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1 Introduction

The aim of this consideration is to analyze frequency and angular distributions of the
radiation in the so-called Tamm problem. The latter treats the point charge being at
rest in medium at the space point z = —zy up to a moment ¢t = —¢,. In the time interval
—ly < t < to the charge moves with the velocity v that can be smaller or greater than
the light velocity in medium ¢,. After the moment ¢ = to the charge is again at rest at
the point z = 2o. This problem was first considered by Tamm [1] in 1939. Later, it was
qualitatively analyzed by Lawson [2,3] and numerically by Zrelov and Ruzicka [4,5]. In
1996, the exact solution of Tamm’s problem has been found for the nondispersive medium
[6]. A careful analysis of this solution was given in [7]. It was shown there that Tamm’s
formulae do not describe the Cherenkov radiation (CR) properly.
On the other hand, Schwinger ([8]) suggested to evaluate frequency and angular spectra
of the radiation produced by an arbitrarily moving charge without explicit using the
electromagnetic field strengths. This method was successfully applied to the consideration
of synchrotron motion ([9,10]).

In this consideration, we compare Tamm’s and Schwinger’s approaches between them-
selves and with an exact solution of Tamm’s problem.

The plan of our exposition is as follows.
In section 2, we reproduce Tamm'’s frequency and angular distributions of the radiation
produced by a point charge moving uniformly on a finite space interval.
In section 3, by applying Schwinger’s method to the consideration of Tamm’s problem we
obtain the instant (i.e., at a given moment of time) angular and frequency distributions
of the radiated power. The integration of the angular distribution over time motion
gives the angular-frequency distribution of the energy radiated for a finite time interval.
Performing angular integration, one gets the frequency distribution of the energy radiated
for a finite time interval. In particular cases one arrives either at Tamm-Frank or Tamm
formulae.
The exact electromagnetic fields of Tamm’ problem are given in Section 4. They are
compared with the famous Tamm’s formula describing the angular-frequency distribution
of the radiated energy. Criteria for the validity of Tamm'’s formula are given. These
criteria are checked by the numerical calculations presented in the same section.

2 Tamm’s original approach

Tamm considered the following problem. A point charge is at rest at the point z = —z
of the z axis up to a moment ¢t = —#. In the time interval —tg < ¢t < to it uniformly
moves along the z axis with the velocity v greater than the light velocity in medium ¢,.
For t > ty, the charge is again at rest at the point z = z;. The nonvanishing Fourier
component z of the vector potential (VP) is given by
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where R = [(x — 2')* 4+ (y — y)2 + (2 — 2")*]/2, j, = 0 for 2/ < —z and 2’ > z and
Ju = €8(2")d(y’) exp (—iwz'/v) /21 for —zp < z' < z. Inserting all this into A, and



integrating over z’ and y’, one gets
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Aw(mayaz) - % 2 Fexp [-——ZUJ(; + Z;)}a
R=[p*+(z— )% pP =2+ (2.1)

At large distances from the charge (B >> z) one has : R = Ry — 2'cosf, cosf =
z/Ro, Ro = (22 + y* 4 z2)'/2. Inserting this into (2.1) and integrating over z’ one gets
: eBqg(w . sin [wtg(1 — B, cos b
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Now we evaluate the field strengths. In the wave zone, where Ry >> ¢/nw, the nonvan-
ishing spherical components are

:fgo sin0/0°° ng(w)sin[w(t — Ro/cy)]dw. (2.3)

The energy flux through the sphere of the radius Ry is
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Inserting £y and Hy one obtains

2e?3% o LA
W = — /o nd(w)dw, J(w)= /0 q” sin 6d6. (2.4)
For wty >> 1, J can be evaluated in a closed form
1 1+ 6,
J =Jgg = ﬂ3n3(1n = 4.l —28,) for B,<1 and (2.5)
t 1
J=Jps+Jon, Jon = %(1 — ) for Bu> 1. (2.6)

Tamm identified Jgs with the spectral distribution of the bremsstrahlung BS , arising
from instant acceleration and deceleration of the charge at the moments +-¢o, resp. On the
other hand, Jop, was identified with the spectral distribution of the Cherenkov radiation.
This is supported by the fact that
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strongly resembles the famous Frank-Tamm formula [11] for an infinite medium obtained
in quite a different way.
The main result following from Tamm’s formulae is that the energy emitted during the
whole charge motion into the solid angle df, in the frequency interval dw is given by

d*& e? . sinwto(l — B, cosb)

_ 2
dQdw ~ m2en [sin 0 cos@ —1/p, I (2:8)

This formula is frequently used by experimentalists (see, e.g., [12-14]) for the identifica-
tion of Cherenkov radiation.



3 Schwinger’s approach to Tamm’s problem

We begin with the continuity equation following from Maxwell equations

divS + %s = —jE. (3.1)

Here
g = f(ﬁ x i), €= (652 + uH?).
s

Integrating this equation over the volume V' of sphe1e S of the radius r surrounding a
moving charge, one gets the following equation describing the energy conservation

[ s+ %/de = - [jEav. (3.2)

Usual interpretation of this equation proceeds as follows (see, e.g., [15], pp.276-277):

"The first term on the left-hand side represents the electromagnetic energy flowing
out of the volume V through the surface S,, and the second term represents the time
rate of change of the energy stored by the electromagnetic field within V”. And further:
"The right-hand side, on the other hand, represents the power supplied by the external
forces that maintain the charges in dynamic equilibrium.”

Schwinger ([8]) identifies energy losses of a moving charge with the integral in the
r.hus. of (3.1)

Ws = —/jédv. (3.3)
Substituting E=-Vo-— /Y/c and integrating by parts, one gets

- [FEav = [j(ve+ Ale)dv = - [@ivi - deav = [(p + AJe)dv =

- %/p@dv ~ [t~ Afe)av. (3.4)

By definition, Wy is the energy lost by a moving charge per unit time.

Schwinger discards the first term in the second line of (3.4) on the grounds that it is of
an accelerated energy type”.

The retarded and advanced electromagnetic potentials corresponding to charge current
densities p and j are given by

Bty = — /Rp §(t' — t+ R/ey)dV'dt! =
- L7 ) exolio(t — i
= one J dpr(r J ) expliw(t’ —t £ R/c,)]dV'dt’,

Arevasn =2 / S — £ Rfe,)dV'dt =



L T l‘-‘ =y . ’r_ 1 gl
Sre / dw R](r ) expliw(t’ — t + R/c,)|dwdV'dt’, (3.5)

where ¢ and p are the electric and magnetic permittivities,resp.; R = |7 — #'| and + and
— signs refer to retarded and advanced potentials, resp.
Further, Schwinger represents retarded electromagnetic potentials in the form

1 1
<I)ret = E(Qret + Qadu) + §(q)ret - q’adv)v

Aret = %(Aret + Aadu) + %(Aret - Audu) (36)
and discards the symmetric part of these equations on the grounds that _
"the first part of (3.3), derived from the symmetrical combination of F,. and Eadv,
changes sign on reversing the positive sense of time and therefore represents reactive
power. It describes the rate at which the electron stores energy in the electromagnetic
field, an inertial effect with which we are not concerned. However, the second part of
(3.3), derived from the antisymmetrical combination of E,e, and Eadu, remains unchanged
on reversing the positive sense of time and therefore represents resistive power. Subject to
one qualification, it describes the rate of irreversible energy transfer to the electromagnetic
field, which is the desired rate of radiation”.
Correspondingly, electromagnetic potentials are reduced to
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o= we) dpr(r,t)sm[w(t t)] sin(k, R)dV'dt’,

i=-Lf dw%j’(F’,t’) sinfw(t’ — )] sin(ky RVl k= wfen. (3.7

U
0

Substituting this into (3.4), we get

Ws = /P(w,t)dw, (3.8)
0
where P2E kR
_4vs v 1qqr SR _y
Plw,t) = 2 m/dVdV v ™ cos w(t — 1) x
_ ’ 1- o 7 :
X[o(F, )p (i, ') = =3 (7 )3 (7, 1)) (3.9)

is the energy lost by a moving charge per unit time and per frequency unit. The angular
distribution P(7i,w,t) is defined as

P(w,t) = /P(ﬁ,w,t)dQ, (3.10)
where
) nw? 1
P = — - g r_ - -
(i, w,t) Tidod) 47r2ce/dVdV dt' cosw((t' —t) + cnn(r )] x



< [p(F, 0p(F, 1) = 3 (FDT, 1) (3.11)

is the energy lost by a moving charge per unit time, per frequency unit, and per unit
solid angle. Here 7 is the vector defining the observation point.
In what follows we limit ourselves to dielectric medium for which ¢ = n?.

3.1 Instant power frequency spectrum
For the treated Tamm problem, charge and current densities are given by
J= = ev8(2)8(y)O(t + 10)O(to — 1)d(z — vt), p(F,t) = ed()3(y)x
X[O(—t —t0)d(z + z0) + O(t + 10)O(to — t)0(z — vt) + O(t — t0)d(z — z0)].  (3.12)

Inserting these expressions into (3.9) and performing integrations, one gets

2
Plw,t) = =“=[0(~t —to) A + Ot = to) P+ Ot +10)O(to — )P],  (3.13)
where ) -
P — _sin w(t + to) N sin 2wto 3, sinw(t — to)+
Cn 2wtgv
1 . .
—}—% cos w(t + to){si[2tow (1 + Bn)] — si[2tow(l — Ba)]}+
1. 1. 1480, . .
+2v sinw(t + to){2 ln(1 — /611) + ci[2wto|l — Bal] — ci[2wio(1 + 5,)]},
P, — sinw(t — to) _sin 2wtofn sinw(t + to)+
Cn 2utow
1 . .
+;?Z cos w(t — to){st[2tow(1 + B,)] — s1[2tew(1l — Bn)]}—
1. Lo 14 08n, . .
_2—vs1nw(t - to){§ ln(m) + ci[2wio|l — Bal] — cil2wtow(l + B)]},
P = _sin WhL(t + to) sinw(t +to) = sinwf,(t — to) sinw(t — to) 3 1-p32 y
° o(t + to) w v(t — to) w 20
X {s1[(1 = Bn)w(to—1)] — si[(1 4 Bn)w(to — t)] + si[(1 = Bn)w(to + )] — si[(1 + Bn)w(to + )] }.
(3.14)
Here si(x) and ci(x) are the integral sine and cosine. They are defined by the equations
Lo T sint . [ sint oo & (—1)* k-1
si(z) = / dt= 2*0/ Ch s N mo e

o0

. _ cost = F1—cost B e (_1)k ok
ci(e) = /tdt—C—}-lnac—O/ l dt—C+1nx+;W1.

x

Here C' ~ 0.577 is Eulér’s constant. For large and small @, si(z) and ci(z) behave as

. cos T . sinx
si(x) > ——, ci(z) =

X

for =z — +oo,



, cos T
si(z) = —m + Tl for = — —oo,
T
2

si(a:)—)—gﬁ—m, ci(x)—>C+1nx—%— for =z —0.

The following relations

/Sm Ly 0+ Ll 2)e| — —cz(zm) si(e) + si(—2) = —7
s t

will be also useful.

The nonvanishing of P, and P, terms in (3.13) is due to the fact that Fourier transforms
of a static charge density corresponding to charge at rest prior to the beginning of the
charge motion (t < —to) and after its termination (¢ > #o) contribute to (3.9) and (3.11).
To see this explicitly, we write out the Fourier transform of charge density (3.12):

N o
p(Fyw) = 27r_/ exp(—iwt)p(7, t)dt =

= 5;6(5( z)8(y)[d(z + 2o0) / exp(—iwt)dt + 6(z /exp (—iwt)dt + —exp(—zwz/v)]

o io
The first term in the r.h.s. corresponds to the charge which rests at the point z = —z
up to a moment ¢t = —tg; the second term in the r.h.s. corresponds to the charge which
rests at the point z = 2y after the moment ¢ = to. Finally, third term corresponds to
the charge moving between —zy and 2o points in the time interval —to < t < to. It
should be noted that first and second terms in this expression are Fourier densities of a
charge which does not permanently rest at z = £z, points, but up to a moment —¢, and
after the moment ¢o, resp. In fact, the Fourier density corresponding to charge which
permanently is at rest at the point z = z¢ is

2m

° 0(z — z0) / exp(iwt)dt = ed(z — zp)5(w).

In the limit wty — oo, Eqgs. (3.14) pass into

P = —C]—nsin[w(t +to)](1 — é—%;ln 1 fg:)
Py=+ Lsinlo(t — )1 - 7 08, P=0
for 8, < 1 and
P = = -sinfolt -+ )]0 = o ) 4 Fcosue+ 2,
Py = cinsin[w(t —t0)](1 — 2;71 ,16:—5;) + — cosw(t - fvg), Py = —%(55 —1) (3.15)



for 8, > 1. It is seen that the energy radiated for the time interval —t; < t < t;, t1¢to
equals zero for 8, < 1 and equals we?t, (8% — 1)/mv for B, > 1. This exactly coincides
with the Cherenkov radiation spectrum for unbounded charge motion (see, e.g., Frank’s
book [11]). It should be noted that expressions for Ps in (3.15) were obtained under the
assumption that arguments of st and ci of Ps entering into (3.14) are sufficiently large,
that is, there should be w(tg —t) >> 1. This means that Ps in (3.15) are valid if ¢ is not
too close to tg.
On the other hand, terms P; and P, in (3.15) were obtained without this assumption.
In particular, the term P, different from zero for ¢ > ¢y shows how the bremsstralung
(BS) and Cherenkov radiation behave for ¢ > t, i.e., after termination of charge motion.
Since the part of P, P
1 . 20 1 n + ].
o sinw(t v)(l 2ﬁnln |ﬁn—1])
is present both for 3, < 1 and 3, > 1, it may be associated with BS. On the other hand,
the part of P,

% coslw(t — Zv—‘))]

that differs from zero only for 3, > 1 may be conditionally attributed to the Cherenkov
post-action.

We observe that for t < —tg and t > to, the radiation intensity is a rapidly oscillating
function of time ¢. Time average of this intensity is zero, so it could hardly be observed
experimentally. Since, on the other hand, for 3, > 1, the radiation intensity does not
depend on time in the time interval —¢; < ¢ < t;, t; << tg, it contributes coherently
to the radiated energy.

To obtain the energy radiated for a finite time interval, one should integrate (3.13) over
t. However, the arising integrals involve integral sine and cosine functions. Since we did
not succeed to evaluate these integrals in a closed form, we follow an indirect way in
next sections. In section 3.2, we evaluate the instant angular-frequency distribution of
the radiated energy. Integrating it over time we obtain (Sect. 3.3) the angular-frequency
distribution of the energy radiated for a finite time interval. Finally, integrating latter
over angular variables we obtain a closed expression for the frequency distribution of the
energy radiated for a finite time interval (Sect. 3.4).

3.2 Instant angular-frequency distribution of power spectrum

Due to the axial symmetry of the problem, 7(7 — ") = cos §(z — 2’) in the integrand in
(3.11), where @ is the inclination angle of 7 towards the motion axis. Integration over
space-time variables in (3.11) gives

. & _ we? P sinfwio(1 — By cos 0)]
POt = od = "ot 1-Bocost <
X[O(—t — to)Pin 4+ O(t — to) Pan + O(t + t0)O(to — t) Psy). (3.16)

Here
Pi, = cos O cos[w(t + tof cosb)], Pa, = cos b cosw(t — 1o, cos §)],

P3, = (cos 8 — 8,,) cos[wt(1 — S, cos §)].
2

In what follows we limit ourselves to dielectric medium for which ¢ = n2.



3.3 Angular-frequency distibution of the radiated energy for a
finite time interval
Integrating (3.16) over the time interval —t; <t <t;, t; < to, one obtains the Fourier

distribution of the energy detected for a time 2t; radiated by a particle moving in the
time interval 2tg, ¢; < to:

t 2 . .
. _ . g sin wio(1 — By, cos 8) sinwty (1 — B, cos 6)
F,(n,w,tl) = L/ P(ri,w, t)dt = ﬂzc(ﬂ" — cos ) T~ B, cos0 T~ B, cos0
=t
(3.17)
Let wty — oo. Then,
. e*Buwty 1 1
E(t,w,ty) — — (1- B—g)é(cosﬁ - b:) (3.18)

This coincides with the angular-frequency distribution of the radiated energy in Tamm-
Frank theory [11] describing the unbounded charge motion. For cos8 =1/3, Eq. (3.17)

reduces to )

E(t,w ) = — (B2 — 1wty
Tne
It vanishes for 3, = 1.

Let tl > t(). Then,

. e sinfwto(1 — B, cos )]
E(w t1) = n2c 1 —B,cosb X

. o ,sinwtg(l — 3, cos 8)
[8nsin’ 0 T F,cos0

is the angular-frequency distribution of the energy detected for the time inerval 2¢; > 2¢,.
The first term in square brackets coincides with Tamm’s angular distribution (2.8). The
second term originating from integration of P; and P, terms in (3.16) describes the bound-
ary effects. The physical reason for the appearance of the extra term in (3.19)(second
term in square brackets) is due to the following reason. The magnetic field H is defined
as curl of VP (2.2). Tamm obtained electric field from the Maxwell equation

— cos @ sinw(t; — tof, cos 0)] (3.19)

curl H = Ea—E

c Ot

valid outside the motion interval. In the w representation this equation looks as

curlﬁw = gﬁw.

c
This equation suggests that contribution of static electric field existing before beginning
of charge motion and after its termination has dropped from Tamm’s formulae given in
section 2.
As we have seen earlier, Schwinger’s equations (3.9) and (3.11) contain the static electric
field contributions of a charge which is at rest up to the moment ¢t = —¢, and after the



moment ¢ = to. They are responsible for the appearance of extra term in (3.19). In the
7,t representation, the contribution of the static electromagnetic field strengths is not
essential in the wave zone.

Taking into account that

SINOT L 5(2) and ~[PROC2  r5(2) for o — oo, (3.20)
a
one obtains from (3.19) for large wto
- '32 2 . 20
E(f,w,ty) = —08(1 — Bncos 0)[wio(BZ — 1) — sinw(t; — —))]. (3.21)
men v
For 8, # 1, the second term inside the square brackets may be discarded, and one gets
2
- € 2
) = - — - ). 22
E(M,w, ty) ﬂcnwto(ﬂn 1)é(1 — B cos ) (3.22)

For cos 0 = 1/f,, Eq. (3.19) is reduced to

2 2
E(M,w,ty) = e—(ﬁfL — 1wt — e—wto sinw(t; — to).
™me m™e

It does not vanish at 3, = 1.
Equations (3.17) and (3.19) are generalizations of Tamm’s angular-frequency distributions
for ¢, # to.

3.4 Frequency distribution of the radiated energy

Integrating (3.17) over the solid angle one, finds the following expression for the frequency
distribution of the radiated power for the case when the detection time 2t; is smaller than
the motion time 2ty:

c‘l[jn(l B L){cos(w(tl —to)(1 = f,))  cos(w(to—t1)(1+ Bn))

men 2 1—74, 146,
_cos(w(tl + to)(l - ,Bn)) + cos(w(tl + to)(l + ﬁn))

1 - ﬂn 1 + ﬁn

Fw(to — tr)[si(w(to — t1)(1 = Bn)) — si(w(to = t1)(1 + Bn))]
—w(lo + t)[si(w(to + t1)(1 = Ba)) — si(w(to + t1)(1 + Bn))]}

2.

—%[ci(w(to — 1)1 = Bal]) — ci(w(to — t1)(1 + B,))

g(wﬁtl) =

_I_

—ci(w(to + 11)|1 = Bal]) + ci(w(to + t1)(1 + Bn))]. (3.23)
Now let t; > tg (i.e., the detection time is greater than the motion time). Then,
2¢%,
E(w,ty) = - (Body — L), (3.24)
where 1 wto(1 — B 0 . )
[=/.,'30d08mw0 —Pncost), 1 1
1 sin [ l—ﬁncose ] ﬂn(l /3721)><



sin®wio(1 — B,)  sin®wio(1 4 fa)
1- 571 1+ ﬁn

[ 11— 6al
1+ﬂn

><{ —_ wto{si(Zwto(l — ﬁn)) - Si(2Wt0(1 + ﬁn))]}_

— ci(2wto|1 — Ba|) + ci(2wto(1 + Bn))]—

1

1 . .
oy 45,3;—wt0[sm(2w%(1 — f3,)) — sin(2wio(1 + 3,))],
I = /sinﬂcos GdGSIHWtO(l — B, cos 0) sinw(ty — tofn cos d) _
. 1 — 3, cosd

= S sinw(t; — to)[cos(2wito(l — B,)) — cos(2wito(l + Bn))]—

1Bt
~ g cosw(ty — o) - i sl = o)lsin(eto(1 = B)) = sin(to(1 + 4,))]-
_9_[132- sinw(t) — to)[si(2wto(l — Bn)) — si(2wio(l + B,))]—
2;2 cosw(ty — to)[In |i ;Zj — ci(2wto[l — Bu|) + ci(2wto(1 + Ba))]-

The typical dependence of £ on ¢ for ¢; fixed is shown in Fig.1. For 3, < 1, it oscillates
around the zero value. The amplitude of oscillations decreases like 1/wtq for large to. For
B, > 1, € oscillates around the value

262wtlﬁ(1 _ _1——
c B

given by the Tamm-Frank theory [11].

The typical dependence of £ on t; for to fixed is shown in Fig.2. For 3, < 1 and 8, > 1,

it oscillates around the values

),

4e? 1 | 148,
men 20, iz B
2e2(3 1 4e? 1 In 1+ 6.

P L T N A

predicted by the Tamm theory (see Eqgs.(2.5) and (2.6)).

Previously, the frequency distribution of the radiated energy in the framework of Tamm’s
theory was given by Kobzev and Frank [16]. It was obtained by integrating (2.8) over
the angular variables:

—1) and

—1)], resp.

& 262,3(1 3 L){sin2 wto(1 —Bn) sin® wio(1 + B)
do — me B2 1— B, 1+ B
—wio[s1(2wito(1 — B,)) — si(2wto(1 + Bn))]}—

2¢? |1 =Bl
——[11 T4,

ﬂ.cnﬁn - cz(2wt0|1 - ﬂn') + cz(2wt0(1 + /671))]_

10



{26, + [sm 2wio(1 — B,)) — sin 2wio(1 + 6,))]}- (3.25)

7rcn,8

For large wto one gets Tamm’s equations (2.5) and (2.6).

The frequency dependences of the energy radiated for the time ¢; are shown in Figs.
3 and 4. In Fig. 3, one sees the frequency dependence for the case when the observation
time 2t; is twice as small as the charge motion time 2¢y. For 3, < 1, the radiated energy
is concentrated near zero, while for 3, > 1 it rises linearly with frequency

2e*wty B, 1
g 2By 1y
cn 32
The frequency dependence for the case when the observation time 2¢; is twice as the
charge motion time 2ty is shown in Fig. 4. For 3, < 1, the radiated energy oscillates
around Tamm’s value
4e? 146,

(In

men 1 — 0,

- 1),

while for 3, > 1, it again rises linearly but with a coefficient different from the previous
case:

2
2e wtoﬂ(l 1

€~ - _ﬁ_z

).

3.4.1 Large interval motion

Let t; < to. Then, for w(to —t;) >> 1, E(w,t1) is very small for 3, < 1. On the other

hand, for £, > 1,

2wt 23 1
(1= =)
c B:
This coincides with the frequency distribution of the radiated energy during the whole
charge motion in the Frank-Tamm theory.

Let now ¢; > tog. Then, for wtg >> 1 (but ¢; > o), one gets

E(w,ty) =

(3.26)

Ew ) ~ _%[2 — cosw(ty — to)](1 + wn In - g:) (3.27)
for 8, <1 and ,
Elw,ty) ~ %{mou - ﬁig)_
~ - cosslty — )1+ g W) - Fsinet -} (329

for 3, > 1.

Nonoscillating parts of these expessions coincide with Eqs. (2.5) given by Tamm. Ac-
cording to his own words, Eqgs. (2.5)

"are obtained by neglecting the fast-oscillating terms of the form sinwty”

Tamm gives only Eqs.(2.5) and (2.6) without deriving them). Since some terms in (3.23)
and (3.24) depend on (1 —3,)(to —t1) and (1 — 3,)(to + t1) parameters, Eqs.(3.26)-(3.28)
are not valid for 3, ~ 1 (this corresponds to Cherenkov’s threshold).

11



3.4.2 Frequency distribution on the Cherenkov threshold

Thus, the case 3, = 1 needs a special consideration. One obtains

2 _
E(w,t1) = —~—[ln 21

n
mne  to+ ty

— ci(2w(to — 11)) + ci(2w(to + 11))] (3.29)

for t; < to. This expression tends to zero for ¢; fixed and t; — oo.
On the other hand, for ¢; > ¢

E(w,ty) = i—ic{[l - %cos w(ty — t0)][C + In(dwty) — ci(dwto)]—
in(4w 1 —cos(dwty) w 1 .
w[lfcosw(tl—to)][l—%H—sinw(tlAto)[%t—)—Z—gsmeto)].} (3.30)

The nonoscillating part of this expession coincides with that given by Tamm:
2 2
& = —[C + In(dwto) — 1].
mne

On the other hand, Eq.(3.25) obtained by Kobzev and Frank for 8, = 1 goes into

sin(4wto)

o =
KF 4wt0

[C' + In(4wto) — 1 — ci(4wio) + .

2
e
For (t; — tp) fixed and tqg — o0, Eq.(3.30) is reduced to

E(w 1) = 2 {[1 - %cosw(tl — 1)][C + In(4wto)]—

e

—1 4 cosw(t; —to) — sinw(t; — to)[% + %sin(llwto)]}. (3.31)

The main result of Section 3 is that Schwinger’s approach incorporates both Tamm-
Frank and Tamm problems. Tamm-Frank’s results are obtained when the observation
time 2t is smaller than the charge motion time ¢ and to — oo. In particular, there is
no radiation in nondispersive medium when the charge velocity is smaller than the light
velocity in medium. The radiated energy rises in direct proportion to the observation
time ¢, for 8, > 1. Tamm’s problem is obtained when ¢; > ¢y and ¢, (and, therefore,
1) tends to oo. The intensity oscillates around Tamm’s value for 3, < 1 and rises in
proportional to the time of charge motion ¢, for 3, > 1.

4 Exact electromagnetic fields in Tamm’s problem

Tamm’s energy flux (2.8) radiated during the whole charge motion into the solid angle
dQ in the frequency range dw is widely used by experimentalists for identification of the
Cherenkov radiation. The aim of this section is to compare (2.8) with the energy flux
obtained by exact solution of Tamm’s problem.

But at first, we elucidate which approximations were made during the transition from
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the exact vector potential (2.1) to Tamm’s formula (2.8):
1) Changing R by Ry outside the exponent means that observation is made on the sphere
with radius Rp much larger than the motion interval z, i.e.:

Ry >> zo. (4.1)
2) Tamm’s field strengths (2.3) are valid only in the wave zone where
wRo/en >>1 (4.2)

3) When changing R under the sign of exponent in (2.1) by Ry — 2’ cos 0, it is implicitly
assumed that the quadratic term in the expansion of R is small as compared to the linear
one. Consider this more carefully. We expand R up to the second order:

Z/2

RmRo—z'c050+ZR

sin? 0.
)

Under the sign of exponent in (2.1), the following terms appear
v 2

z 1 z
=+ —(Ro— #'cos 0 + ——sin?0).
” +Cn( o — 2’ cos +2Rosm )

appear. We collect terms involving z’

’ !

1 z
[(ﬁ—n—cos0)+ T

Taking for z’ its maximal value z, we present the condition for the second term in the
expansion of R to be small in the form

z

— sin® 0].
Cn

20 << 2120(51— ~ cos0)/ sin? 6. (4.3)

n

It is seen that the right-hand side of this equation vanishes for cos@ = 1/3,, i.e., at
the angle where the Cherenkov radiation exists. Therefore, in this angular region the
second-order terms may be important.
4) Under the sign of exponent in (2.1) the second-order term should be small compared
with 7, i.e., the inequality:
Z2wsin?

2Rocn
should be hold. Or, taking for § and z’ their maximal values (0 = 7/2, 2z’ = z;), one
gets

<< (4.4)

2
zhw
> Rec. << . (4.5)
From (4.2) and (4.5) one finds the following restriction on w
Cn 27T'R()Cn
-5 <<w<L . 4.
e w << 2 (4.6)
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In the A language (w = 2m¢/\) this condition looks like

nz?

0 << XA << 2mnRy. (4.7)
Ry

Let A = 4-107cm, (the middle of optical region), n = 1.5 (glass). For the typical value
R = 100cm, the r.h.s. of (4.7) inequality is fulfilled with a great accuracy. Then, l.h.s.
of (4.7) gives zo << 5+ 1072¢m. On the other hand, zo should not be too small. In fact,
for knzo << 1, Tamm'’s formula (2.8) is reduced to

d*€ €?sin? Qw?t?
dwd n2enfB2

i.e., the Cherenkov diffraction picture disappears. Therefore, the width interval 10~*em <
20 < 1072¢cm turns out to be optimal for the validity of Tamm’s formula and existence of
the pronounced Cherenkov maximum in the treated case.

It should be noted that for gases, these restrictions are less restrictive than for solids
and liquids. In fact, since for them n ~ 1, one gets

1 —cosé

(1— —cosf)/sin? 0 = <7

Bn
Since for gases the angular spectrum is confined to the § = 0 region, Eq.(4.3) is reduced
to (4.1). The same is true for Eq. (4.4). As a result, for gases, Tamm’s expression (2.8)
for the radiated power works when Egs. (4.1) and (4.2) are fulfilled.
Conditions (4.1)-(4.7) ensuing the validity of Tamm’s expressions are spreaded over dif-
ferent sources. We collected them together to make easier the interpretation of numerical
results given below.

=1/2cos?(0/2).

The energy flux through the unit solid angle of sphere of the radius Ry for the whole
time of charge motion is given by

dw

AW ¢ [ B i
= 47TR0—/ d(E x i), (4.8)

Expressing E and H through their Fourier transforms

E= /exp(iwt)Ewdw, = /exp(iwt)ﬁwdw

and integrating over ¢, one gets

AW cR: T - 7
=5 [ (B x H(—w)do = _O/S(w)dw, (4.9)
where

= cRY[ES (W) HY (w) + EY (@) HY (). (4.10)
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This quantity shows how the Fourier component of the energy radiated for the whole
time of charge motion is distributed over the sphere S. It does not depend on time. The
superscripts (r) and (¢) mean the real and imaginary parts of Egy and Hy. Exact field
strengths obtained by differentiation of the exact vector potential (2.1) are given by

(r_('kZO /_ (i)zeknz(]-efid/
H¢ 27rcRo no dz', H, Smchs sin 7 z
ny _ eklz zeocos0Fd /—d’
by = ‘27rcho 0(/ 1 k.RoJ R? ),
) eklzy / 1 — 2'¢g cos 0(N & /_1
B = Srwche sin f( Vg Ghdz' + "R dez , (4.11)
where 1
F:cosz/;—knBORsmw7 G—smw-i-kRoRcosw,
L cos i sin ¥ _ sin ¢ cos Y
Fr=sinv 43078 Seme “ 7Y 3 e SERR
Y=k Ro(~[(0 +R), R=(1-2Zcpcosl+e22)/? ¢ = 20/Ro.

The 2’ integration in (4.10) is performed over the interval (—1,1). For ¢ << 1 and
knRo >> 1, S(w) given by (4.10) transforms into the Tamm formula (2.8):

. €¥sin® 0 sinkyzo(cos O — 1/3,)
Sr = [

2 .
m2ne cosb —1/8, P (4.12)

There are three geometric parameters of the length dimension entering into (4.11) and
(4.12):
the motion interval L = 2z, the radius of the observation sphere Ry, and the vacuum
wavelength A = 27c¢/w related to the medium wavelength A\, = A/n. It is essential that
these parameters enter into the energy flux and field strengths through dimensionless
combinations

20 L mnlL 2mnRy  knzo

= — = — n :—, kn — = .
©= R T 3Ry M= Fo ) "

Thus, if only A changes, ¢ remains the same, but k,zo and k, Ry vary. The typical
exact (4.10) and Tamm’s (4.12) intensities for the fixed ¢o = 0.1 and different L/\ are
shown in Figs. 5-8 in logarithmic and usual scales. For convenience, we made intensi-
ties to be dimensionless, dividing them by the factor e?/c. All the subseguent figures
refer ton = 1.5, B, = 1.2. We see that Tamm’s intensities are close to exact ones for
small and moderate ratios L/A (Fig.5). Their difference becomes essential for large L/
(Figs. 6-8). These figures demonstrate that disagreement between Tamm’s and exact
intensities may be essential despite the fact, that ¢ is small (¢o = 0.1), and k, Ry is large
(koRo =~ 5-10°, 10* and 2-10* for Figs. 6, 7, and 8, resp.) The reason for this is
due to the violation of (4.5). In fact, the L.h.s. of (4.5) equals approximately 20, 40 and
100 for the situations shown in Figs. 6, 7 and 8, resp.
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Another degree of freedom is to change only Ro. In this case, L/) remains the same,
but ¢o and k, Ry change. The typical intensities for L/ = 200 and different ¢y are shown
in Figs. 7,9, and 10. It is seen that disagreement between Tamm’s intensity and the
exact one sharply increases when zo approaches Ry (as it should be).

The last possibility is to change only zg. In the dimensionless variables language, the

means that k, R remains the same, while k,zo and €y change in such a way that their
ratio remains the same. Figures 7,11, and 12 demonstrate that disagreement between
Tamm'’s and exact intensities increases with zg.
Previously, the experimentally observed broadening of the Cherenkov angular spectrum
was attributed to the energy loss of a charged particle during its motion in medium [17,
18]. However, Figs. 6-8, and 10-12 demonstrate that the above broadening may be well
associated with the violation of conditions (4.1)-(4.7). To be more specific, we turn to
Ref. [18] in which the angular distribution of the radiation (A ~ 4-10~%¢m) arising from
passage of Au heavy ions (8 ~ 0.87) through the LiF slab (n ~ 1.39) of width 0.5¢m was
studied. Substituting these parameters into (4.5), we see that the Lh.s. of this equation
coincides with m for the observation sphere radius Ry ~ 40 m. Obviously, this value is
unrealistic. Since the realistic Ry is about 1 — 2m, the strong violation of (4.5) takes
place.

The moral of this section is that one should be very careful when applying Tamm’s
formula (2.8) to the analysis of experimental data. The validity of conditions (4.1)-(4.7)
ensuring the validity of (2.8) should be verified. The exact energy flux (4.10) should be
used if these conditions are violated.

5 Conclusion

Let us briefly summarize the main results obtained:

1. In the framework of Schwinger’s approach, closed expressions are obtained for the
frequency and angular distributions for the energy radiated by a point charge moving
uniformly in medium in a finite space interval (Tamm’s problem). They generalize the
formulae given by Frank and Tamm and are reduced to them in particular cases.

2. Tamm’s approximate formula describing the frequency-angular distribution of the
radiated energy in Tamm’s problem is compared with the exact one. Criteria for the
validity of Tamm’s formula are checked by numerical calculations.

The authors are indebted to Prof. V.P. Zrelov for many stimulating and interesting
discussions.
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Figure 1: Energy & detected in a fixed time interval ¢; as a function of charge motion
time ¢o. For 8, < 1, £ oscillates around zero. For 3, > 1 it oscillates around the finite
value (3.25); £ is given in units €?/c, to in units ¢;.

| /\}\/\'/\/I\/\'/\/\I/\'/\/\I/\/'\_,_

VVV\/V\/\/VVVV\/\/\

41 B=1.2 ]
W 2

Figure 2: Energy £ as a function of the detection time ¢;. The time motion interval t,
is fixed. For 8, <1 and 3, > 1, £ oscillates around the Tamm’s values (2.5) and (2.6),
resp. € is given in units e?/c; ¢, in units .
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Figure 3: Irequency dependence of the radiated energy for ¢,/tg = 0.5. £ is given in
units €?/c¢; w, in units 1/to.

0 20 40 60 80 100

Figure 4: Frequency dependence of the radiated energy for ¢,/tg = 2. £ is given in units
e/c; w, in units 1/t,.
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Figure 5: Exact (solid line) and Tamm’s approximate (dotted line) angular dependences
for ¢o = z0/Ro =0.1, L/A=30, B,=12 n=15.1InFigs. 58, 20 and Ry are the
same but A changes.
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Figure 6: The same as in Fig.5, but for smaller A corresponding to L/A = 100. The
deviation of the approximate curve from the exact one increases as A diminishes.
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The same as in Fig.6, but for L/A = 200.

Figure 7:
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Figure 8: The same as in Fig.6, but for L/X = 500.
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T : r T 10° #——+ r A
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Figure 9: For small ¢, the deviation of the approximate from exact curve is not very
large. In Figs. 7, 9 and 10, L and A are the same, but Ry changes.
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Figure 10: The same as in Fig. 9, but for smaller Ry corresponding to ¢, = 0.5. The
deviation of the approximate curve from the exact one is essential.
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Figure 11: For small and moderate zy corresponding to ¢ = 0.05, the deviation of the
approximate curve from the exact one is not very essential. Figures. 7, 11 and 12
correspond to the same A and Ry, but different z.
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Figure 12: The same as in Fig. 11 but for larger zo corresponding to ¢ = 0.25. The devi-
ation of the approximate curve from the exact one becomes essential when z approaches

Ry.
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Adanacves I'H. u np. E2-2000-17
[IIBuHrepoBCcKMi M TOYHBIH nmoaxons! B 3agaye Tamma

ITIBuHrepoBCcKMi MOAXOA MO3BOJISIET NO-HOBOMY B3IISIHYTh Ha 3ajgauy Tamma
(moxos1IMics 3apsal MTHOBEHHO YCKOPSETCS, ABUXETCS C IIOCTOSHHON CKOPOCTHIO,
3aTeM MTHOBEHHO 3amepsercs). LLIBUHrepoBCKHE YIIOBbIE M YaCTOTHBIE pacrpe-
JEeJIEHHs CPaBHHUBAIOTCS C TAMMOBCKHMMH, KOTOPBIE, B CBOIO OYEpe/lb, CPABHUBAIOTCS
¢ TouHbIMH. CpopMynupoBaHHbIE YCIIOBHS CIIPaBEJTUBOCTH M3BECTHOH (POpMyIibl
TamMMa noaTBepXAaloTCs YUCICHHBIMM PaCYETaMH.

Pa6ora BeimonHena B Jlaboparopun teoperuyeckoi ¢uzuxku um. H.H.Boro-
mo6osa OUSN.

IpenpuHT O6BbEAMHEHHOrO HHCTHTYTA AEPHbIX HccnenoBanuii. ybHa, 2000

Afanasiev G.N. et al. E2-2000-17
Tamm’s Problem in Schwinger’s and Exact Approaches

Schwinger’s approach gives a fresh look on Tamm’s problem (charge, being
initially at rest, exhibits an instant acceleration, moves with a finite velocity, and,
after an instant deceleration, goes to the state of rest). Schwinger’s angular and
frequency distributions are compared with Tamm’s ones, which in their turn are
compared with exact distributions. Criteria for the validity of Tamm’s formulae
are checked by numerical calculations.

The investigation has been performed at the Bogoliubov Laboratory of Theo-
retical Physics, JINR.
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