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1 Introduction

Supersymmetric quantum mechanics which underlies the dynamics of non-relativistic
and relativistic spinning particles and superparticles is one of the simplest examples
of supersymmetric sigma-models and it has attracted a great deal of attention as
a laboratory for studying problems appearing in more complicated supersymmetric
field and string theories. For instance, one-dimensional {1] and multidimensional
[2, 3] N = 4 supersymmetric quantum mechanics (SUSY QM) can be associated
with N = 1, D = 4 supersymmetric field theories (including supergravity) subject
to an appropriate dimensional reduction down to D = 1.

A recent revival of interest in superconformal mechanics [4, 5] has been caused, in
particular, by an observation made in the context of the AdS/CFT correspondence
conjecture that the dynamics of a superparticle near the AdS horizon of an extreme
Reissner-Nordstrom black hole of a large mass is described by a superconformal
mechanics [6]. Applications of supersymmetric mechanics to the theory of black
holes and to other problems have been reviewed in [7, 8. In [8] conditions on
geometry of curved backgrounds, in which N = 1,2 and 4 superconformal invariant
models of non-relativistic spinning particles can exist, have been studied in the
N =1 superfield formalism.

The superconformal group of the particle superworldline is a subgroup of the
group of its superdiffeomorphisms. It becomes manifest in the worldline superfield
formulations of relativistic spinning particles [9] and superparticles [10], which can
thus be regarded as examples of quantum mechanics with manifest superconformal
syminetry.

The superconformal invariance and, in more general case, worldvolume superdif-
feomorphisms impose restrictions on the geometry of the background also in models
of relativistic particles and branes. For instance, in the case of superbranes it requires
that a target—superspace background obeys superfield supergravity constraints (see
[11] for a recent review).

In the case of spinning particles this problem is connected with the problem of
selfconsistent field theoretical description of interacting particles with spin higher
than 2. It is well known that the theory of interacting higher spin fields should be
formulated in an anti-de-Sitter background (see [12] for a review).

In [14] it was shown that difficulties with constructing a model of a spinning
particle moving in a gravitational background arise already for spins 3/2 and 2.
These difficulties have been overcome in [15], where an action for spinning particles
with spin higher than one were constructed in backgrounds of constant curvature
(such as the AdS spaces):. .

The spin 2 particle model of [13, 14, 15] is based on a so called “large” N = 4
superconformal algebra containing SO(4) as the subalgebra of local internal sym-
metries. It is well known that there exists another (so called “small”’) N = 4
superconformal algebra with SU(2) as the subalgebra of local internal symmetries.

'We thank Sergey Kuzenko for bringing these papers to our attention.
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It is therefore tempting to study whether in a superfield formulation of a spin 2 par-
ticle dynamics, which is manifestly invariant under “small” N = 4 superconformal
symmetry, conditions imposed on a curved background can be less restrictive than
in the case of [13, 14, 15].

In this paper we present results of this study. We consider relativistic spinning
particle mechanics invariant under local N = 4 supersymmetry with SU(2)ica X
SU(2)gioba internal symmetries, which is associated with the “small” N = 4 su-
perconformal algebra. In a flat background this model has been constructed and
studied in [2]. It was shown that (in four dimensions) its first quantized spectrum
consists of three scalar and one spin 2 states corresponding to the linearized limit of
a conformal gravity model. The superfield action for this N = 4 spinning particle
is a localized (or superconformal) version of the action for N = 4 supersymmet-
ric quantum mechanics [1, 3] with a quadratic superpotential. This correspondence
prompts us how to generalize the free N = 4 superconformal spinning particle action
to the description of a particle propagating in a gravitational background. For this
one should consider supersymmetric quantum mechanics with an arbitrary superpo-
tential [3] and make it invariant under the N = 4 superconformal transformations
[2].

In [3] it has been shown that the N = 4 superfield formulation of multidimen-
sional N = 4 SUSY QM leads to a supersymmetric nonlinear sigma—model with a
target-space metric being a second derivative of a single real-valued function (su-
perpotential) A(z) ;

0*Az
wne) = e (1.1)
i.e. for an arbitrary dimension D and signature of the sigma-model manifold, para-
metrized by real scalar fields z¥ (M = 0,1,...,D — 1), its metric should have a
“Kéahler-like” structure. The metric of a similar type appeared also as a metric of
black hole moduli spaces considered recently in [16].

As has been announced in [2], the N = 4 superconformal generalization of the
model of [3] in a manifold of Minkowski signature describes a relativistic spinning
particle propagating in a gravitational background with the metric (1.1).

It has been known for a long time that supersymmetry requires sigma-model
manifolds of chiral superfields to be Kéahler, hyper—Ké&hler [17], special Kahler [18],
[19] or special Lagrangian manifolds [20]. The geometrical structure of these mani-
folds has been under intensive investigation because of its relation to the compact-
ification of string theory on Calabi-Yau manifolds and to duality symmetries of
corresponding supergravity models (see [21] for a review).

The essential difference of the metric (1.1) from a K&hler metric

0’K (2,2
gun(z,2) = W (1.2)

is that the latter is a Hermitian metric on a complex manifold, while the former is a
real manifold metric. The reason why a real sigma-model manifold appears in the
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case of N = 4 SUSY QM under consideration is that we construct the supersym-
metric sigma model with the use of constrained real superfields and not with chiral
ones as one usually do.

Some Kéhler manifolds mentioned above also admit real-valued representation
for the metric (1.1). For example, this is so for a metric of the special Kéhler
manifolds in a flat Darboux coordinate system [19, 20]. However, the class of the
manifolds with the metric (1.1) is more general and includes manifolds which do not
have complex structure.

In particular, we have found that in a certain coordinate system the metric on
an anti-de-Sitter space of an arbitrary dimension D (AdSp) can be represented in
the form (1.1). Other examples are hyperbolic manifolds of negative curvature on
which M-theory and string theories can compactify [22, 23]. To the best of our
knowledge this observation is a novel one. This result can presumably be useful
for better understanding the structure of string and supergravity theories in AdS
superbackgrounds and AdS/CFT correspondence.

The paper is organized as follows. In Section 2 we review the N = 4 supercon-
formal particle model of ref. [2]. In Section 3 we generalize it to describe a spinning
particle in a curved background with the metric (1.1). Properties of the AdSp space
which follow from the potential structure of its metric are considered in Section 4.
In Conclusion we discuss open problems and outlook.

2 The free N =4 superconformal particle model

We begin with a brief description of free spinning particle mechanics with SU(2),cq X
SU(2) gibar N = 4 superconformal symmetry [2].

To construct the superfield action in' the worldline superspace (1,6°,6,) (with 7
being a time parameter, and * and 0, = (6*)*, (a = 1,2) being two complex (or
four real) Grassmann-odd coordinates) one introduces D real “matter” superfields
®M(r,0°,6,) (M =0,1,...,D — 1) and a worldline supereinbein E(r, 6%, 6,) which
have the following. properties with respect to the SU(2) N = 4 superconformal
transformations of the worldline superspace 2

or = A— %H“DaA - %@E“A,

§60° = iD"A, 68, =1iD,A, (2.1)
§oM = —ADM 4 ADM — §(D,A)(D"®M) — i(D"A)(D,2M), (2.2)

§E = —AE —AE —i(D,A)(D°E) — i(D*A)(D,E), (2.3)

where dot denotes the time derivative . The transformation law (2.3) for the super-

fields ®™ shows that these superfields are vector superfields in the one dimensional

20ur conventions for spinors are as follows: 6, = 0_”§ba, Q“_: £9b9,, (;g = (9_’16[,“, g
ey, 8, = (8%)*, 6° = —(6,)*, (68) = 626, = —20'62, (89) = 8,6° = (66)*, (89) = §,6°, &'2
—621 = 1, €12 = 1.
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N = 4 superspace, while the superfields E®M are scalars.
The superfields ®¥ and E obey the quadratic constraints

[D,, D" |@M = 0,
D*D, M = o,
D,D"dM , (2.4)
and
—a. 1
[DMD ]E = 0)
a 1 —
D DQE = 0,
1
D.D"% = 0, (2.5)
where 9 9 9 9
- —a i
Dy= o= sbans, D=~ 2o, .
T 9pe 26 or 84, 20 or (2.6)
are the supercovariant derivatives, and the infinitesimal superfield
A(,0,0) = a(r) + 0°Q,(7) — Oaa®(7) + 9“(01) *0yb; ()
1
—5(0 0o (T) + 0,6°(7))00 + - (90)2 (1) (2.7)

contains the parameters of local reparametrizations a(7), local supertranslations
a®(1), @(7) and local SU(2) rotations b;() of the worldline superspace. It is
constrained by the same relations (2.4) as 1/E and ®™ ((0;),? are the Pauli matrices,
i=1,2,3).

The constraints (2.4)-(2.5) can be explicitly solved [2, 24], the solution being
described by the superfields

B0 = )+ 0T () () + (o) AT
U aM 7 .11Ma d? 1w
508 ) B+ @ () )
and
P P
E(T, 6,0) = W 0° A () — 0. X(T) + 6%(04), Osti(T)
i 27 7 \la 2 d2 1
—5 (6Xa(r) + BN ()0 + 4 (30) a9

The leading components z*(7) of the superfields " are associated with coor-
dinates of the particle trajectory in a D-dimensional flat target space-time, the
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Grassmann-odd vectors ¢'™%(7) and Wi“(f) correspond to particle spin degrees of
freedom and 7™ (7) are auxiliary fields. The superfield 1 /E describes an N = 4
worldline supergravity multiplet consisting of the einbein (“graviton”) e(7), two
complex “gravitini” Me(7) and X,(7), and the SU(2) gauge field ¢i(7). Upon an
appropriate field redefinition (see egs. (3.2) of the next section) we shall pass from
“primed” to “unprimed” component fields.

The N = 4 superfield action for a relativistic spinning particle in a flat target
space has the following form [2]

S=-8 / drd0d2IEDM N7,y (2.10)

where nyn = diag (—,+,...,+) is the Minkowski metric. The components of £
play the role of Lagrange multipliers. Their presence implies that the dynamics
of the particle is subject to relativistic constraints, in particular, the particle is
massless (pyp" = 0) . The Dirac quantization of the model (2.10) shows that its
quantum spectrum consists of one spin 2 and three spin 0 particle states and it can
be regarded as a linearized spectrum of a conformal gravity [2].

3 The spinning particle in a curved background

Let us now generalize the model of the previous section to describe a spinning
particle propagating in the gravitational background. To this end we replace (2.10)
with the most general action functional which respects the N = 4 superconformal
symmetry

S=-8 / drd?0d?TE- A(ESM), (3.1)

where A(E@M) is an arbitrary function (called the superpotential) of E®M. Recall
that E®M transform as scalar superfields with respect to (2.3), while @ and 1 are
vectors. Note also that E~'A(E®™) can be regarded as a rank one homogeneous
function in a D + 1 dimensional space with z° = E-1. A consequence of such
a structure of the superfield action (3.1) is the fact that only D of the bosonic
coordinates in the D + 1 dimensional space describe dynamical degrees of freedom.
The einbein e(7) and its superpartners are auxiliary fields as in the free particle case
(2.10).

Integrating (3.1) over the Grassmann coordinates 6%, 8, and making the following
redefinition of the component fields

P e%)\la’ Xa — ()\a)*, tz — 2€(t’i + eAlb(Ui)baX;), ¢Ma — \/E(,(/}IM(L _ z.M/\/a.),
T = M, T = 2RI - N T+ o)), (39)
one obtains the component action

S = /dT(K ~V), (3.3)
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where

1 T —
= %gMN(xM — XM + iy N (&Y — NN + iy M)

. —M ;g4 oM N
+igun (¥, VN + 1 M¢a ) (3.4)
is the kinetic term and

1 —L —M
vV = _Q‘QMNEMTZ'N + 2veLLunty™ (03), Yo T — tignn ™ (0:)," 9, (3.9)
—L—Ma

+20 Laen Ny U + X ™95y ) + e(Oul arwp) (B, D) (™)
describes fermionic interactions. In egs. (3.4) and (3.5)

gn(@) = 5o A) = FunAle), A = AES)pey (36

is the metric of a sigma—model D—-dimensional manifold parametrized by the world-
line scalar fields £ (7) and

Crann(a) = 53 Als) (3.7)

is the (totally symmetric) Christoffel connection associated with gan (i.e. Dpgun =
Orgmn —Uriigpn — T gpa = 0).
The Riemann curvature of this manifold has the form

Rumwe =T1p°Toun — TraTouep. (3.8)

Upon solving for the equations of motion of the auxiliary fields TM, substituting
the solution back into egs. (3.3)—(3.5) and performing Legendre transformations one
arrives at the first order form of the spinning particle action

S=/dT

where pys is the momentum canonically conjugate to ™, and the Hamiltonian H
of the system has the following structure

a4 (B + B0 — HY (3.9)

H = e(1)Hy + i2*(1)Q, + iX(T)Q* — t;(7) L;, (3.10)
with )
Hy = %QMNPMPN + R pu (Ba ) (WUF) + Ruap i ($a9M°) (8 v™)
+DiCrnp (BB W™, (3.11)
Qo = 0 par + T paenr 5 wY, (3.12)
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Q" = v"pr + iTopn " My (3.13)

and
L; = guny™(0:) "%, (3.14)
being associated with constraints on the dynamics of the relativistic particle caused

by the worldline superreparametrization invariance of the model. The constraints
are of the first class since they form a closed N = 4 supersymmetry algebra

{Qw Qb} = _iézHO) [Lza L]] = 6i]'kLkn

[Li7 Qa] = %(o’i)a‘:@c’ [LiaQa] = _%(Ji)can (315)

with respect to the following graded Dirac brackets [3] (which are obtained upon
solving for the second class constraints on the canonical fermionic momenta mp;, =
—i1 g, and T4, = —ip%, derived from eq. (3.9))

a —N U a ; TP 4
[wMypN] = (5%7 {1/) M>1/)b } = _§ bgMN7 [pMypN} = 2zRMN,PL¢aw L7

[par, W] = Taanp¥®?,  [par, O] = Caiwpd™ s (3.16)
We observe that pys have properties of covariant momenta when acting on fermionic
variables ¢¥™® and Eiw

The superalgebra (3.15) of the constraints (3.11)—(3.14) generates the SU(2)0¢a: X
SU(2)giobat N = 4 superconformal transformations (2.3) of the components of the
superfields M.

We have thus shown that the N = 4 worldline superfield action (3.1), which
reduces to (3.9)-(3.14) upon integrating over Grassmann—odd coordinates and elim-
inating auxiliary fields, describes the dynamics of an N = 4 superconformal spinning
particle in a curved background whose geometry is characterized by egs. (3.7)- (3.8).

We should note that the last terms in (3.11)-(3.13), containing the Christoffel
connection, are non-covariant with respect to general coordinate transformations
of the background. The reason is that background diffeomorphisms acting on the
superfields ®, in general, are incompatible with the constraints (2.4)—(2.5). This,
in particular, means that if a background metric (3.6) admits isometries, not all of
them will be symmetries of the actions (3.1) and (3.9). It is an interesting open
problem to study whether the model under consideration can be modified in such a
way that only target—space covariant terms remain in the action.

4 The potential structure of the anti—de—Sitter
metric

It is curiously enough that the anti-de-Sitter spaces belong to the class of the
manifolds whose metric in a certain coordinate system acquires the form (1.1). To
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show this consider first a coordinate system
XM= (X*p), u=0,.,D-2 (4.1)

in which the metric of a D-dimensional AdS space has a conformally flat form (for
simplicity we put the AdS radius to one)
1

Pz

ds* = = (nuwdX*dX” + dp?) (4.2)
where 7, = (—1,1,...,1).
Now perform a coordinate transformation to the new set of variables

oM = (z*)7) (4.3)

such that
oo ® L »
o P :
The passage from p to r has proved to be convenient for the analysis of the properties
of the potential A(z) considered below.

In the coordinate system (4.3) the AdS metric gpn takes the form

T N’ _ThTVn,, 1 .
Juv = T, Gur = 2 Grr = T‘—3 + @, (40)

where the index 7 of the metric tensor components corresponds to the coordinate .
One can easily check that the metric (4.5) is a second derivative of the following
function paw .
T Ny
=—"———Inr. 4.6
or 4 (4:6)

Thus we have shown that AdSp is one of the manifolds of the type (1.1), where the
N = 4 superconformal spinning particle can live.

By passing note that if in the action (3.1) we take A(E®) in the form (4.6)
and put ®* = 0 and ®" = 1 we shall arrive at the action

Alz)

S=2 / drd®0d20 %

which describes a one—-dimensional N = 4 superconformal mechanics considered in

[5].
The potential (4.6) generating the metric on AdSp is not unique. Another form
of the potential arises when one performs the following change of variables (4.1)

XH = (f;)m o= % (4.7)



where m,, # 0, % is a set of real numbers, namely

2 0\2mo D-2 2 i\ 2m; 1
- 0 (z2 ) I o (xg ). —=lnr. (4.8)
2m0(2m0 - 1) remo— i 2mz(2m1 _ 1) p2m;—1 4

More generally, we could make, for instance, a “logarithmic transformation”

xt=m(%) =L (4.9)
T VT’
for which the corresponding potential has the form
0 Q=2 zt 1
A=rln— — In— —-Inr. )
rln— Zrnr A7 (4.10)

i=1

The coordinate transformation (4.4) is singled out by the requirement that it is
a single-valued and that a Lorentz subgroup SO(1,D — 2) of the AdSp isometry
group SO(2, D — 1) acts linearly on both the “old” coordinates X* of (4.1) and the
“new” coordinates z# of (4.3), (4.4).

So we shall further discuss some amusing properties of AdSp associated with its
potential structure (4.6) in the coordinate system (4.3).

The group SO(2,D — 1) of the isometry transformations of AdS coordinates,
which leave the form of the AdS metric invariant, is known to act as a conformal
group on a (D — 1)-dimensional boundary of AdSp. In the coordinate system (4.1)
the boundary (which is a (D — 1)-dimensional Minkowski space) is associated with
the coordinates X#. Under infinitesimal SO(2, D — 1) transformations X* and p
vary as follows .

6XF = aF+a" X+ apXP + ab XY X 0 — 2(0% X ) X + diep?,
dp = —(2a%xX"Nw — an)p, (4.11)

where the SO(2, D-1) parameters a*, a*, ap, a’x are, respectively, the parameters
of D—1 translations, SO(1, D—2) rotations, dilatation and conformal boosts, acting
as conformal transformations in a (D — 1)-dimensional slice of AdSp parametrized
by X*.

From (4.4) and (4.11) one gets the infinitesimal SO(2, D — 1) transformations of
z# and r (4.3)

27z 0
v
§z¢ = afr+ ez — apzt ¥ a2

+ 2(a’;(m)‘n,,,\)i—u + ak,
or = 4dakz"n. — 2apr. (4.12)
Under (4.12) the potential (4.6) varies as follows
A(z') = A(z) + 6 A(z),
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ivAw"ma
r2

1
A(z) = 6zM0y A(z) = atz . + 59D + akz N (4.13)

One can check that the form of the metric (4.4) remains invariant under the ac-
tion of the SO(2, D—1) transformations (4.12), so that they are indeed the isometries
of this AdS metric. However, the superfield action (3.1) is invariant only under the
subgroup of SO(2, D — 1) generated by D — 1 translations a*, SO(1, D — 2) Lorents
rotatlons a* and dilatations ap which transform the superﬁelds E<I>M in the same
way as 2™ in (4.12). As can be seen from the form of the variation of ™ (and respec-
tively of E®M) with respect to conformal boosts a’, the corresponding term does
not satisfy the superfield constraints (2.4) and (2.5), and, hence, the transformed
@M will not do so as well. This is the reason of the appearance of noncovariant
terms depending on the Christoffel connection in the component actions (3.3) and
(3.9)-(3.14).

An interesting property of the potential (4.6) is that the contraction of its par-
tial derivatives with the coordinates (4.3) are constants starting from the second
derivative

1
MxNailNA(x) =zMaNgyy = i

1
MV} Alz) = 22 M VT = )
1
:EMl..,zM"+‘8?4+f'Mn+]A(x) = (—1)"“%, n=1,...,00. (4.14)
To get the relation (4. 14) one should note that under the following rescaling
of the coordinates (4.3) 2™ — (1 + €)z™ (where € is a numerical parameter)® the
potential (4.6) takes the form
P
Ao = (1+e)% — Zlnr— Zln(l—i—e)
v, 1 1 n“ n+l .
= (1 - 1 - = —_— 4.15
(1+¢e———= o nr— e+ 7 Z n+1).e ,  {4.15)

where on the right hand side of (4.15) we have expanded In (1 + €) in series of e.
On the other hand

oo n+1
Ac= Az + ex) = A(z) + e Oy A(z) + Y (n6+ 1),$M‘- M gt Mo AlT).
n=1 "
(4.16)

Comparing (4.15) with (4.16) we get (4.14).
A local basis in a tangent space of the AdSp manifold can be described by the
following vielbein one-form e# = dzMef(z) (A=0,1...,D—1)
1

e® = dz* 62‘7“_%, e’ = —dz* :U,J'_% + drg (4.17)

30ne should not confuse this rescaling with dilatation isometry (4.12) which acts as follows
zt = (14 €)z* and r — (1 +¢€)%r

10



determined such that gy y = en’}el\?mg and nap = (—,+...,+).
Using (4.17) it is easy to calculate the determinant of the metric (4.4)

1

dethN = —(detel\?)2 = —47-_D+I

(4.18)

One more observation concerns the form of the covariant derivative of the AdSp
Christoffel connection (3.7) appeared in (3.11). A direct computation results in the
following relation

1
Dil'ynp = gazMNpA(I) — 9LMINP — GMNILP — YNLIMP- (4.19)

We see that noncovariance of (4.19) is in a certain sense ”concentrated” in the fourth
partial derivative of A(z).

Note that the results of this section do not depend on the signature of the metric
M in (4.2). For instance, we could equally well choose 7,, to be Euclidean. Then
we would deal with Euclidean AdS, or hyperbolic spaces considered recently in the
context of string and M-theory compactifications 22, 23].

5 Discussion

To conclude, in this paper we have considered the classical dynamics of a spinning
particle governed by the action invariant under the SU(2)jpe; X SU (2)gtobar N =4
superconformal transformations of the particle superworldline. We have shown that
the NV = 4 superconformal invariance allows the particle to propagate in a curved
background with a “Kahler-like” metric generated by a real superpotential A, and
we have found that the anti-de-Sitter and hyperbolic spaces belong to this class of
manifolds.

There are several directions of the extension of the results of this paper. One
of them is the quantum description of the N = 4 superconformal particle model,
which can be carried out following either the lines of [2, 3] or using path integral
quantization methods. The latter procedure seems to be more attractive, since it
may lead to deeper understanding of the model, for instance, in the context of the
AdS/CFT correspondence conjecture.

In particular, it is interesting to study both the classical and quantum dynamics
of the N = 4 superconformal spinning particle moving in backgrounds which are
direct products of AdSp and Kéhler manifolds. Particle motion on the Kihler
manifolds can be described by making a multidimensional generalization of the N =
4 supersymmetric quantum mechanics considered in [25). For this, in addition to
@M, one should introduce a number of chiral superfields ¥*(r, §,6) (D"¥™ = 0)

U™(r,0,0) = 2"(1)+6°x"(7) + %5%”(7’) +00F" (1)

(P - na _ i_ un
—Zﬁ%ax (1) 169990z (1), (5.1)
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and their complex conjugate antichiral superfields U (7, 6,8). The superfields ¥ and
U transform as scalars under the N = 4 superconformal transformations (2.1).

We can add to the action (3.1) the following N = 4 superconformal invariant
action constructed from ¥" and U™

Sk =2 / d¢d20d2§%f<(w,ﬁ), (5.2)

where K is a Kihler superpotential.

When the superpotential A(E®M) is chosen in the form (4.6), the sum of the

actions (3.1) and (5.2) describes a spinning particle propagating in an AdSp x Ko,
background, where Ky, is a Kéhler manifold with a metric (1.2). For instance, the
case n = 1 and K, = In(1 + ¥¥) corresponds to a two-dimensional sphere S?, which
is known to be a Kahler manifold. A detailed analysis of these models will be given
elsewhere.
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Hounen E.E. u np. E2-2000-65
N =4 cynepkoH}popMHas MeXaHHKa
U MOTeHUHalbHas CTPYKTypa NnpocTpaHcTBa AdS

Onucana nMHaMHMKa CIIMHOBOH YaCTHLBI HA MCKPHBIEHHOM (DOHE C MCIIOIB30-
BaHMeM cyneprionesoro popmanusma. M3 rpebosanus SU(2),,. X SU(2) ppy N = 4
CYNepKOH(OPMHOH CUMMETPUH AEHCTBHS YAaCTHLbI CJICAYET, YTO JaHHbIH (DOH J0J-
KEeH OBITh BELUECTBEHHBIM «K3J1€pO-NIOIOOHBIM» MHOr00Gpa3reM. MeTpuKa JaHHO-
ro MHOrooGpasus reHepHpyeTCs CHIMa-MOIEJIBHBIM CyreproTeHLuanoM. [Tokasa-
HO, YTO NPOCTPaHCTBA aHTU-Ae-CHTTEpa NPHHALIEXKAT K JAHHOMY KJIaCCy MHOTO-
o6pasuii.

PaGora Bbinonxena B Jlaboparopuu teopetuyeckoil ¢usuku um. H.H.Boro-
mobosa OUSIU.

Ipenpunt O6BENMHEHHOTO HHCTHTYTA SAEPHBIX HccienoBanuii. dyGHa, 2000

Donets E.E. et al. E2-2000-65
N =4 Superconformal Mechanics
and the Potential Structure of AdS Spaces

The dynamics of an N =4 spinning particle in a curved background is de-
scribed using the N = 4 superfield formalism. The SU(2),, ., x SU(2) globat IV = 4 SU-
perconformal symmetry of the particle action requires the background to be a real
«Kaéhler-like» manifold whose metric is generated by a sigma-model superpoten-
tial. The anti-de-Sitter spaces are shown to belong to this class of manifolds.

The investigation has been performed at the Bogoliubov Laboratory of Theo-
retical Physics, JINR.
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