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1 Introduction.

The aim of this consideration is to analyze frequency and angular distributions of the
radiation in the so-called Tamm problem. The latter treats the point charge which is at
rest in medium at the space point 2 = —zg up to a moment ¢ = —t,. In the time interval
—ty < t < to, the charge moves with the velocity v that can be smaller or greater than
the light velocity in medium ¢,. After the moment ¢t = {,, the charge is again at rest
at the point 2z = zo. This problem was first considered by Tamm [1] in 1939. Later, it
was qualitatively analyzed by Lawson [2,3] and numerically by Zrelov and Ruzicka [4,5].
In 1996, the exact solution of Tamm’s problem was found for nondispersive medium [6].
A careful analysis of this solution was given in [7]. It was shown there that Tamm’s
formulae do not always describe the Cherenkov radiation properly.

The plan of our exposition is as follows.

In Section 2, we reproduce Tamm’s derivation of frequency and angular distributions of
the radiation intensity produced by a point charge moving uniformly on a finite space
interval. Criteria for the validity of Tamm’s formula are given in Sect. 3. Exact electro-
magnetic fields of Tamm’s problem and radiation intensity are explicitly written out in
Section 4. Suitable approximations made in Sect. 5 permit us to find analytical expres-
sion for the radiation intensity which has a greater range of applicability than the original
Tamm’s formula. The analytical formula taking into account possible deceleration of a
moving charge is presented in Sect. 6. It generalizes the formula found earlier in Ref.[8].
Short resume of the results obtained is given in Sect. 8.

2 Tamm’s original approach

Tamm considered the following problem. A point charge is at rest at the point z = —z
of the z axis up to a moment ¢ = —#,. In the time interval —ty < ¢ < tg it uniformly
moves along the z axis with the velocity v greater than the light velocity in medium c,,.
For t > tg, the charge is again at rest at the point z = z5. The nonvanishing Fourier
component z of the vector potential is given by
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where R = [(z — 2)2 + (y — ¢')* + (2 — 2')?]V/%, 5, = 0 for 2/ < —z and 2z’ > 2z and
Jo = €6(2")8(y") exp (—iwz'/v)/2r for —z9 < 2’ < z. Inserting all this into A, and
integrating over z' and y’, one gets
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At large distances from the charge (R >> z), one has R = Ry — 2'cosf, cosf =
z/Ro, Ro = (2% + y* + 2?)"/%. Inserting this into (2.1) and integrating over 2/, one gets
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Now we evaluate the field strengths. In the wave zone, where Ry >> ¢/nw, the nonvan-
ishing spherical components are
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Ey=H, = ~reFa s1n0/0 ng(w) sinfw(t — Ro/cp)]dw. (2.3)

The energy flux through the sphere of the radius Ry for the whole time of observation
£=R / S.d0dt, dQ = sin6dodg, S, = iE(,Has.

can be presented in the form
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dQdw  micn cosf —1/5,
is the energy emitted during the whole charge motion into the solid angle d, in the

frequency interval dw. This famous formula obtained by Tamm is frequently used by
experimentalists (see, e.g., [9-12]) for the identification of the Cherenkov radiation.

where

3 Criteria for the validity of Tamm’s approximation

We elucidate here the approximations made during the transition from the exact vector
potential (2.1) to Tamm’s formula (2.5):

1) Changing R by Ry outside the exponent means that observation is made on the sphere
with the radius Ry much larger than the motion interval zg, i.e.:

Ry >> z. (3.1
2) Tamm’s field strengths (2.3) are valid only in the wave zone where
k"'RO >> 11 kﬂ. = w/cn, Cp = c/n‘ (32)

3) When changing R under the sign of exponent in (2.1) by Ry — 2’ cos 0, it is implicitly
assumed that the quadratic term in the expansion of R is small as compared to the linear
onc. Consider this more carefully. We expand R up to the second order
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Under the sign of exponent in (2.1), the following terms
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appear. We collect terms involving 2’
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LYy - sin? 4].

Taking for z’ its maximal value zy, we present the condition for the second term in the
expansion of R to be small in the form

zp << ZRo(bl— — cos0)/sin? 4. (3-3)

It is seen that the right-hand side of this equation vanishes for cosd = 1/8,, i.e., at
the angle where the Cherenkov radiation exists. Therefore, in this angular region the
second-order terms may be important.
4) Under the sign of exponent in (2.1) the second-order term should be small compared
to m, i.e., the inequality
z"wsin? 0

Wocn

should hold. Or, taking for § and 2’ their maximal values (6 = n/2, 2’ = z,), one gets

(9]

< (3.4)
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From (3.2) and (3.5) one finds the following restriction on w:

<< . (3.5)

cn 27 Roc,,
T << w << Z (3.6)

In the A language (w = 2me/X), this condition looks like

nz2

—0 << A << 27nR,. (3.7)
Ry

Let A = 4-107%cm, (the middle of the optical region), n = 1.5 (glass). For the typical

value R = 100cm, the r.h.s. of inequality (3.7) is fulfilled with a great accuracy. Then,

the L.h.s. of (3.7) gives zo << 5-1072cm. On the other hand, 2z, should not be too small.

In fact, for k,zo << 1, Tamm’s formula (2.8) is reduced to -

d?E  e?sin? w2 2o
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i.e., the Cherenkov diffraction picture disappears. Therefore, the width interval 10~%em <
79 < 1072cm turns out to be optimal for the validity of Tamm’s formula and existence of
the pronounced Cherenkov maximum in the treated case.

As an illustration, we turn to Ref. [13] in which the angular distribution of the radiation
(A = 4-107%cm) arising from the passage of Au heavy ions (3 ~ 0.87) through the LiF
slab (n ~ 1.39) of width L = 0.5¢m was studied.

Substituting the parameters of Ref.[13] into (3.5) defining the validity of Tamm’s formula
(2.5), we find that the Lh.s. of (3.5) coincides with = for the observation sphere radius
Ro = 20m. Obviously, this value is unrealistic. Since the realistic Ry is about 1 — 2m,
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the strong violation of (3.5) takes place. In this case Tamm’s formula does not describe
properly the experimental situation.

It should be noted that for gases, these conditions are less restrictive than for solids and
liquids. In fact, since for them 8, & 1, one gets

1 —cosé

1
(= —cosf)/sin? 0 ~ e

3 =1/2cos*(8/2).

Since for gases the angular spectrum is confined to the  ~ 0 region, Eq.(3.3) is reduced
o (3.1). The same is true for Eq. (3.4). As a result, for gases, Tamm’s expression (2.8}
for the radiated power works when Eqgs. (3.1) and (3.2) are fulfilled.

Conditions (3.1)-(3.7) ensuring the validity of Tamm’s expressions are spread over differ-
ent sources. We collected them together to make the interpretation of numerical results
given below easier.

4 Exact electromagnetic field strengths and angular-
frequency distribution of the radiated energy

The energy flux through the unit solid angle of the sphere of the radius Ry for the whole
‘time of a charge motion is given by

c F o -
- ER?,_/ dt(E x f),. (4.1)
Expressing E and H through their Fourier transforms
E= /exp(iwt)ﬁwdw, H= /exp(iwt)ﬁwdw

and integrating over ¢, one gets

AW cR: T, = » 7
= T_Zo (B(w) x H(~w))rdw = O/S(w)dw, (4.2)
where PW
S(w) = 5= = cRAENN (W) B (W) + EP () HO (). (4.3)

This quantity shows how the Fourier component of the energy radiated for the whole
time of a charge motion is distributed over the sphere S. It does not depend on time.
The superscripts (r) and (z) mean the real and imaginary parts of Eg and Hy. The exact
field strengths obtained by differentiation of the exact vector potential (2.1) are given by
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P = knRo(% +R), R=(1-22¢cosh+ 63212)1/27 €0 = 20/ Ro. (4.5)

The z' integration in (4.3) is performed over the interval (—1,1). When Egs. (3.1),(3.2)
and (3.5) are satisfied, S(w) given by (4.3) transforms into the Tamm formula (2.5).
Unfortunately, Eqs. (4.4) are not suitable for large frequencies. In fact, for the visible
light & = w/c is of the order 10°¢m~!. For the observation distance Ry ~ 1m, one gets
kR ~ 107. A great number of integration steps is needed to obtain the required accuracy.
Therefore, some approximations are needed.

5 Approximations

In the wave zone where k, Ry >> 1, we omit the terms of the order (k,Ro)~* and higher
outside 1

. e?k?2in | sin )y sin ¥ ,
S(w,8) = e sin® ] Fdz' . / I (1 — 2'eg cos B)dz"+
COIS%;pl dz' - CO;;#I (1 — 2’egcos 0)d2"], (5.1)
where
’lﬁl - wtoz' + knRg(R - 1)7 to = Zo/’U. (52)

Since the condition k, My >> 1 in real experiments is satisfied with a great accuracy
(we have seen, kRy is of the order 107), Eq.(5.1) is almost exact. It is important that a
maximal value of v, in (5.2) is of the order kyzo, not k, Ry as in Eq. (4.5). This makes
integration easier.

If 2o << Ry, one may disregard €q outside ;. Then,

e*k?zin

4rle

S(w,8) = sin? 6 / singydz')? + ( / cos rdz")?]. (5.3)

The expansion of #; up to the first order of ¢ gives Tamm’s formula (2.5) which does
not always describe properly the real experimental situation. Therefore, we expand 4
up to the second order of €

wi'zm, 1

1 o o
N - (%371 cos + 5, sin® @). (5.4)



With this 1, S(#) can be obtained in the closed form
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are Fresnel’s integrals and

lﬁoknzo . 1—f,cosé
= 0 - +1).
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Equation (5.5) is valid if the third-order terms are small compared with =:

S(0) = {[S(24) = Sz )] +[C(24) = C =)}, (5.5)

where

k Roe3z" cos Osin® 9 << 7. (5.6)

If we take for z’ and cos fsin® @ their maximal values, one gets

)\—R? << 1. (57)

We collect all approximations involved in derivation of (5.5 )
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knRo >>1, 29 << Ry, :—;’2 << 1. (5.8)
0

6 Accelerated charge motion

Consider the following problem. Let a point charge be at rest at the point 2 = —z up
to a moment ¢ = —{p. At the moment ¢ = ¢,, the charge acquires the velocity v;. In the
time interval (—tg < ¢ < tg) the charge decelerates according to the law

z t  atl 2 dz 2z
Loq-2y, E=2_gn
o o +zo( 2h o mT,
After the moment ¢ = ¢, the charge is again at rest at the point z = 2. The initial and
final velocities of charge are equal to

Vi f =0 + 2(1t0.

Here
v; + vy 2o

2 i
is the charge velocity at the moment ¢t = 0 and atg = (v; — vs)/4. It turns out that the
same equations (4.3), (4.4) are valid for the treated decelerated charge motion with the
exception that the function ¢ should be changed by

Y= wtoT + k. RoR,

v =



where
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In the wave zone, the same equation (5.1) is valid if one puts

Dropping ¢; outside the sin and cos, one arrives at (5.3) with ¥, given by (6.1).
Expanding square roots entering into 7" and R, we get

1 1
R—1=—Z%¢cosb+ 563212 sin?0, T =z — 55(1 - 2%,

Then,

1r/7 1‘ ~
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With such 4, integrals entering into (5.3) can be taken analytically and one gets for
S(9)
_ ekRy  €f,sin® 0

5(0) = St (S = S+ [ = CEP), (69)
where
1-3, [/
Zr = [%to(a + Bn€osin’ 0)]1/2[% +1].

Equation (6.3) works if, in addition to (5.8), the following inequality is satisfied:

f;—o(s? << (6.4)

In the limit § — 0 (zero acceleration), Eq.(6.3) is reduced to (5.5). For ¢, — 0 (large
radius of the observation sphere), one gets

§(0) = SFEB N0 g ) — (@ )P+ [Clas) = Cla)), (6.5)

4dmwed
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Equation (6.5) was obtained earlier in Ref. [8].

where

Tt

7 Numerical results

For the values n, L, A the same as in Ref.[13] (see Sect. 3), one finds that for Ry = 100cm,
the inequality (5.7) ensuring the validity of (5.5) is reduced to 0.02 << 1. This means
that Eq. (5.5) should describe properly the experimental situation of Ref. [13].

With these parameters we evaluated the exact (5.1) and approximate (5.5) angular distri-
butions of the radiated energy on the spheres of the radii Ry = 10em (Fig. 1), Ry = lm
(Fig. 2) and Ry = 10m (Fig. 3). These figures demonstrate good agreement between
the exact (5.1) and Fresnel (5.5) intensities. Even in the Ry = 10cm case, for which



(5.7) is strongly violated (it looks like 11 << 1), the agreement of (5.1) and (5.5) is quite
satisfactory. On the other hand, both of them sharply disagree with Tamm’s intensity
(2.5). This proves Fig. 4, where the exact (5.1) intensity on the sphere of the radius
Ry = 10m is compared with Tamm’s intensity (2.5) (which does not depend on Ry).

Formula (6.5) was used earlier in Ref. [8] to evaluate the angular distribution arising
from the decelerated moton of heavy ions through the L:i F slab with the same parameters
as in Ref. [13]. The initial and final velocities were 8; = 0.875, B; = 0.861. This gives
#=0.868 and § ~ 4.1 - 107>, Inequality (6.4) takes the form 0.25 << 1. The angular
dependencies (6.3) for R = 10cm and Ry = 100cmn are presented in Fig. 5. In Fig. 6, the
intensity (6.5) obtained in [8] is compared with the intensity (6.3) for Ry = 1m. These
intensities almost coincide. The reason for this is that § appears in Eq.(6.3) through the
combination § 4 €pB, sin? . For the given experimental conditions, the second term is
1/4 of the first one in the neighbourhood of the radiation maximum.

The moral of this section is that one should be very careful when applying Tamm’s
formula (2.5) to analyse experimental data. The validity of the conditions (3.1)-(3.7) en-
suring the validity of (2.5) should be verified. The exact energy flux (5.1) or approximate
expressions (5.5) or (6.3) should be used if these conditions are violated.

8 Conclusion

Let us briefly summarize the main results obtained:

We found analytical formulae describing the frequency-angular distribution of the ra-
diated energy in the so-called Tamm’s problem. They generalize the famous Tamm’s
formula to the cases when the intensity measurements are performed on the finite dis-
tances or when the moving charge exhibits deceleration due to the energy losses. The
formulae obtained have a much greater range of applicability than Tamm’s one. We hope,
they will be useful to experimentalists.
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Figure 1: Exact (solid line) and Fresnel (broken line) intensities (in units e?/c) on the
observation sphere of radius R = 10cm . Parameters of Tamm’s problem: charge’s path
and velocity L = 0,5¢m and 3 = 0.868, resp.; wavelength A = 4 - 10~%cm; refractive
index n = 1.392.
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Figure 2: The same as in Fig.1, but for B = 1m .
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Figure 4: Exact intensity for Ry = 10m (solid line) versus Tamm’s intensity (broken
line) which corresponds to Ry = oco.
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Figure 5: Fresnel intensities (in units e?/c) for decelerated motion of charge for By =
10em (solid line) and Ry = 1m (broken line). Initial and final velocities are 8; = 0.875
and 3 = 0.861, resp. Other parameters are the same as in Fig. 1.
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Adpanacees I'.H., [llunos B.M. E2-2000-34
HoBble ¢opMyibl V11 MHTEHCHBHOCTH M3iydeHus B 3amaue Tamma

IMony4yeHs! aHATUTHYECKHE BbIPAXEHHS, OMUCHIBAIOLINE HHTEHCUBHOCTD M3J1y-
4yeHMsl 3apsada, OJBHXYLIErocs Ha KOHEYHOM IMPOCTPaHCTBEHHOM uHTepBaie. OHU
uMeloT 60nbllyI0 06J1aCTh MPUMEHUMMOCTH O CPAaBHEHHUIO C U3BECTHOM (hOpMYIoii
Tamma. Kpome Toro, yureHsl 3cexTsl BO3MOXHOIO YCKOPEHUs 3apsja.

Pabota BeinonHeHa B Jlaboparopuu teoperuyeckoit ¢uszuku uM. H.H.Boro-
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New Formulae for the Radiation Intensity in Tamm’s Problem

Analytical formulae are obtained which describe the radiation intensity of a
charge moving on a finite space interval. They have greater range of applicability
than Tamm’s original formula. In addition, the effects arising from the possible
acceleration of charge are taken into account.
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