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1 Introduction

The BRST quantization procedure for a system of the first class constraints
(1] - [2] is straightforward. By the definition, the first class constraints form
a closed algebra with respect to the commutators (the Poisson brackets). For
simplicity we consider only linear algebras — Lie algebras of constraints.

More general systems include the second class constraints as well, whose
commutators contain terms which are nonzero on mass shell (on the subspace
where all constraints vanish). In the simplest cases these terms are numbers
or central charges, but sometimes, they are operators which act nontrivially
on the space of the physical states. Moreover, the commutators between
these operators and the constraints can be nontrivial. In some cases the
total system of the constraints and the operators mentioned above form a
Lie algebra.

So, in such cases we have a system of operators which form a Lie algebra,
but the physical meaning of different operators is different. Some of them
play the role of constraints and annihilate the physical states, others are
nonzero and simply transform the physical states into other ones. It means,
that in the BRST approach for the description of the corresponding physical
system we cannot use the standard BRST charge for the given Lie algebra.
Instead, we have to construct the nilpotent BRST charge in a manner, that
some of the operators play the role of the first class constraints, others are
second class constraints and the others do not imply any conditions on the
physical space of the system.

In this letter we demonstrate the possibility of different BRST construc-
tions for the given system of generators, which form a given Lie algebra and
have different physical meaning,.

In the Section 2 we discuss the general method of the BRST quantization,
when some of the Cartan generators are excluded from the total system
of constraints. The method is based on the introduction of an auxiliary
representations of the algebra under consideration, in the way that these
representations effectively lead to the desired properties of initial generators:
some of them are of the first class, some - of the second class and rest of the
generators (only the Cartan ones) do not imply any equations on the space of
physical states. The auxiliary representations of the algebra are constructed
by means of some additional degrees of freedom, which are usually exploited
for the quantization of the systems with the second class constraints [3] - [5].

In the Section 3 we describe the construction of auxiliary representations
of the algebra by means of the method of induced representations. The
resulting operators act in a new Fock space, generated by a set of additional
creation and annihilation operators. The construction automatically destroys
the hermiticity properties of the generators. The consequence of this fact is
that the BRST charge Q becomes non - hermitian: Q7 is not equal to Q.



As an example of this general construction the case of the so(3,2) algebra is
considered in detail.

In the Section 4 we show, how these hermiticity properties are restored by
introduction of new scalar product with some kernel K in this auxiliary Fock
space. As a consequence, the new operator K Q becomes hermitian and can
be used for the construction of the lagrangians, which are gauge invariant
due to the nilpotency of (non-hermitian) BRST charge Q.

2 The general method

In this section, we describe the method of the BRST construction, which
leads to the desirable division of the generators of a given Lie algebra into
the first and second class constraints. Let H?, (i = 1,...,k) and E® be
the Cartan generators and root vectors of the algebra with the following
commutation relations

[A, B°] = a(i) E*, (2.1)
[B*,E~*] = o'H, (2.2)
(B, EP| = N®F Bot5, (2.3)

Roots a(i) and parameters of, N® are structure constants of the algebra in
the Cartan — Weyl basis. Our goal is to construct nilpotent BRST charge,
which after quantization leads to the following conditions: all positive root
vectors E® (a > 0) of the algebra annihilate the physical states. Contrary,
the operators H? which form the Cartan subalgebra may or may not be
constraints, depending on the physical nature of these operators.

The simplest case, when all Cartan generators annihilate the physical
states, is well known. We introduce the set of anticommuting variables 7, 7,
N-o = N3, having ghost number one and corresponding momenta P;, P_, =
Pl,Pa, with the commutation relations:

{771‘; Pk} = Ojk, {ﬂa’P—-ﬂ} = {77-a> Pﬂ} = 6aﬁ (24)
we define the “ghost vacuum” as
Nal0) = Pgl0) = P;|0) =0 (2.5)

for positive roots o. The BRST charge for the Cartan - Weyl decomposition
of the algebra has a standard form

A A - 1
Q = LnH'+ Y (B +1-aB%) - 5 2 N0 an sPass +
i af

a>0

3 {0(d) (7aP-a — MiN-oPa) + &Nan-aPi} . (2.6)

a>0,i



The physical states are then the cohomology classes of the BRST operator.
The quantization in this case is similar to the quantization & la Gupta
Bleuler, because physical states satisfy equations

(H + > a(i))|Phys) =0, E®|Phys) =0
a>0
only for positive values of @. The appearance of the Y () in the quantiza-
tion conditions does not cause problems since these terms can be absorbed
after the redefinition of H* as we shall see below.

The situation becomes different if some of the Cartan operators H, say
H “ [ =1,2,..N are nonvanishing from the physical reasons. In this case
the following method can be used.

First of all we construct some auxiliary representation for the generators
Hi, E® of the algebra in terms of additional creation and annihilation oper-
ators. The only condition for this representation is that it depends on some
parameters h™. The total number of these parameters is equal to the number
of the Cartan generators, which are nonzero in the physical sector. In what
follows, we consider the realizations of the algebra with a linear dependence
of the Cartan generators on these parameters: H™(h) = H™ + ¢™h", where
¢ are some constants. The h™ dependence of other generators can be arbi-
trary. In the next section we describe the general method of construction of
such representations. Here we simply assume that they exist.

The next step is to consider the realization of the algebra as a sum of
”0ld” and "new” generators

H = H' + H'(h), E*%= E*+ E%(h). (2.7)

The BRST charge for the total system has the same form as (2.6), with
modified generators:

. 1
Q = S + 3 (1™ +1-aE%) = 5 L NPn-an-gPass +
i aff

a>0

> {a(i) mnaP-a — Min-oPa) + &' Maf-aPi} . (2.8)

a>0,i

The ghost variables 7;,, correspond to the set of nonvanishing generators Hi
and therefore one needs to remove the 7;, dependence

Qi = mi {H" + H" + cih™ + 3 B(ir) (nsP-p — 1-5P5)} (2.9)
>0
from the BRST charge. For this purpose consider an auxiliary N - di-
mensional space with coordinates z; and conjugated momenta p*, where
cith™ = pi:
[z, 0™ = b (2.10)

3



After the similarity transformation, which corresponds to the dimensional
reduction [6]

Q - eiﬂi‘zi, Qe—iw"lzi‘, (2'11)
where . N _
m = H"+ H" + ) B(i1) (nsP-p — 1-4Pp) (2.12)
B>0

the transformed BRST charge Q does not depend on the ghost variables 7;,.
All parameters p* in the BRST charge are replaced by the corresponding
operators —7#. The transformation (2.11) does not change the nilpotency
property of the BRST charge. It means that the P; independent part Q, of
the total charge Q is nilpotent as well. Moreover, as a consequence of the
nilpotency of Q all coefficients at the corresponding antighost operators Pi,
commute with Q. One can show that the quantization with the help of the
BRST operator Oy will lead to the desirable reduced system of constraints
on the physical states.

3 Construction of auxiliary representations
of the algebra

Consider the highest weight representation of the algebra under consideration
with the highest weight vector |®),,, annihilated by the positive roots

E*|®), =0 (3.1)
and being the proper vector of the Cartan generators
H|®), = K[®),. (3:2)

As it was shown in [7] the representations of this algebra can be (in principle)
constructed by means of the so-called Gelfand — Tsetlin schemes [8]. However
difficulties in such construction arise, if one considers algebras, different from
the simplest ones of rank 1.

In this section we describe another method, based on the construction
given in [9]. The representation which is given by (3.1) and (3.2) in the math-
ematical literature is called the Verma module [10]. Following the Poincare
— Birkhoff — Witt theorem, the basis space of this representation is given by
vectors

10,1y )y = (E-0)™ (E-02)™ | (B=%)™ |B), (3.3)

where a4, oy, ..., is some ordering of positive roots and n; € N.



Using the commutation relations of the algebra and the formula

n

AB" =Y (Z)B""‘[[. ..|A, B, B]..]

k-1

one can calculate the explicit form of the Verma module. In [9] it was shown
that, making use of the map

N1, Moy M)y 2 1, N2,y ), (3.4)
where |ni, ng,...,n,) are base vectors of the Fock space
In1,ma, ..y me) = (07)™ (b3)™ ... (b7)™]0). (3.5)
generated by creation and annihilation operators bf,b; ¢ = 1,2,...,7 with
the standard commutation relations
[ b J] = dij, (3.6)

the Verma module can be rewritten as polynomials in creation operators on
the Fock space.

As an explicit example of the construction given above let us consider
the representations of so(3,2) algebra, which can be used for the description
of the higher spin fields. In this case commutation relations between the
corresponding generators L}, Ly, L3, T+, Ly, L2, Ly, T, Hy, H, are given by

(L, L] = Hi, [Ly, L3]=Hy, [Lig, L] = Hi + Ha,
[T } _L1+2’ [T+7 L1+2] = _2L;7 [T7 LT} =0,
[T Ll] = L9, [T,ng] = —2L,, [T, T+] = H, — H,,
[
[
[

L27L12] =-T, [L2,T+] =—Ly, [T, L;] =—Lf, (3.7)
Ly, L) = -T*, [Li, L) =-T, [Lio,L3]=-T",

T, L) = —2L}, [T%, L) =2L,.
In this case we take the representation space the following space of vectors
[n)y = |1, ma, na, ma)y = (L¥)™ (L5)™ (L3)™ (T 7)™ @)y,
and after the simple calculations one obtains

LT'”)V = |n1 + 17n27n37n4>v7 Li'—2|n>v = lnl,n? + 1,TL3,TL4>V,

Li|n)y = |n1,no,ns + 1,m4)y,

T*n)y = [ni,n2,n3,n4 + 1), — ny|ny — 1,m2 + 1,n3,04)
—2ng|ny, ne — 1,3 + 1,14)

Hi|n)y, = (21, +ng — ng + hy)|n)y,
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Hy|n)y, = (ng 4 2n3 + nyg + ho)|n)y, (3.8)
Lin)y = (n1 + ng — ng + by — 1)ni|ny — 1,02, n3, 4y,
—ng|ni,ng — 1,n3,m4 + 1)y, + na(ng — 1)|n1,n2 — 2,03 + 1, n4)y,
Lia|n)y = (211 + ng + 2n3 + hy + hy — 1)ng|ng, ng — 1,n3,n4),
—ng|n1,n2,n3 — 1,14 + 1)y, + ngna|ng — 1,n2 + 1,03 — 1,m4),,
+n4(ng — 1)ning — 1,n9,n3,n4 — 1)y,
+(hg = hi)ngning — 1,n9,n3,n4 — 1)y,
La|n)y = (ng +n3 + na + hy — 1)ng|ny, no, ng — 1, n4)y,
+ng(ng — 1)|ny + 1,09 — 203, 114)
+(hg = hy 4+ ng — 1)ngng|ny, ng — 1,m3,n4 — 1),
Tin)y = (h1 — ha — ng + 1)n4|ny, ng, ng, ng — 1)y,
—2nafny + 1,m5 — 1,3, n4)y, — n3|n1,n2 + 1,13 = 1,14),.
It can be seen that the action of the following operators in the Fock space
Li‘— =b?—7 LT2=b;’ L; =bg—:
T =bf — bfb, — 2b3 by,
T = (h1 — ho — bfba)bs — 2b5 by — b3 b3,
Hy = 2b}by + bfby — b by + hy,
H, = b;bz + 2b;b3 + b:{b4 + ha, (39)
L, = (b?'bl + b;bg - bjb4 + hl)bl - bIbz + b;bgbz,
Lig = (2b] by + b3 b + 2bF by + hy + ho)by + b babsby
+b3b3by — bfbs + (hy — hy)bsby,
Ly = (b3 b + b3 bs + bf by + ho)bs
+(hg — h1)bsby + b baby + b bybsby
is identical to the expressions (3.8) for the Verma module.
As it can be concluded from the realization of the so(3,2) algebra, the
generators, corresponding to opposite roots are not hermitian conjugated to

each other. Indeed, following the usual rules of hermitian conjugation for
creation and annihilation operators

B)" =0, ()" =b (3.10)

the operator conjugated to LT is not equal to the operator L, since (L{)* =
(b)Y = b # L,. The same statement is true for all other pairs of root
generators. It means that the BRST charge Q, constructed with the help
of these operators, though being nilpotent, is not hermitian. This causes
the serious problems, because the BRST gauge invariance has been lost and
consequently the lagrangians of the form L ~ (¥|Q|¥) [6], [11] - [13] are no
longer gauge invariant.



4 The restoration of the hermiticity proper-
ties

The situation, when the generators corresponding to the opposite roots are
not mutually hermitian conjugated holds for any algebra under considera-
tion and is a consequence of the method used for the construction of the
corresponding representations.

The reason is that if we consider the usual scalar product in the Fock
space with basis (3.5), we find that these vectors form the orthogonal (not
orthonormal) basis. At the same time the corresponding vectors (3.3) in
Verma module are not orthogonal. For example, the scalar product of two
vectors

@)y = LITH®)y, |P2)v = L|D)v (4.1)

is different from zero
v(®1[®2)y = v(®TLLY|®)v = (hs — h1), (4.2)

where we assumed that (®|®)y = 1. Therefore the correspondence be-
tween these two spaces is not complete because of the difference in the scalar
products of pairs of corresponding vectors.

The idea how to improve the situation lies on the modification of the
scalar product in the auxiliary Fock space. The standard scalar product of
two vectors of type (3.5), namely |®;) and |®,) is defined as

(®1]@2) 5t = (D1|P2) (4.3)

and is calculated by transition of the annihilation operators b; to the right
by means of the commutation relations (3.6) with the subsequent use of the
property |0) = 0.

Let us introduce the new scalar product in the Fock space

(q)l|q)2)new = (‘I)IIK|¢2>, (4.4)

with a kernel K, which depends on the creation and annihilation operators
b; and b}". The only condition on this new scalar product in the Fock space
is that it has to coincide with the scalar product in the Verma module.
Therefore taking two arbitrary vectors in the Verma module |®y)y, [®g)y
and corresponding vectors in the Fock space |®,), |®,) one has the following
defining relation:

(@1|K|D2) = v(1|D2)v. (4.5)

According to this relation the hermiticity properties of the root generators
are restored in the following sense. Let us consider the scalar product of the
states |®,)y and E®|®,)y: v(®1|E*|®,)y. Due to hermitian properties of
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the root generators in the Verma module it coincides with the scalar product
of the states E~%|®,)y and |®,)y since

(E_alq)1>v)+ = V<(I)1|Ea. (46)
In the Fock space the relation (4.6) looks as
(E=%@1)y)" = v(®:|(E7)". (4.7)

So, taking the new scalar product of the pairs of corresponding vectors in the
Fock space |®,), E%|®2) and E~*|®,;), |®,) one has the following relations

(1| K E%|®2) = (@1](E™%) " K|®y). (4.8)

Therefore all of the root generators of the algebra under consideration satisfy
the relations
KE*= (E™*)"K, (4.9)

which play the role of hermiticity relations.
Now, consider the part of the BRST charge in the Fock space dependent
on the root generators

Oronn = Y., (1B +1-aE*) (4.10)

a>0

being the only non — hermitian part of the BRST charge

Qo = 2 (1-a(E™)" +1a(EY") # Quonn. (4.11)

a>0

It can be easily shown, that the following relations take place
:onhK = Kgnanhy QnonhK = KQ:L—OH,h .

So one can conclude, that the total BRST charge of the form (2.8) constructed
with the help of the generators (2.7) satisfies the modified hermiticity relation

Q'K =KQ. (4.12)

This gives the possibility to construct the lagrangians of the form L ~
(V| K Q|¥), which are gauge invariant with the following transformation rules
for the field |¥)

5|y = QIT), &(¥|=(T¥|QT. (4.13)

Obviously the gauge invariance is guaranteed by the nilpotency of @ and Q*
and by the relation (4.9).



Below we prove the existence of the hermitian kernel K and show, how it
can be constructed. The central role in this construction will play the matrix
of scalar products of basic elements of the Verma module

Cpnromn = V(TLI,"',TLr|m1," 'amT)V' (414)

N1,Tr

Let us introduce the notion of ancestor for the pair of multiindices
{n1,-++,nelmy,---,m;}. It is defined in the following way. Consider
a pair of indices {ng|my} standing on the k -th place of the given pair of
multiindices. The ancestor is the pair of representations, which has on the &
-th place the following pair:

{nk — mg|0} if ng > my;

{0]my — nx} if ng < my;

{0]0} if ng = my;
It means that we reduce the pair on the maximal common number. We can
illustrate graphically this procedure for the case of SO(3,2) algebra, which
has the rank 2. Its root diagram is shown on the following picture.

. A
. J~3 . L] L]
J—4 J_2 . . .
i I
J2 J4 L] . L] .
. J3 . . . . (4.15)

Here are drown two different vectors of the Verma module. Each vector
corresponds to the line, which begins at the origin and ends at the point
A. Different segments of these lines correspond to negative roots, which
are present in the definition of the vector |ny,--+,n,)y. The first (lower)
line corresponds to the vector |4,1,1,1)y, while the second one corresponds
to the vector |4,2,0,2)y. The lines described above are not unique for the
given vectors, since all lines with the same numbers of each negative roots
represent the same vector. However this fact does not affect the result ob-
tained with the help of this picture. The vectors with corresponding lines
ended at the same point, say at the point A, are the only ones which can
have nonzero scalar product. The pair of representations for the vectors
drawn on the picture is {4,1,1,1|4,2,0,2}, while the corresponding ancestor
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is {0,0,1,0/0,1,0,1}. In general all pairs of representations are divided into
the equivalence classes by their ancestors.
The following expression solves the problem of finding the kernel K.

K =3 (60)™ - (0F)™ Ot (6 by, b bg, -+, 070r) (b1)™ - (6)™,

e
anc
(4.16)
where the summation goes over all possible ancestors and
Crmr (b by, by by, - -+, b by) are the functions of the number operators
by by, bybg, -+ -,bFb, with the following properties:

O (0,0, -+, 0) = CIvame (4.17)
1 me 4L
Cr’ﬁl,-’--,g:h (L, lr) = ;'1"1171‘,’,;'?;;: T (4.18)

The hermiticity of the kernel K is a consequence of the relations
Coyiar by ey 1) = G (oo k). (4.19)

Therefore, the expression (4.16) solves the problem of finding the kernel
for the scalar product for an arbitrary Lie algebra.

5 Conclusions

It might be interesting to apply the method described in the paper to con-
struct the gauge invariant lagrangians for the particles with the higher spins
[14] - [15]). Namely, the case of so(3,2) algebra which we have considered in
detail corresponds to the subset of constraints obtained after the quantiza-
tion of the three — particle bound system (three — point discrete string) [16].
The description of the various irreducible representations of the Poincare
group with the corresponding Young tableau having two rows can be achieved
after elimination of the Cartan generators of so(3,2) algebra from the total
set of constraints. The application of the BRST approach given in this let-
ter to the description of the above mentioned system will be given elsewhere.
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