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1 Introduction

Scale invariance phenomena observed in the first experiments on large machines of 70ies
(CERN, FNAL, Serpukhov) are still important for the present particle theory and phe-
nomenology [1].

The usage of Lobachevsky velocity space (LVS) [2] to analyze deep inelastic scattering
processes (DIS) has allowed to introduce a new scale parameter & (0 < o < 1) — a part
of the 4-momentum transfer qa:

— @2 =@ ve = av,z = —q5/(2mra) = Q*/(2myv), (1)

where Q? is the 4-momentum transfer squared, v — energy transfer, z - the Bjorken scale
variable [3], m, — the target mass. For the given z this approach [4] allows one to get the
final state of a system of two interacting particles from the initial one as an evolution of
one parameter o (as seen above, z does not depend on @). One can introduce rapidities
pea and p,a, corresponding to vq and to go ([4]):

Ve = m(chp, — chp,a) = av, chp,a = chp, — av[m, 2)

— @ = 2m¥(chpga — 1) = aQ’, chpg = aQ?/(2m*) +1, ®3)

here: m — the mass of the beam particle (lepton for DIS); p, and p. — the lepton initial
rapidity for lab— and c— systems, correspondingly (see fig.1). Then, using Bjorken’s x
definition, one can find a particle rapidity p(8) (for the lepton, for example) as a function
on the current scattering angle 0. For the c-system this function is:

ABcos0 + Cv/B%cos?0 + C? — A?

thp(0) = B?cos? 8 + C? ’ “
where
A=chp.+a Ch(Pa - Pc) , B=shp.—a Sh‘(Po - Pc) ) (5)
C=achp,+1, "azzmb/m. (6)

At 0 = 0 and 0 = 0; (8, is the final scattering angle) formula (4) defines initial and
final lepton velocities (for given z). All dynamical values for the lepton as well as for the
hadronic shower can be expressed in the same way as functions on 6. So, for the fixed z
the angle 6 can be considered as the evolution parameter of the system of two interacting
particles.

It is known from mechanics [5], that evolution parameters — time and angle — are
equivalent: dt ~ df, at least, in the case of central forces. So, one can assume that some
observed final scattering angle §; corresponds to some time interval A¢ — the time needed
for the interacting particle to transfer from the initial state up to the final one.

A method to establish time - angle relation dt ~ d@ for particle scattering processes
and some results of its integration for elastic pp, up and inclusive inelastic up reactions
are presented in this paper. The method is based on the geometrical interpretation of the
time-like interval invariance in the euclidean, as well as in noneuclidean (LVS) spaces.
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Fig.1 Geometrical view of the scale invariance in Lobachevsky velocity space.

2 Geometrical views of time-like interval invariance

The rapidity definition can be done equivalently by energy-momentum variables of a
particle and through its space-time characteristics. The last one indicates some kind of
relation between the interval and LVS. The invariance of the time-like interval:

(cdt)? — (vdt)? = (edT)?, v =dz/dt, (7

di\1 -2 =dr, fB=v/c, (8)
/dt\/l B =Ar,  At=t—t 9)

expresses the particle proper time d7 (A7) via the time dt (At) of a system where it moves
with the velocity v (c is the light velocity) [6]. The moving system is often the system
where particle is in the rest (dz’ = 0, z’ - coordinate in the moving system). It is seen
from (8) that edr > 0 (interval is time-like), if 8 < 1. Note also that (7-9) are valid for
the particle arbitrary motion [6}.

Let us divide the integration region in (9) into n of arbitrary parts At; = t5; — 4.
Then one can get for each i-th interval:

t2i

/dt\ll — ﬂ2 = AT.’ (10)
ti
or, using the mean value theorem, and taking into account that /1 — 3% = 1/chp:

At;fchp; = Atf1 — ,3-.‘2 = AT (11)

or, just multiplying on ¢ and raising to the second power:

(CAt,‘)2 - ('(—I,'At,')z = (CAT,')2 ‘l—),' = Al,‘/At,' N (12)



where p;, #; — rapidity and velocity mean values, Al; - particle displacement (shift) over
the time At;. Thus, the integral (9) can be written in the form

iAth 1- ﬂ_,'z = i AT;. (13)

These evident transformations of the integral (9) reveal some important characteristics.

1. The invariance of the infinitesimal (7) and average (12) intervals expresses the
geometrical relation of the Pithagor theorem for the right-angled triangle with hypotenuse
cdt and cathetuses vdt and cdr for (7) (see fig.2a, for (12) it is also obvious).

2. Each term in (13) can be transformed to the form (12). It means, that an arbitrary
(curviliner) motion over full time At can be represented by the sum of simple shifts Al;
(rectilinear and uniform) with mean velocity B; during the time At; and proper time AT;
(fig-2d, 2e).

The relation (13) has the same sense as (7) and (9), but the real particle motion (for
instance, over some curve) in (13) is expressed by the sum of the simplest motions (shifts
and rotations) -~ by the motion over the broken line inscribed into some curve. Each
segment of the broken line is the cathetus of the right-angled triangle with light beams
cAt; and cAT; as other sides (fig.2e). So, the splitting time integration region on arbitrary
parts in the integral (9) is equivalent to the decomposition of the particle resulting motion
into the simplest ones.

Let us come back to triangles. The acute angle 6 between vdt and cdt is just the
Lobachevsky parallel angle:

cosfy, = vdt/edt = § = thp, (14)

where p is the rapidity, corresponding to particle velocity 8. From (14) one can get
immediately the main formula of the Lobachevsky geometry [2,7]:

61, =2arcige™". (15)

Formula (15) is called Lobachevsky’s function. It establishes the definite relation between
the angular and linear values. For the interval with mean values (12) the parallel angle
is expressed via the mean value of velocity (or rapidity): cosfy, = f = thp.

So, the geometrical form of the interval invariance reveals Lobachevsky’s function in
its definition. One can conclude, that in the foundation of the special relativity theory
there is the theory of parallel lines (with all its scientific contents).

It is important to note that (as it follows from (7) and (14)) for any 8 there exists a
light beam cdt emitted under definite angle 7, from the reference point of the rest system.
Sience the plane for the light beam is not fixed, then all triangles with the hypotenuse
on the light cone (formed by rotation of the light beam around particle motion direction)
are equivalent.

In the LVS the intervals (7) and (12) are also represented by right-angled triangles with
the same parallel angles and with sides formed by rapidities instead of the corresponding
velocities (fig.2b). As the rapidity for the c is infinite, then the corresponding sides
(light beams) of the noneuclidean triangles are infinite and parallel — that is why the
angle between them is equal to zero. Just this kind of the triangle was introduced by
Lobachevsky (fig.2¢c), and at present time is used to define parallel lines on Lobachevsky
[2,7].
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Fig.2 Geometrical views of the time-like interval invariance for euclidean a)-, d)-, €)-
and noneuclidean b)-, c)-, f)- spaces.



It seems also important to note that, time-like finite interval (9) is a result of sum-
mation of elementary or simplest motions (displacements and rotations) and an decom-
position of an arbitrary complex motion into the simplest ones is just equivalent to the
splitting time integration region into a pieces. From this point of view the Heisenberg
uncertainty principle Az;Ap; ~ A (h ~ Plank’s constant) may be considered as the way to
decompose a complex motion into the simplest ones. To do that decomposition, one should
choose such time intervals At; for the product of a particle displacement Az; = 5;At; and
momentum transfer Ap; (over At;) should be of the order ~ A. In such an interpretation
this principle is a method to investigate an arbitrary motion.

The euclidean and noneuclidean geometrical interpretations of the interval invariance
is useful to define such characteristic time At, (or A7,), which depends only on the particle
parameters, its mass and velocity (or Lobachevsky parallel angle), and on the universal
Plank’s constant.

3 Particle characteristic time

For simplicity let us look at the free particle motion along z-axis with momentum p. Then
one can measure the side lengths of the euclidean triangle at some time moment ¢ (from
the starting point, At = t) in units of A (A = h/p is de-Brogle wave, A = h/(mc shp) =
h/(mc) gy, ):

vAt =n,A, cAt=n, cAT=n.X, (16)

where n,, n.,n, — some numbers (not necessary integers) which define the length of sides
at the time moment ¢. From (16), taking into account (7) and (14) one can get:

n-ni=n? n.=n.chp, n,= n,shp, (17)

the relations between wave numbers analogous to energy-momentum relations (¢ = 1):

E*—p*=m? E=mchp, p= mshp. (18)
The geometrical interpretation of (18) for LVS was done in [8]. It was shown that on the
surface of the limited sphere (orisphere} the relation (18) was represented as an ordinary
(euclidean) right-angled triangle. The stereometry of LVS contains also the euclidean
planimetry on the orisphere [2,7,8]. Therefore, on this surface in LVS one can constrain a
triangle with the sides proportional to numbers n,,n.,n,. Let us choose c- light velocity —
as a proportional coefficient . Then the lengths of the sides are ny¢, n.c,n,c, and triangle
area is:

ASpo =1/2 0,0, = 1/2c*n2shp. (19)
The area of the triangle formed by rapidities on the Lobachevsky plane is [2,7]:
ASap=cHm—(A+B+C))=cHx/2-0), (20)

where (A + B + C) - the sum of noneuclidean triangle angles. In our case the sum is
defined by the particle velocity (cosf = B). Comparing (19) and (20) and putting in
(20) coefficient £(0 < x < 1) one can find:

ASpo = KASaL, nr=\[k(m —201)/shp = V(= 20,)tg0y (21)



and, coming back to (17) and (16), one can have:
A1, =n.Ac, At,=n,;chpAfc= (n,/sinf))/c. (22)

Let us call this time ((21)-(22) with & = 1) a particle characteristic time. The coefficient
& was introduced to agree a finite interval with the characteristic time: changing «, one
can change the scale of time.

Let us look at (21-22) in more detail. The LVS is a part of the projective space
[7,8] (fig.2f). In the projective space the Lobachevsky plane (with the triangle formed by
rapidities) is a tangent plane to the orisphere. Both vertices of parallel angles (from both
triangles — one on the plane and the other on the orisphere) touch the common point. The
triangle’s area on the plane depends on the particle velocity (or on the 8, - see (20)), the
triangle’s area on the orisphere depends both on the velocity and on the time (through
the wave numbers — see (16)). Hence, equations (21-22) define the element of time when
both areas are equal.

So, for free particle motion there exists some geometrical figure as on the Lobachevsky
plane (ASaL), as on the orisphere (ASa0). Sience the inner geometry of the orisphere is
euclidean, then its figure is similar to that on the plane in the euclidean space (ASag) and
they differ only in units. Comparing three areas of these geometrical figures in appropriate
units: ASag/A?= ASao/c* = ASar/c? one can get the time-angle relation.

For free particle motion the angle is the Lobachevsky parallel angle. But in this case
there is no problem to integrate an interval. Let us come to the particle motion in the
scattering processes.

4 Time estimation for an interacting particle

Due to angular momentum conservation one can define the so called scattering plane of
the colliding particles for the euclidean as well as for noneuclidean velocity spaces. The
particle complex motion in the coordinate (euclidean) space is represented in LVS by the
points corresponding to the velocities of the particle relative to the special point, chosen
as the reference point (c-system, for instance). Without loosing generality, let us assume
that a particle velocity as a function on scattering angle is known (for example, see (4)).

For the full time At a particle scatters on a full angle §;, measurable in experiments.
For the small time dt the particle rapidity in LVS on scattering plane sweeps up some
area of the sector with the spread of angle df. Let us find the area of this sector. The
area of the circle with radius p is [2]:

Sy, = *2n(chp~1) . (23)
Then the area of the sector with the infinitesimal angle df can be expressed in the form:
dSy = Adf(chp — 1) = c223h2gd0 . (24)

Corresponding to this motion, the area of the euclidean sector obviously is:
dSg = 1/2R*d0 = X*1/2(R/)\)*d6, (25)

where R/) is the radius of the sector measured in units of A. Sience the geometry of
the orisphere (in LVS) is euclidian, then the area of the sector on the orisphere dSo is
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Fig.3 The dependence of time interaction of the projectile particle on the scattering
angle (in c-system) for elastic pp (a)-, up (b)- and inelastic pp (c-d)- reactions. The results
are shown for 5, 10, 50, 100, 500, 1000 and 5000 GeV (in lab. system and numbered from
1 to 7 correspondingly).



proportional to dSg and they differ only in units of measure. As the area unit for LVS is
2
c?, then:

dSg/>\? = dSo/c? , dSo = *1/2(R/X)*d0. (26)
Comparing areas dSp and dSi:
dSo =dSy , 1/2(R/))? = 23h2-‘23, (27)

one can find the expression for R:

e h 2sh(p/2)
k= )\2.sh2 “me shp (28)
and, using the velocity definition:
dl/dt = Rd/dt = cff = cthp, (29)

one can get the time - angle relation:

h_2sh(p/2) )

dt=—
mc? shpthp

(30)

So, the usage of LVS allows one to find two important functions: (4) and (30). Using
function (4) and making integration of the time-angle relation (30) from 6 = 0 up to
0 = 0y, one can get numerical estimations of the full time At.

The estimations of interaction time At (for c-system) in elastic pp and pp, and inclusive
inelastic pp (for fixed z and for the allowed scattering angle region (0 — 7 for c-system))
at the energies from 5 GeV up to 5 TeV (in lab-system) were calculated (see fig.3). The
results have shown increasing of the interaction time with increasing the scattering angle
( or Q%) and with decreasing z (with decreasing z the particle velocity is also decreasing
and contribution to the integral as seen from (17) becomes larger). The interaction time
decreases with increasing the beam energy (such behavior is usually expected).

5 Relative velocity and Lorentz transformations

Let us show how one can get the relative velocity formula on the base of Lobachevsky
function. Assume, two particles are moving along z-axis. The first particle has a velocity
v,, the second — v. Let us suppose, that the moving system coincides with the first particle
and v > v,. The reference point for the counting time is chosen at the moment when
both particles have the same z - coordinate. The question is: what is the velocxty v’ of
the second particle relative to the first one?

One can get the answer by following the logic of classical physics [5] and applying
Lobachevsky parallel angle:

v,/c =cosbvo, v/c=cosly. (31)

We should consider the z— positions of particles at the two time moments: at time ¢ =0
and t (so, At = t). At time ¢t = 0 as it was chosen z = 0 for both particles. At the time



moment ¢ the z— positions of particles are v,t and vt, and the corresponding light beams
are emitted under parallel angles from the starting point (see fig.4a).

As we search for a derivative relative the moving system, then to find a displace-
ment (for the second particle) one should subtract from the particle a new position vt
instead its primary & = 0 but some zg. The point zp (see [5]) should obviously coincide
with the new position of the moving system v,t, thus:

Azg =vt—zp =t(v —v,) = ct(cos @y — cosbyo). (32)

In mechanics the relative velocity v’ is defined as the limits of the ratio Azp to the full
time At = ¢ [5]. This ratio does not coincide with the known relativistic formula for v/,
because the value Azp is only a part of the full particle displacement vt. So, the time,
needed for displacement Azg, should be corrected.

Sience the starting point to the counting displacement is shifted by v.t, then we have
also to move the starting point for the time counting. Let us shift the reference time point
at the moment when the front of the light beam (corresponding to velocity v) reaches the
reference point of the moving system zp = v,t (Guigens principle). The time of light
Aty = t; — 0 = t; needed for that is (see fig.4a):

¢ty = vot cos @y = ctcosbyo cos Oy . (33)

Then the reminder part of the full increment Atg = ¢t — t; can be assumed as the time,
needed for the particle displacement Azp:

cAtg = ct — cty = ct(1 — cos By cos fy). (34)
Finally, for v’ one can find:

. Azp cos @y — cosOyo v —,
im = =
atg=0 cAtg 1 —cosOycosbyo ¢l —vv,/c?)

v'fe= (35)
This expression is the same as the well- known relativistic formula for v'. The correspond-
ing picture for the moving system is shown on fig.4b.

Now, if one knows the right formula for v’ = dz'/d#’, it is possible to get the Lorentz
transformations as the solution of the system of two equations: for v’ — (35), and the
equation for any interval invariance of:

(cdt)? — dz? = (cdt')? — dz”. (36)

The previous method of correcting time for v’ formula shows another simple way to
obtain Lorentz transformations from the geometrical form of the time-like interval in
euclidean space and using the Lobachevsky’s function.

Let us put a perpendicular from the point z = vt on the hypotenuse ct (see fig.4c).
Then ct is splitted into two pieces ¢t = ct;+ ctp and the angle between this perpendicular
and ct’ is equal to parallel angle 8y. In this case for ctp one can write:

clp = ct'sinfy 37)

and, as previously:
ctg =ct —cty =ct —zcosby. (38)



Fig.4 The diagram of the positions of two particles moving with velocities v, and v
and their corresponding light beams: a) — for the rest system; b) — for the moving system;
c) — geometrical views of Lorentz transformations in euclidean space.
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From (37) and (38) for t' one can get:

Y= t—zcosy/c _ t—zv/c? (39)

sin Oy 1 _vz/cz'

Again, using (39) and (36), one can find Lorentz transformation for z’.

It is interesting to note that the length I’ of our perpendicular corresponds to the
z’ value for the point z = vt, but for the time t;. To see that, let us put another
perpendicular from the point ct; to the z-axis. Then one can write:

vl z'. (40)

J1 -2

Thus, the Lorentz transformations can be derived in a visible geometrical way (for
euclidean space) using the Lobachevsky’s function.

z—vty=1Isinby, I'=

6 Conclusion

Let us formulate the main results:

1. It is shown that the definition of the time-like interval invariance contains the
Lobachevsky’s function which provides the unity of the special relativity theory and the
theory of the parallel lines.

2. Based on geometrical views of the time-like interval for euclidean and noneuclidean
Lobachevsky velocity spaces:

a) it has been shown that a decomposition of an arbitrary motion into the simplest
ones is equivalent to the splitting time interval integration region on arbitrary parts; this
shows that Heisenbrg uncertainty principle may be considered as a way to decompose a
complex particle motion into the simplest ones: shifts and rotations.

b) the particle characteristic time has been introduced for free particle motion; it
depends on the mass and on the Lobachevsky parallel angle (or velocity) of the particle
(and on Plank’s constant);

3. Based on geometrical views of the particle scattering processes for euclidean and
noneuclidean Lobachevsky velocity spaces:

a) the hypothesis of automodelity is released for LVS and a particle rapidity (velocity)
was expressed as the function on the current scattering angle;

c) the new time - angle relation dt = (h/mc?)2sh(p/2)/(shpthp)df is found for particle
scattering processes (in ¢ - system) by analogy with the characteristic time for the free
particle motion.

4. The estimations of the particle time interaction for elastic pp, up and inclusive
inelastic up interactions at the energies from 5 GeV to 5 TeV have been calculated. The
results have shown the increasing of the interaction time with increasing the scattering
angle (or Q%) and with decreasing z, at energy increasing — the time decreases.

5. The relativistic formula for the particle relative velocity and Lorentz transfor-
mations have been derived in a visible geometrical way (for euclidean space) using the
Lobachevsky’s function.

6. The presence of the Lobachevsky function at the interval invariance definition
and the new way to get a relative velocity formula and Lorentz transformations indicates

11



new ability of the analytical expression of the space-time properties with the Lobachevsky
function: for the given point (dz, dt) in some reference system or, which is the same, for the
given velocity 3 = dz/(cdt) there is the light cone with the axis direction coinciding with
the direction of the motion dr and with the light beam cdt emitted under Lobachevsky
parallel angle: cosfp = 3.

7. The proposed ideas open new opportunities to investigate the problem of relativistic
description of the system of two and more interacting particles.

The author expresses his gratitude to A.M. Baldin and N.A. Chernikov for useful
discussion and to A.P. Cheplakov and S.V. Chubakova for help in preparing this article.
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Dapnees H.I'. E2-2000-59
ABTOMOIENBHOCTD, JIOPEHL-HHBAPUAHTHOCTh M OLIEHKA BPEMEHH
B3aUMOIEHCTBUS CTAIKUBAIOLIMXCH YaCTHLL

Ha ocHoBe reomMeTpuueckux CBONCTB HHBAPUAaHTHOCTH MHTEpBasia B €BKJIMIO-
BOM IIPOCTPAHCTBE M IPOCTPAHCTBE cKopocTel JIo6ayeBCKOro yCTaHOBIEHO COOT-
HOLLEHUe BpeMs — yroit: dt = (h/mc?) 2sh(p/2)/(shp thp) d6 nns npoueccos pacce-
SHUS YacTUL (p — OBICTPOTA YacTHLbI, ¢ — cuctema). C NpUBIEYEHHEM THIIOTE3bI
aBTOMOJIEJIPHOCTH BBIYHUCIIEHBI OLIEHKH BPEMEHH B3aUMOIEHCTBUS pacCessHHOH Ya-
CTHULBI B pp-HU Up-CTOINKHOBEHHUAX NpH 3Heprusx ot 5 9B mo 5 TaB. Ilpewtoxex
HarMIAHBIA reoMETPHYECcKHii crioco® BbiBOIA (YOPMYIT 111 OTHOCHTENIBHOH CKOPO-
cTH U npeobpa3oBaHuil JIopeHlIa B BKJIMIOBOM IIPOCTPAHCTBE HAa OCHOBE IpHUMe-
HeHus pyHkuuu Jlobauesckoro.

Pa6ota BbimonHena B Jlabopatopuu ¢usuku yactuu OMSH.

Coobuenre O6beIMHEHHOTO MHCTUTYTA SAEPHBIX MccnegoBanuid. Jy6na, 2000

Fadeev N.G. E2-2000-59
Automodelity, Lorentz Invariance and Interaction Time
of the Particle Scattering Processes Estimations

Based on geometrical properties of interval invariance in Euclidean,
as well as in non-Euclidean velocity spaces, time-angle relation
dt = (h/mc*)2sh(p/2)/(shp thp) d® is found for particle scattering processes
(p — particle rapidity, c — system). Using also the hypothesis of automodelity, a
numerical estimations for the particle interaction time is obtained for pp and pp in-
teractions at the energy of 5 GeV to 5 TeV. The transparent geometrical way to get
a relative velocity formula and Lorentz transformations in Euclidean space using
the Lobachevsky’s function is also shown.

The investigation has been performed at the Laboratory of Particle Physics,
JINR.
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