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1 Introduction

In 1939, Tamm ([1]) approximately solved the following problem: A point charge is at
rest at a fixed point of medium up to some moment ¢ = —t,, after which it exhibits an
instantaneous infinite acceleration and moves uniformly with a velocity greater than the
light velocity in medium. At the moment ¢ = t,, the charge decelerates instantaneously
and come to rest. Later, this problem was qualitatively investigated by Aitken [2] and
Lawson [3] and numerically by Ruzicka and Zrelov ([4,5]). The analytic solution of this
problem in the absence of dispersion was found in [6]. However, in all these studies the
information concerning the transition effects was lost due to the instantaneous charge
acceleration. The main drawback of the original Tamm problem is instantaneous accel-
eration and deceleration of a moving charge.

On the other hand, effects arising from unbounded accelerated and decelerated mo-
tions of a charge were considered in [7,8]. It was shown there that alongside with the -
bremsstrahlung and Cherenkov shock waves, a new shock wave arises when the charge
velocity coincides with c,.

The aim of this consideration is to avoid infinite acceleration and deceleration typical
for the Tamm problem by applying methods developed in Refs. [7,8]. For this aim, we
consider the following charge motion: charge is smoothly accelerated, then moves with a
constant velocity, and, finally, is smoothly decelerated.

The plan of our exposition is as follows. In section 2, we recall the notion of moving
singularities of the electromagnetic field (EMF) introduced by Schott [9]. Time evolu-
tion of EMF singularities for the original and the modified Tamm problems is studied
in section 3. In section 4, for the modified Tamm problem, we find angular-frequency
distributions of the radiated energy on the sphere of finite radius. Brief account of the
results obtained is given in section 5.

2 Moving singularities of electromagnetic field

Let a point charge move inside the medium with polarizabilities € and y along the given
trajectory f( )- Then, its EMF at the observation point (p, z) is given by the Lienard-
Wiechert potentials (see, e.g., [10])

e 1 " ey U; . €l
— t) = — —— d —_— = . .
c,Z.IR;I’ A(F, 1) cz.:IR.-I’ wA+ -0 =0 (2.1)

Here '
e () Re= 17— €61 - 5 — ) e,

and ¢, is the light velocity inside the medium (¢, = ¢/n, n = ,/ég). Summation in
(2.1) runs over all physical roots of the equation

et = t) = 7= €] (2.2)
To preserve the causality, the radiation retarded time t' should be smaller than the

observation time ¢. Obviously, ¢’ depends on the coordinates 7, ¢ of the observation point
P. With the account of (2.2), one gets for R;

Ri = et — ;) = 5(F — £(t:)) [cn . (2.3)
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To investigate space-time distribution of EM F of a moving charge, one should find
(for given 7, t) the retarded times from Eq.(2.2) and substitute them into (2.1).
There is another much simpler method (suggested by Schott [9]) to recover EM F singu-
larities. We seek zeros of the denominators R; entering into the definition of electromag-
netic potentials (2.1). They are obtained from the equation

C

alt— 1) = 06— gy, (2.4)

Finding ¢’ from (2.4) and substituting it into (2.2), we find the surfaces p(z,t) carrying
the singularities of the electromagnetic potentials. The equivalence of this approach to
the complete solution of (2.1) was proved in [7], where the complete description of EM F
for a moving charge was given. It was shown there that the electromagnetic potentials
exhibit infinite jumps, when one crosses the above singularity surfaces. Correspondingly,
field strengths have é-type singularities on these surfaces, while the space-time propaga-
tion of these surfaces describes the propagation of the radiated energy flux.

3 Time evolution of EMF singularities

We consider the following problem (Fig. 1). A point charge is at rest at a point —z, of
the 2 axis up to a moment ¢t = —#p. In the time interval —tq < ¢ < —#; (on the space
interval —zo < z < —21), the charge moves with acceleration according to the law

€(t) = 20+ %a(t +to)? (3.1)

with the velocity v(t) = a(t +t). In the time interval —t; < t < t; (on the space interval
—z1 < z < z1), charge moves uniformly

£(t) = vt. (3.2)

In the time interval {; < ¢ < to (on the space interval zo < z < z;), charge moves with
deceleration according to the law

£(t) = 2o — a(t — 19)%/2 (3.3)

with the velocity v(t) = a(to —t). Finally, for ¢ > to, it is again at rest at the point
zZ = Zp.
The sewing conditions for trajectories and velocities at z = &2; define tg,t, and a:

220 — 21 21 v?

P U S S
0 v 0 1T 2(z0 — 21)

In concrete calculations, we deal with dimensionless variables
t=ct/zg, U =ct'f2o, 2=2[20, E=E]20, p=p|20

For brevity, we omit tilde signs in obvious cases. Then, Eqgs. (2.2) and (2.4) take the

form
-t =Bz = £(), ¢~ =R+ (s — £ (3.4



We rewrite the second of them in the form
o = (= ) /n? — (2 — E(t)" (3.5)

Finding ¢’ from the first equation (3.4) and substituting it into (3.5), we find the surfaces
on which the electromagnetic potentials are singular.

Before going to numerical examples, we consider the time evolution of a moving singu-
larity in the original Tamm problem (Fig.2). Its position at the moment ¢ is given by

(6])
p= (vt~ Z)'Ym Tn = 1/\/ BE—1, Bn=uv/cn,

where z changes from z = 2{ to z = vt for —zo/v < t < /v and from z = 29 to z = 22
for t > zp/v. Here .
ct

zg:, =23 + ZO(W -1
(it is assumed, therefore, that 8, > 1). The singulariry is created at the moment ¢ =
—zo/v. In the time interval —zo/v < t < zp/v, it is enclosed between the current position
of the charge on the z axis and the line p = (2 + 1)/7,. Its head part attached to the
charge moves with the velocity v. For t > z/v, the singularity lying between the lines
p=(2—1)/v and p = (z + 1)/, propagates with velocity ¢, in the direction inclined
under the angle 8¢y, = arccos(1/3,) towards the motion axis (Fig. 2).
We turn now to a more general case shown in Fig.l. The EMF singularity is created at
the moment

t=—tp, t= %[2(1 —am)i- g+l m=alw

when the charge velocity coincides with ¢, (Fig. 3). At this moment, the charge is at
the point

1

2B -1)+=z
z2=-zL, 2= — 3

of the motion axis. The singularity represents itself a complex consisting of two shock
waves. Omne of them is the usual Cherenkov shock wave propagating with the charge
velocity. The normal to it has an angle ), = arccos(1/8,(t)), Ba(t) = v(t)/c, with
the motion axis. The other shock wave, closing the Cherenkov cone, propagates with the
velocity ¢,. With a good accuracy, it can be approximated by a part of the spherical wave
emitted at the moment ¢ = —t, from the point z = —z;. As time goes, the dimension
of this complex grows. The angle f¢;, increases in the time interval —t;, < ¢ < —#; and
remains the same for —#; < ¢ < ¢;. For < t < 1, the angle ¢y, decreases. For t = tf,
(when the charge velocity again coincides with ¢, ), the Cherenkov shock wave intersects
the motion axis under the right angle, and this holds so at subsequent times. After the
moment ¢ = {1, the above complex detaches from the charge and propagates with the
velocity ¢,. This demonstrates Fig. 3, where the time evolution of EMF singularities is
shown for z,/2o = 0.5. It should be noted that, contrary to the original Tamm problem
corresponding to z; = zp (Fig.2), moving singularities for z; < z; are distributed over a
much larger angular region, no matter how small is deviation of zy from 2z;. This is due
to accelerated and decelerated motion of the charge on the intervals —z < z < —z; and
z1 < z < zo. This illustrates also Fig. 4, where the time evolution of EMF singularities
is shown for z;/zo = 0.99.

(3.6)
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Since in the original Tamm problem the transition from the state of rest to the state of
motion is instantaneous, the above complex degenerates into a segment propagating with
the velocity ¢, (Fig. 2).

4 Frequency distribution of the electromagnetic ra-
diation

However, usually, experimentalists measure not the EM F distribution at a given moment

of time, integrated over all radiated frequencies, but the EM F energy flux with a given

frequency for the whole time of charge motion. For this, we need the Fourier component
of the vector potential:

_1 /l~ o _
Ao =2 [dV'ziufa' ) exp(—wRfen), (4.1)

where B = [(z — 2/) + (y — y")2 + (2 — 2/)?]"/? and j, is the Fourier component of the
current density

3u7) = oo [ dtexp(—iwt)i(Fo1),  5,8) = eoft)5(a)5(u)6(: — E(2)

Substituting here {(¢) and v(t) given by Eqgs. (3.1)-(3.3), one obtains

o= %5(@5@){@@ + 20)0(—2 — z) exp[%‘)(?»’«’o — 21— 2/(z + 20)(20 — 21))]+

wz

+0(z + 21)0(z1 — 2) exp(=—=)+
+06(z0 — 2)0(2 — zl)exp[—%@zo — 21— 2y/(20 — 2)(20 — 21))]}.
This leads to the following vector potential on the sphere of radius R,
€€ - dz W2z
= %o / -2/ + ) ~ 7)) = 24 2] — ik, RoR}+

= —
27c | v

) .
e€o d2’ —twzg .
+27rc / R exp( v thn o R)+

—x

1 -
eeg [ dZ —iwz .
%/T{exp{ 2 =2/(1= 2) (1~ 1) + 2 = @] - ika RERo}. (4.2)

Here k, = w/c,, R = [1 — 2¢2z'cosf + 22212, ¢ = zo/Ro, 1 = 21/z0; 0 is the
polar angle of the observation point. Using A, we evaluate Fourier components of EMF




strengths and the energy flux through the unit solid angle of the sphere of radius Ry for
the whole time of charge motion

W ¢ , T . 2 =
—(E)— = Z;I‘RO_[O dt(E X H)r

(subscript 7 means a radial component of (E x H)). Expressing E and H through their
Fourier transforms

— - -

E= /exp(iwt)Ewdw, H= /exp(iwt)ﬁwdw

and integrating over ¢, one gets

d cR: T 4 = T
% - —;i_w (B(w) x B(—w))dw = 0/ S(w)deo, (4.3)
where PW A A
S(w,0) = 7ae = eBED @) A () + B (@) ()] (4.4)

This quantity shows how the Fourier component of the energy radiated for the whole
time of charge motion is distributed over the sphere S. It does not depend on time. The
superscripts (r) and (¢) mean the real and imaginary parts of Eg(w) and Hy(w). After
rather lengthy, although straightforward calculations, one gets

@E  ek%in

Sw.0) = 7530 = “ame

sin® O(LI. + I,1)), (4.5)
where

I = Z Ic(i)v Ié = Z:Ié(l)a I, = le(i)v I.«Ix = E [;(i)’ (46)

1. 1 . 1 .
sin ¥, sin i, sin ¥
Is(l) = ’~—R_2—d2,, 13(2) = R2 dZ/, 13(3) = R2 dZI,

-1 -z zy

-z x1 1
L(1) = / %ﬁidz', L) = “’;f?dz', L(3) = °°;f3dz',
-1 -z xy

Ty

1. .
L) = / SIE? (1 —2'egcos§)dz', I)(2) = Su;%;pz (1 — z'ep cos 0)dz’,
-1 “ -1

1 ., -z
I(3) = / 812?3(1 —2'egcos)ds’, I(1) = / cols%;bl (1 — 2'eg cos B)d2’,

T -1

zy 1
I2) = CO]S%;/)Z(I — Zegcos)dz, I(3) = CO;;/)3(1 — Z'epcos §)dz'.

—-Ty 1



Here

WwZzp

) = 7[2 (I+2)1—21) =2+ 2] + k. Ro(R— 1), = ?2, + ko Ro(R - 1),

s = _%[2 (1= 2)(1 —21) = 2+ 1] + kn Ro(R — 1). (4.7)

When obtaining (4.6), we neglected terms of the order 1/k, Ry and higher outside the
Y1, 2, and w3 functions. In the optical diapason (where the Cherenkov radiation is
observed), the quantity 1/k, Ry is about 10~7 for Ry = lem. Therefore, our approxima-
tion is justified with a good accuracy.

Before going to numerical results, consider the limiting cases.

4.1 Large observation distances, finite acceleration

Large distances mean that the following conditions are fulfilled
20 << Ry, koRo>>1, kuz2/Ry << 1. (4.8)

Under these conditions, the radiation intensity in the Tamm original problem correspond-
ing to instantaneous charge acceleration at z = +2p and uniform motion for —zy < z < z
is given by the famous Tamm formula

d?E e? . sinwty(l — B, cos 6)., 2o
dQdw  mZcn [sin cosf —1/8, 0Ty (4.9)

This formula is frequently used by experimentalists (see, e.g., [11-13]) for the identification
of Cherenkov radiation. To satisfy conditions (4.8), it is enough that Ry — oo in (4.5).

Then,
3 - 3

L=10=3 L(), L=I=Y L) (4.10)

-z —~z
L(1)=I'0) = / singdz, L) =I(1) = / cos ydz,
’ -1 -1
2 sin[k,z;(cos 8 — 1/8,))
knzg cosf — 1/, ’

L(2)=T1(2)=0, IL(2)=TI(2) =

1 1
L,(3) = I(3) = / sintsds’, 1,(3) = I(3) = / cos ad?,

x1 z

-
wzp

P = - 2y(1+2)1~z) -2+ zy] — knz02’ cosf, ohy = %z’(l — B, cos b)),

wzg

Y= ——=[2y/(1 = 2)(1 = 21) = 2+ 21] — ko202’ cos . (4.11)



Equation (4.5) with such I, describes the radiation intensity on the sphere of infinite
radius arising from charge motion defined by (8.1)-(3.3). For z; = 2, one gets

L) = 1(3) = L) = 1(3) =0, 1,2) = [ sinshpds' =0,

2 sinfk,zo(cos 8 — 1/5,)
knzo cosf —1/3, ’

1
10(2) = /COS 2/}2d2, =
21

thus, recovering Tamm’s intensity (4.9).

Fig. 5 shows radiation intensities (4.5) with I, and I, given by (4.10) for z; = 2 (a),
z1 = 0.5z0 (b), 21 = 0.120 (c) and z; = 0 (d). Obviously, case (a) corresponds to the
Tamm original problem. There is no maximum in the neigbourhood of Cherenkov angle
for Fig. 5,d describing accelerated motion without horizontal part of the charge trajectory
(see Fig.1).

4.2 Finite observation distances, instantaneous acceleration

Let z; = zo. This corresponds to the uniform charge motion on the interval —zy < z < 2.

Then,
L,(1) = L,(3) = L(1) = I.(3) = L,(1) = I)(3) = I)(1) = I(3) = 0,

1.
sin ¥,

2

-1 -1

1
&, 1) = [ Y2

13(2) = 72

1, 1
L(2) = = ?/)2(1 —Z'egcosO)dz’, I(2) = cos ¥ 1 —2'eqcos 8)d2’, 4.12
R3 : R3

-1 -1

where 1), is the same as in (4.7). Intensity (4.5) with
L=12), L=1I2), L=1IL2), I=I(2)

shows how the energy flux radiated by a charge uniformly moving on the interval (—20, 20)
is distributed over the sphere of finite radius Ro. This case was considered in detail in
[14]. It was shown there that in typical experimental situations, the last of conditions
(4.8) is not fulfilled. In this case, one should use either Egs. (4.5) with I, I, given by
(4.10) or an analytic formulae obtained in (14]. H, in addition to z; = 1, the radius Ry
of the observation sphere tends to infinity, one gets

- 1
€0, kaRo(R—1) > —knzo2'cosb, 1p — k,,zoz'(lg— — cos §).
In this case, Eq.(4.5) is again reduced to the Tamm formula (4.9).



4.3 Finite observation distances, finite acceleration

The angular dependences (4.5) with I and I’ given by (4.6) on the sphere of radius
Ro = 1m are shown in Fig. 6 for different horizontal parts of the charge trajectory:
z1/z0 = 1 (a), 21/20 = 0.5 {(b), z21/z0 = 0.1 (c) and z,/z = 0 (d). Obviously, Fig.6
(a) corresponds to the intensity of the original Tamm problem on the sphere of radius
Ro = 1m. 1t is distributed over a much larger angular interval and is much smaller than
the intensity described by the Tamm formula (4.8) corresponding to Ry = oo (see Fig. 5
a). Asin Fig. 5 d, there in no pronounced maximum in the neighbourhood of Cherenkov
angle in the absence of horizontal part of the trajectory (Fig. 6 d).

5 Conclusion

We modified the Tamm problem describing the charge motion on a finite space interval
by introducing smooth acceleration and deceleration of a moving charge. The space
distribution of the electromagnetic field singularities is studied. When the charge velocity
coincides with the velocity of light in medium, a new shock wave (in addition to the
Cherenkov shock wave) arises that propagates with the velocity of light in medium.
The angular-frequency distribution of the emitted radiation crucially depends on the
radius of the sphere, on which the observations are made. This should be taken into
account when describing the results of the Cherenkov-like experiments.
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Figure 1: Schematic presentation of the modified Tamm model. Charge accelerates,
moves uniformly with the velocity v and decelerates on the intervals (—zg, —21), (—21,21)
and (z1, z9), resp. The velocity of light in medium ¢, is reached at the points Tz, of the
motion axis.
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Figure 2: Time evolution of Cherenkov shock waves (solid lines) in the Tamm original
problem. Numbers of them mean laboratory time. The Cherenkov shock wave propa-
gates with the velocity ¢, between two dotted lines (see the text); z and p in units zo, ¢
in units z¢/c.
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Figure 3: Time evolution of EMF singularities in the Tamm modified problem (see
Fig. 1) for z1/20 = 0.5 and 3, ~ 1.21. For these 2; and 3,, the complex consisting of
Cherenkov shock wave (solid line) and the surface closing the Cherenkov cone (dotted
line) is created at the point z = —zz, ~ —0.66 of the motion axis. At the moment z — 2L

this complex detaches from a charge and propagates with the velocity ¢,. The charge
motion terminates at z = 1; z and p in units zo.
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Figure 4: The same as in Fig. 3 but for z1/2z9 = 0.99 that corresponds to zj, ~ 2,

Despite the proximity of z; to z, the distribution of EMF singularities disagrees with
ones of the original Tamm problem (for which 2; = zy) shown in Fig.2.
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Figure 5: Angular distribution of the radiation intensity (in units e?/c) in the modified
Tamm problem on the sphere of infinite radius for z1fz0 = 1 (a), z1/20 = 0.5 (b),
z1/z0 = 0.1 (c) and z/2 = 0 (d). The charge velocity 8 = 0.868, refractive index
n = 1.392, wavelength A = 4 - 10~3¢cm, the motion interval 229 = 0.5¢cm. Distributions
(a) and (d) correspond to the original Tamm problem and modified Tamm problem
without horizontal part of the charge trajectory, resp.
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Figure 6: The same as in Fig. 5, but for the radius of the observation sphere Ry, =
Im. Comparison with Fig.5 indicates on the strong dependence of intensities on the
observation sphere radius R.
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Adanacees I''H., IlInnos B.M. E2-2000-61
O crinaxeHHoi#1 3anaye Tamma

Yr1oObl CHATH BO3paXeHHs MPOTHB MIHOBEHHOIO YCKOPEHHS W 3aMelsieHHs
ABUXEHHUS 3apsna B 3ajade Tamma, paccMaTrpuBaeTCs OBUXEHHE 3apsia ¢ KOHey-
HBIMH YCKOPEHHEM U 3aMmeieHueM. [1py 3ToM, B HOMOIHEHUe K YIapHOH BOJIHE Ye-
PEHKOBCKOTO H3JIyYeHHs, MOSBISETCS HOBas yJapHas BOJIHA B TOT MOMEHT, KOraa
CKOpOCTb 3apsiia COBIaNaeT CO CKOPOCTBIO CBETA B BELIECTBE. YIIOBOE pacrpene-
JIEHHE U3JIy4eHHs CYLIECTBEHHO 3aBHCHT OT paguyca cdepbl, Ha KOTOPOH MpOBO-
JOATCA HaOMIONEHUS.

Pabota BeimonHeHa B JlaGoparopuu teopernyeckoit ¢usuku uM. H.H.Boro-
mobosa OHSIN.

IMpenpunt O6beAMHEHHOTO HHCTUTYTA SAEPHBIX HccnenoBanui. dy6Ha, 2000

Afanasiev G.N., Shilov V.M. E2-2000-61
On the Smoothed Tamm Problem

To remove obstacles against an instantaneous acceleration and deceleration of
charge in the Tamm problem, we consider charge motion on a finite space interval
with finite acceleration and deceleration. When the charge velocity coincides with
the velocity of light in medium, a new shock wave (in addition to the Cherenkov
shock wave) arises which propagates with the light velocity in medium. The angu-
lar distribution of the emitted radiation crucially depends on the radius of the
sphere on which the observations are made.

The investigation has been performed at the Bogoliubov Laboratory of Theo-
retical Physics, JINR.
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