ”center of mass”
coordinates before varying the action, whereas in the standard gauge-fixing
method, the "center of mass” coordinates are separated after varying the ac-
tion.

As a result, we have got the Virasoro algebra only for the case of a string
with a single value of the mass in the spectrum (in classical theory, this value
is equal to zero) that corresponds to the light-like branch of the representation
of the Poincare group.

Unique admissible gauge for the secondary constraints is the Rohrlich gauge.

The local constraints do not depend on the ”center of mass” momenta and
mean that the nonzero Hamiltonian of evolution with respect to the proper
time coincides with its density. The invariant local constraints differs from
the standard ones, as the operations of separation of the "center of mass”
coordinates and variation of the action do not commute. We have constructed
the causal Green function in the form of the Faddeev-Popov functional integral
over the local variables.
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Appendix A: Kinemetric transformations

The kinemetric transformations of the differentials
7= fi(r)dr, & = fy(r,0)dr + fi(r,0)do
correspond to transformations of the string coordinates
N

IH(Tv o) = fﬂ(%)’ 6)’lu<7—’ 0) - f;(%a &)fé(Tv ),

by (r,0) = 2,(F, ) f1(7) + &,(7,6) fa(r, 0),
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;From these equations, we can derive the transformation law for A1, Ay taking
into account (7)

12

(#2')? — iz (F&)2 -8 f - i)

A o) = = a=A .
((7,0) 7o) (75 f5 o)
.y Lo\ bt 512 £ gl e 3
No(r,0) = % _ @z )flg;j}z]:;l fofy _ /\2% + %

The kinemetric-invariance of the interval (3) with respect to (6) follows from
these transformation laws and the transformation of the conformal factor

Ur.0) = fo(7,0)07,5)
The covariant derivative (5) is transformed under (6) as

Dz, =t,~- /\Qx'u = f:l(T) [i"# - ;\QZ'” = fl(T)D;:?# )
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Bap6awos .M., Ilepsymun B.H. E2-2000-100
BpeMmeHu-penapaMeTpH3aliOHHO-HHBAPHAHTHAS JUHAMHUKA
PEJIATUBUCTCKON CTPYHBI

JMHaMMKa PENATUBUCTCKOM CTPYHBbI H3yyaeTcsl B paMKax 060OIIEHHOrO raMUiIbTO-
HOBOTO (hopMau3Ma MyTeM pa3spelleHus CBs3eil nepBoro pona. PenapamerpusauuoH-
HO-MHBAapPUAHTHBIM M1apaMeTPOM 3BOJIIOLIMH CHCTEMBI BHIOMpPAeTCs BpeMeHHas KOMIIO-
HEHTa KOOPAMHATBl «LEHTPA Macc» CTPYHBI, KOTOPasl OTHE/AETCS OT JIOKIbHbIX CTere-
Heil cBobomel mpeoOpa3oBaHMEM, COXpaHSIOWKM rpynny  audgeoMoppusMoB
06006LIEHHOr0 raMIIbTOHHAHA U [yaHKape-KOBapMaHTHOCTb JIOK&IbHbIX CBA3el. s
TaKOro OTOXIECTBIECHHS BPEMEHHOI1 KOMIIOHEHTbI «LIEHTPa Macc» CTPYHbI C COOCTBEH-
HBIM BPEMEHEM, H3MepsieMbIM HabslofaTesieM B COMYTCTBYIOLIEH CHCTEMe KOOpPIAMHAT,
Mbl npuberaeM K KaHOHHYecKoMy npeoGpaszoBanuio JleBu-Uusura—IllaHnmyranxacana,
KoTopoe npeobpasyer [106anbHYI0 CBS3b (MaccoBasi MOBEPXHOCTb) B HOBBIH HMIIYJIbC,
TaK 4TO I PEAYKLIMH raMWIbTOHHAHA He TpeOyeTcs NOMOJIHUTENbHOIO YCOBHS K-
6poBxH. Paspeluenye TOKanbHbIX YCJIOBHH CBA3M BeleT K peyLipoBaHHOMY (azoBomy
NPOCTPAHCTBY C FAMMIBTOHMAHOM THNa Popnyxa M ¢ mapamMeTpoM 3BOJIOLMH, COBaLa-
IOIMM € COOCTBEHHBIM BpEMEHEM Habiofarens, HaXOOSLIErocs B «LEHTPE Macc»

CTPYHBI.

Pa6ota BeimonHeHa B Jlaboparopuu Teopetnueckoit ¢pusuxu uM. H.H.Borono6osa
OWsIN.

IpenpuaT O6BENANHEHHOTO MHCTHTYTA AIEPHBIX MccnenoBanuii. dybHa, 2000

Barbashov B.M., Pervushin V.N. E2-2000-100
Time-Reparametrization-Invariant Dynamics of a Relativistic String

The time-reparametrization-invariant dynamics of a relativistic string is studied in
the Dirac generalized Hamiltonian theory by resolving the first class constraints. The
reparametrization-invariant evolution parameter is identified with the time-like coordi-
nate of the «center of mass» of a string which is separated from local degrees of free-
dom by transformation conserving the group of diffeomorphisms of the generalized
Hamiltonian formulation and the Poincare covariance of local constraints. To identify
the «center of mass» time-like coordinate with the invariant proper time (measured by
an observer in the comoving frame of reference), we apply the Levi-Civita~Shanmu-
gadhasan canonical transformations which convert the global (mass-shell) constraint
into a new momentum, so that the corresponding gauge is not needed for the Hamil-
tonian reduction. The resolving of local constraints leads to an equivalent uncon-
strained system in the reduced phase space with the Rohrlich-type Hamiltonian of
evolution with respect to the proper time.

The investigation has been performed at the Bogoliubov Laboratory of Theoretical
Physics, JINR.
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