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One of the most important questions in quantum cosmology is that of identify-
ing a suitable time parameter [1] and a time-dependent Wheeler-DeWitt equation
[2, 3]. The main peculiarity of the gravity theory is the presence of non-physical
variables (gauge variables) and constraints [3, 4, 5, 6]. They arise due to the general
coordinate invariance of the theory. The conventional Wheeler-DeWitt formulation
gives a time independent quantum theory [7]. The canonical quantization of the
minisuperspace approximation [8] has been used to find results in the hope, that
they would illustrate the behaviour of general relativity [9]. In the minisuperspace
models [2, 7] there is a residual invariance under reparametrization of time (world-
line symmetry). Due to this fact the equation that governs the quantum behaviour
of these models is the Schrodinger equation for states with zero energy. On the
other hand, supersymmetry transformations are more fundamental than time trans-
lations (reparametrization of time) in the sense, that these ones may be generated by
anticommutators of the supersymmetry generators. The recent introduction of su-
persymmetric minisuperspace models has led to the square root equations for states
with zero energy [10, 11, 12]. The structure of the world-line supersymmetry or the
world-line supersymmetry transformations has led to the zero Hamiltonian phenom-
ena [2, 6, 12]. Investigations of the time evolution problem for such quantum systems
have been carried in two directions: the cosmological models of gravity have been
quantized by reducing the phase space degrees of freedom [13, 14, 15, 16, 17] and
with the help of the WKB approach [18, 19).

In this work we obtain a time-dependent Schrédinger equation for the homoge-
neous cosmological models. In our approach this equation arises due to an additional
action invariant under reparametrization. The last one does not change the equations
of motion, but the constraint which becomes time-dependent Schrédinger equation.
In the case of the supersymmetric minisuperspace model we obtain the supersymmet-
ric constraints, one of them is a square root of time-dependent Schrédinger equation.

We begin by considering an homogeneous and isotropic metric defined by

ds® = —N*(t)dt* + R?(t)dQ2, (1)

where the only dynamical degree of freedom is the scale factor R(t). The lapse
function N(t), being a pure gauge variable, is not dynamical. The quantity dQ2 is
the standard line element on the unit three-sphere. We shall set ¢ = A = 1. The
pure gravitational action corresponding to the metric (1) is

6 RR? 1
Sy = = (— v T 5kNR) dt, (2)

where £ = 1,0, —1 corresponds to a closed, flat or open space. x? = 8mGy, where
G is the Newton’s constant of gravity, and the overdot denotes differentiation with
respect to . The action (2) preserves the invariance under the time reparametrization

' = t+alt), (3)



if the transformations of N(¢) and R(t) are
SR =aR 6N = aN +aN (4)

that is, R(t) transforms as a scalar and N(t) as a one-dimensional vector, and its
dimensionality is the inverse of a(t).

So, we consider the interacting action for the homogeneous real scalar matter
field ¢(t) and the scale factor R(t). This action has the form

S = / (’f—f - NR3V(¢)> dt. (5)

This action remains invariant under the local transformation (3), if in addition to
the transformation law for R(t) and N(t) in (4), the field ¢(t) transforms as a scalar;
0p = ag.

Thus, our system is described by the full action

3RR*> R¢* 3kNR
szsg+sm=/(_ v St —NR3V(¢)> dt. (6)

Now, we shall consider the Hamiltonian analysis of this action. The canonical mo-
menta for the variables R and ¢ are given, respectively, by
0L  6RR

R
R=r=en DTN @

Their canonical Poisson brackets are defined as
{R7PR} =1, {¢7P¢} =1 (8)

The canonical momentum for the variable N(¢) is

Py=—= 0, 9
v = o o)
this equation merely constrains the variable N(t) (primary constraint). The canoni-
cal Hamiltonian can be calculated in the usual way, it has the form H, = N Hy, then
the total Hamiltonian is

Hr = NHy + unPh, (10)

where uy is the Lagrange multiplier associated to the constraint Py = 0 in (9), and
Hj is the Hamiltonian written as

[ P 7 3kR
12R " 2R3 K2

0= +————+R3V(¢)>. (11)



The time evolution of any dynamical variables is generated by (10). For the com-
patibility of the constraint the Eq. (9) and the dynamics generated by the total
Hamiltonian of Eq. (10), the following equation must hold

Hg = 0, (12)

which constrains the dynamics of our system. So, we proceed to the quantum me-
chanics from the above classical system. We introduce the wave function of the
Universe 1. The constraint equation (12) must be imposed on the states

Hyp = 0. (13)

This constraint nullifies all the dynamical evolution generated by the total Hamil-
tonian (10). A commutator of any operator and the total Hamiltonian becomes
zero, if it is evaluated for the above constrained states. The disappearence of time
seems disappointing, however, it is a proper consequence of the invariance of general
coordinate transformation in general relativity. The equation (9) merely says, that
the wave function 9 does not depend on the lapse function N(t). Therefore, we
expect that the equation in (13) may contain any information of dynamics. In quan-
tum cosmology the constraint (13) is well-known as the Wheeler-DeWitt equation
(time-independent Schrédinger equation).

In order to get a time-dependent Schrédinger equation we shall regard the fol-
lowing invariant action

S, = _%/RBPT (—d—fig + N(t)) dt, (14)

where (T, Pr) is a pair of dynamical variables, Py is the momentum conjugate to 7.
This action is invariant under reparametrization (3), if Pr and T transform as

6Pr = aPp 6T = aT, (15)

and N, R as in (4).
_ So, adding the action (14) to the action (6) we have the total invariant action
S = 8,4+ Sm + S;. In the first order form we get

5= / {RPR + 6Py — NHy + EZ? (d—Zf—) - N(t)) } dt. (16)

We shall proceed with the canonical quantization of the action (16). We define the
canonical momenta 7y and 7p, corresponding to the variables T and Py, respectively.
We get ~

oL R? oL

= =—p, Tpy = —— =0, 17
or T = oy (17)

T =



leading to the constraints
R3
HIEWT_—KI_BPT:O’ HQETI’pT:O. (18)

So, we define the matrix Cyp, (A, B = 1,2) as a Poisson brackets between the
constraints Cyp = {I14,IIg}. Then, we have the following non-zero matrix elements

R3
{1, I} = 5 (19)
with their inverse matrix elements (C~!)2 = £ The Dirac’s brackets {,}* are
defined by
{fvg}*: {fvg}_{faHA}CAB{HB7g}' (20)
The result of this procedure leads to the non-zero Dirac’s bracket relation
* K3
{T, Pr}* = I (21)
Then, the canonical Hamiltonian is
- R3
H. =N (—3—PT -+ Hg) , (22)
K

where the Hamiltonian constraint corresponding to the action (16) is
. RS
H = —Pr + H,. (23)
K
At the quantum level the Dirac’s brackets become commutators

HS

(T, Pr] = i{T, Pr}* = iR3' (24)
So, taking the momentum Pr corresponding to T as
K3 0
Pr=—i——
T TR e (25)

the quantum constraint (23) becomes quantum equation on the wave function v

;9 0
OR’ 0¢’

.0
zﬁw(T, R, ¢)=H (

R.6) (26)
Explicitly, we have
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This equation is the time-dependent Schrodinger equation for minisuperspace.
Equations of motion are obtained by demanding that the action S = S, +5,, + .5,
is extremal, ¢.e. the functional derivatives of S must be zero

6S _46S,  0Sm . 6S,

2 2% Om =0. 2
SRR "R TR ° (28)
As a consequence of the equation of motion
& 3
6§ 40S, R Ly N) =0, (29)

ﬁ_(SPT K3

the last term in (28), %PT(T — N) dissapears and, in fact, inclusion in S of an
additional invariant action S, does not change the equations of motion axcept the
equation 2 JN = 0, which is the constraint (23).

In the case of the Arnowit-Deser-Misner (ADM) formalism [3] the additional term
(14) can be written in the following invariant form

1
S=1) = —E/\/—gPT(—n“auT%— 1)d'z

1 2 (0T  N'OT 3

= —— [~n PT< oy tl)dds (30)

- _% [ BEPH(=00T — N'OT + N)dtd®s.

According to the ADM prescription [3] of classical general relativity, one considers
a slicing of the space-time by a family of space-like hypersurfaces labeled by a pa-
rameter . This parameter can be thought of as a time coordinate, so that each slice
is identified by the relation ¢t = const. The remaining three spatial coordinates, z¢,
determine a coordinatization of each slice. The space-time metric g,,, is decomposed
into shift N, lapse N functions and the three-metric of the slice hij. In the action
(30), h = deth”, V=9 = NVh and n* (n*n, = —1) is the unit normal vector to
hypersurface ¢ = const with components n, = (—N,0,0,0) and n* = (%, _W) In
the case of the homogeneous metric (1) the shift vector is N* = 0 and h'/2 = R3.

So, if we consider the four-dimensional gravity interacting with a scalar matter
field and the invariant additional term (30), then after applying the (ADM) (3 + 1)
formalism for the FRW model we get

S = —-:ZIF/\/—‘ng4x—/\/—_g[(—‘9‘gﬁ+V(¢)]d4

- i3/\/_—ng(nﬂa,,T— 1)d's = / K—;ﬁ]zz +%kNR> (31)
+ }fﬁ NRV (¢))] dt + = /P R (d—gQ—N(tO dt.
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In particular, choosing the gauge N = 1, then T' = ¢ and we obtain the so-called
cosmic time, on the other hand, if we take N = % we get the conformal time gauge.

In order to obtain a superfield formulation of the action (6) the transformation
of the time reparametrization (3) must be extended to the n = 2 local conformal
time supersymmetry (LCTS) (¢,7,7) [20, 21]. These (LCTS) transformations can

be written as
5t = L@&@+%M%E@&®—%M%Lm&®,
3 = %DgE(t, 6,0), 80 = —%DaL(t, 6,0), (32)
with the superfunction IL(t,8,0) defined by |
IL(t,0,0) = a(t) +i05'(t) + i08'(t) + b(t)68, (33)

where Dy = % + iﬂ_% and D; = —6% - iG% are the supercovariant derivatives
of the n = 2 supersymmetry, a(t) is a local time reparametrization parameter,
B'(t) = N7Y/28 is the Grassmann complex parameter of the local conformal n = 2
supersymmetry transformations and b(t) is the parameter of the local U(1) rotations
on the Grassmann coordinates 6 (§ = 6'). Then, the superfield generalization of the
action (6), which is invariant under the n = 2 (LCTS) transformations (32) has the
form (22, 23]

3 k _
Stm=2)y = Sg+Sm = / (——QW_IRDB-RD(;!R + %Rz) dfdodt  (34)
K K
1 _
+ <§W_11R3Dg<I>DgtI> - 2133g(q>)) doddat,
where g(®) is the superpotential. The most general supersymmetric interaction for
the set of complex homogeneous scalar fields with the scale factor was considered in

[24, 25]. For the one-dimensional gravity superfield IN(t,8,0) we have the following
series expansion

IN(t,0,0) = N(t) + 0/ (t) + 0y’ (t) + V'(t)00, (35)
where N(t) is the lapse function, ¢'(t) = NY2(t)y(t) and V'(t) = N(t)V(t) +
¢(t)y(t). The components N, 1,1 and V in (35) are gauge fields of the one-

dimensional n = 2 supergravity. The superfield (35) transforms as the one-dimensional
vector under the (LCTS) transformations (32),

§IN = (LIN) + %DgEDgﬂV + %DngglN. (36)
The series expansion for the superfield IR(t,6,6) has a similar form
IR(t,0,0) = R(t) + 10N (t) + 10N (t) + B'(t)68, (37)
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where R(t) is the scale factor of the FRW Universe, X' = xN'2X\ and B'(t) =
&N () B(t) + 5 (W (E)A(E) — Y(E)A®)).

For the real scalar matter superfield ®(t,,d) we have
®(t,0,0) = ¢(t) + 0%/ (t) + X (t) + F'(t)68, (38)

where X'(t) = N'Y2(t)x(t) and F'(t) = N(@)F(t) + ($(6)x(t) — ¥()x(t)). The
components B(t) and F(t) in the superfields IR and ® are auxiliary fields. The
superfields (37) and (38) transform as scalars under the (LCTS) transformations
(32).

Performing the integration over 6,0 in (34) and eliminating the auxiliary fields
B and F by means of their equations of motion, the action (34) takes its component
form. The first-class constraints may be obtained from the component form of the
action (34) varying it with respect to N(t),4(t),%(t) and V(t), respectively. Then,
we obtain the following first-class constraints Hy = 0, S = 0, S = 0 and F = 0,
where

k2 7
Hy, = ___E_M_i;\,\+

2
_ b Y \v
2R x 3R 2R3 233”"’( X+ %) - R3/\/\XX

k . B
+ 32\1/_;)()(—1—/-; 9() A\ + 6Vkg(¢)R? + 2 (ajs) R® - 3k2¢%(¢) R®
3 o2
+ 5k g(¢)xx+23¢g2xx+ﬂa¢(kx AX), (39)

S = (%R—W”—%ERI/MQW(@RS/M —R73/%% >/\
+ iR“3/27r¢+2R3/28—g X, (40)
0¢
S = s,

and 5
F= —§Z\A+>‘<x, (41)
The canonical Hamiltonian is the sum of all the constraints

1- 1 - 1

In terms of Dirac’s brackets for the canonical variables R, 7g, ¢, Tsy M A, X and X the
quantities Hy, S, S and F form the closed super-algebra of conserving charges

{S,5} = —2iH,, {H,,S}* = {Hy, 5} =0 (43)
{F,S}* = 1S, {F,S}* = —iS

7



So, any physically allowed states must obey the following quantum constraints
Hyp = 0, S1p =0, S =0, Fip =0, (44)

when we change the classical variables by their corresponding operators. The first
equation in (44) is the Wheeler-DeWitt equation for the minisuperspace model.
Therefore, we have the time-independent Schrodinger equation, this fact is due to
the invariance of the action (34) under reparametrization symmetry, this problem is
well-known as the “problem of time” [1] in the minisuperspace models and general
relativity theory. Due to the super-algebra (43) the second and the thirth equations
in (44) reflect the fact, that there is a “square root” of the Hamiltonian Hy with zero
energy states. The constraints Hamiltonian Hy, supercharges S, S and the fermion
number operator F' follow from the invariance of the action (34) under the n = 2
(LCTS) transformations (32).

In order to have a time-dependent Schrédinger equation for the supersymmet-
ric minisuperspace models with the action (34) we consider a generalization of the
reparametrization invariant action S, (14). In the case of n = 2 (LCTS) it has the
superfield form

Srwen = [ [IP— SN (DyTDy P — DyIPD,T)| dodfd. (45)

Note, that the Ber E4, as well as the superjacobian of n = 2 (LCTS) transformations,
is equal to one and is omitted in the actions (34,45). The action (45) is determined
in terms of the new superfields T and IP. The series expansion for T has the form

T(t,0,0) = T(t) + 0n'(t) — 677 (t) + m'(¢)69, (46)
where 7/(t) = N'/2(t)n(t) and m/(t) = N(t)m(t) + L (P(£)7A(t) +(t)n(t)). The super-
field T is determined by the odd complex time variables n(¢) and 7(t), which are the
superpartners of the time T'(t) and one auxiliary parameter m(t). The transforma-
tion rule for the superfield T(¢,6,6) under the n = 2 (LCTS) transformations (32)
is

6T = LT + %DgLDgT + %DgLDgT. (47)

The superfield IP(t,6,0) has the form
P(t,6,0) = p(t) + i0P;(t) + i0P)(t) + Pp(t)60, (48)
where Pj(t) = N'/2P, and P}(t) = NPr + L(¢B, — ¢P;), P, and P; are the odd

complex momenta, i.e. the superpartners of the momentum Pr.
The superfield IP(t, 6, ) transforms as

§IP(t,0,0) = LIP + %D,;LD,,IP + %DQLD(;P. (49)



The action (45) is invariant under the n = 2 (LCTS) transformations (32). Perform-
ing the integration over 6 and 6 in (45) and making the redefinitions Py — f—;PT,
P, — ﬁ—:P,, and Py — f—:P,—, we obtain its component form

R3 . . " (0 _
Srin=2) = */ s PT(N“'T)+177PH+”7PF)+E(Pn_nPT) (50)

L4
2

|4 i . iR iR

2K3

We can see from (50) that the momenta P,, P; and Pr in the superfield (48) are
related with the components of the superfield (35), which enter in the action (34),
unlike those momenta, the component p of the superfield (48) is not related with
any components in (35). Therefore, the variables p and m can be eliminated from
the action (50) by means of their equations of motion, then the component action
has the final form

R3 y .o . —
Srin=2) = —/F{PT(N_T)+“7P17+“7Pﬁ+%(Pn_77PT)

Y

LB =P + P, ~ 1Py | . 1)

In addition to thé canonical momenta 77 and 7p, for the two even constraints (17),
the action (51) has the additional momenta P, and Pp, conjugate to n and P,
respectively,

OLyneyy  R® OLy(n=3
P = — P Pp = i =0. 2
" an Y P oB, 0 (52)

With respect to the canonical odd Poisson brackets we have
{nP}=1,  {P,Pp}=1 (53)

They form two primary constraints of second-class

R?
3(n) =P, + Z—EP" =0, [4(P,) = Pp, = 0. (54)
The only non-vanishing Poisson bracket between these constraints is
R?
{15, 4} = g (55)

The momenta Py and Pp, conjugate to 77 and P respectively, also give two primary
constraints of second-class

R?
Hs(ﬁ) = P,—, + ZFP;, = 0, HG(P,-]) = Pp,-, = 0, (56)

9



with non-vanishing Poisson bracket

.Ré‘
{115, s} = g (57)

The constraints (54) and (56) for the Grassmann dynamical variables can be elim-
inated by Dirac’s procedure. Defining the matrix constraint Cy (i, k = n, P, 7, P;)
as the odd Poisson bracket we have the following non-zero matrix elements

R?
Cyp, = Cpy= {1l 14} = ey
R3
Cﬁpﬁ = Cpﬁﬁ = {H5,H6} = ZF, (58)
with their inverse matrices (C~1)"n = —?:%33' and (C~1)n = —i%. The result of this

procedure is the elimination of the momenta conjugate to the Grassmann variables,
leaving us with the following non-zero Dirac’s bracket relations

I€3 3

. _ _ . K
{n, P} =i, {n, P} = i3 (59)
R R

So, if we take the additional term (45), then the full action is

S(n:2) = S(n:2) + Sr(n=2)~ (60)

The canonical Hamiltonian for the action (60) will have the following form

- R3 b R3
Hen=2) = N <EPT + Ho) + % (ES" + S)

P R3 . V (R?
5 <—;§'Sﬁ+S) +§ (FFW-FF s (61)

where S, = (P, — 7Pr), S; = (=P + nPr), F, = (nP, — 7P;), and H,, S, S and
F' are defined in (39,40,41). In the component form of the action (60) there are no
kinetic terms for N, 1, and V. This fact is reflected in the primary constraints
Py =0, P, =0, P; =0 and Py = 0, where Py, Py, P; and Py are the canonical
momenta conjugate to N, 1, and V, respectively. Then, the total Hamiltonian may
be written as

H= Hc(n:2) + unyPy + ude, + ud;P,,; + uy Py. (62)

Due to the conditions PN = P¢ = Pd-, = PV = 0 we now have the first-class con-
straints

N R3 R3
H = —3PT+H0:0, f:—:s‘Fn‘i‘F:O,
K K
R? R? =
Qn = an + S = 0, Qﬁ = —FS’ﬁ + S = 0 (63)

10



They form a closed super-algebra with respect to the Dirac’s brackets

{Qn’Qﬁ}* = _2iH7 {H’Qn}* = {flv Qﬁ}* =0

{F.Q} = iQy  {F Q)" =-iQn (64)
After quantization Dirac’s brackets must be replaced by anticommutators
K3 K3
{n, P} =i{n, P} = B {n, Py} = i{n, P}* = B (65)
with the operator representation
3 3
P, = _%a%’ Pﬁ=—%%. (66)

To obtain the quantum expression for Hy, S, S, F we must solve the operator ordering
ambiguity. Such ambiguities always take place when the operator expression contains

the product of non-commuting operators A and X, x and %, R and g = —i%, ¢
and 7y = —i%. Such procedure leads in our case to the following expressions for
the generators on the quantum level
. P _
H = _ZB_T +H0(R» 7TR5¢7 ﬂ'qﬁv’\a/\a X)Z)y
o ._0
Qn = (E]‘ - ”7'8?) + S(R7 TR, ¢7 7T¢a /\7 X)a (67)
Q‘ = —(—E-FZT]i)-i—g(R TR ¢ Te 5\ )_C)
7 677 aT ) » ¢y I R4 )
0 0 <
F = — ==+ F\A\x %),
("an "ar;) +F(\ A% %)
where S, = 5‘% —iﬁ% and S; = —5‘3—7+i7]% are the generators of the supertranslation,
Pr = —i% is the ordinary time translation on the superspace with coordinates
(t,n, 1) 5
{Sn, Sy} = 2@'%, (68)

and F;, = 7);—” — 77%7 is the U(1) generator of the rotation on the complex Grassmann
coordinate n(ﬁ_z nt). The algebra of the quantum generators of the conserving
charges Hy, S, S, F' is a closed super-algebra
{5,585} = 2H,, [S,Ho=][S,H)=]F, Hy) =0,
$?=8 =0, [FS]=-S, [FS) =5 (69)
We can see from Egs. (64) and (67) that the operators H, Qy, Q5 and F obey the
same super-algebra (69)

{Qn’Qﬁ} = 2H, [QW’H]:[Qﬁaﬁ]:[}-’f{]:O
QF = Q:=0, (F,@n] = =@y, [F,Qs] = Qs (70)

11



In the quantum theory the first-class constraints (67) become conditions on the wave
function ¥, which has the superfield form

\IJ(T7 n’ 7_” R? ¢7 A? X? X’ X) = w(T’ R’ ¢7 )\’ 5\7_X’ X) _
+ m&(T, R, ¢, A, A, x, X) +i0C(T, R, 6, A, A, X, X)

+ o(T,R,¢,\ )\, x, X)0ii.- (71)
So, we have the supersymmetric quantum constraints
HY =0, Q¥=0, Q¥ - 0, FU=0. (72)
As a consequence of the algebra (70) the constraints
Q¥ =0, Q¥ =0, (73)
lead to the equation ~
{Qn, Q7Y =2HY = 0, (74)

which is a time-dependent Schrédinger equation for the minisuperspace model.
The condition (74) leads to the following form for the wave function (71)

= = 1(S%) ~ 7(59) + 5(55 — 5SSy, (75)
then @1, has the following form
Quibe = 0~ 192 + (5, 5}u) +
+ nnS(—zd—w+ ={5, S}d))—O (76)

this is the standard Schrodinger equation and due to the relation Hy = 1{S, S} it
may be written as

v
= H, 77
2% = How, (77)
where the wave function is (T, R, ¢, \, A, x, ). If we put in the Schrédinger equation
(77) the condition of a stationary state given by = 0, we will have that Hyy) =0

and due to the algebra (69) we obtain Sv = Sw = 0 and the wave function o,
becomes 1.

The next step is to consider the additional term (30) in the general relativity
theory and its consequences in the canonical formalism.
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Txau B.H., [Tamunes A.H., Pocanec X.X. E2-2000-12
O6 ypasHeHuu IllpeauHrepa B Monensx MHHHUCYIEPIIPOCTPAHCTBA

[MonyueHo 3aBucslee OT BpeMeHM ypaBHeHue lllpeauHrepa g Monenu
®punmaHa—PobepTcoHa—Yokepa, B3auMOAEHCTBYIOLIEH C ONHOPOIHON CKaIAPHOM
marepuei. [TokazaHo, 4TO A/ 3TOr0 HEOOXOAUMO BKJTIOUHTD B JICHCTBHE JOMOIHH-
TEJIbHBIH YieH, HHBAPUAHTHBI OTHOCHTE/IBHO pelapaMeTpH3aliid BpEMEHH. DTOT
4yjieH He MeHsSeT YpaBHEHUH ABHUXXEHHUS, HO MEHSET ONHYy M3 CBs3€il, KOTopas Ha
KBaHTOBOM ypPOBHE CTAaHOBUTCS 3aBHCAIUIUM OT BpeMeHH ypasHeHueM Llpenunrepa.
IpuMeneHue 3TOH NMpoLEeayphbl B CYNEPCHMMETPHYHOM Cllyyae MPUBOIMT K CyIep-
CUMMETPHUYHBIM KBaHTOBBIM CBA35M, SB/IFIOIIMMCS KBaApaTHbIM KOPHEM M3 Ollepa-
topa Ipeaunrepa.

PabGota BeimonHeHa B Jlabopatopun teoperuueckoi ¢usuku uMm. H.H.boro-
mo6osa OMSIH.

Ipenpunt OGbEAMHEHHOTO HHCTUTYTA SAEPHBIX Hccnenoanuid. ybna, 2000

Tkach V.I., Pashnev A.lL., Rosales J.J. E2-2000-12
On the Schrodinger Equation for the Minisuperspace Models

We obtain a time-dependent Schrédinger equation for the Friedmann—Robert-
son-Walker (FRW) model interacting with a homogeneous scalar matter field. We
show that for this purpose it is necessary to include an additional action invariant
under the reparametrization of time. The last one does not change the equations of
motion of the system, but changes only the constraint which at the quantum level
becomes time-dependent Schrédinger equation. The same procedure is applied to
the supersymmetric case and the supersymmetric quantum constraints are ob-
tained, one of them is a square root of the Schrodinger operator.

The investigation has been performed at the Bogoliubov Laboratory of Theo-
retical Physics, JINR.
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