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1 The Bogoliubov renormalization group

1.1 Historical introduction
1.1.1  The discovery of the renormalization group

In 1952-1953 Stiickelberg and Petermann [1] discovered' a group of infini-
tesimal transformations related to finite arbitrariness arising in S—matrix
elements upon elimination of ultraviolet (UV) divergences. These authors
used the notion of normalization group as a Lie transformation group gen-
erated by differential operators connected with renormalization of the cou-
pling constant e.

In the following year, on the basis of (infinite) Dyson’s renormaliza-
tion transformations formulated in the regularized form, Gell-Mann and
Low [3] derived functional equations (FEs) for the QED propagators in
the UV limit. The appendix to this article contained the general solu-
tion (obtained by T.D. Lee) of FE for the renormalized transverse photon
propagator amplitude d(Q?/)?,e?) (A — cutoff defined as a normalization
momentum). This solution was used for a qualitative analysis of the quan-
tum electromagnetic interaction behaviour at small distances. Two pos-
sibilities, namely, infinite and finite charge renormalizations were pointed
out. However, paper [3] paid no attention to the group character of the
analysis and of the qualitative results obtained there. The authors missed
a chance to establish a connection between their results and perturbation
theory and did not discuss the possibility that a ghost pole solution might
exist.

The decisive step was made by Bogoliubov and the present author [4, 5,
6] in 1955 2. Using the group properties of finite Dyson transformations for
the coupling constant, fields and Green functions, they derived functional
group equations for the renormalized propagators and vertices in QED in
the general (i.e., with the electron mass taken into account) case.

In the modern notation, the first equation

Ty

Q2 m2
b -

a(:v,y;c>é)=a( a(t,y;oz)); T=m Y= ms (1)

was that for the invariant charge (now widely known also as an effective

ITor a more detailed exposition of the RG early history, see our recent reviews [2].
2See also two survey papers (7] published in English in 1956.



or running coupling) & = ad(z,y; & = €?) and the second —

s(z,y;0) = s(t,y; ) s (% %; a(t, y; a)) (2)

— for the electron propagator amplitude.

These equations obey a remarkable property: the product ed=na
of the electron charge squared and the photon transverse propagator am-
plitude enters into both FEs. This product is invariant with respect to
finite Dyson’s transformation (as it is stated by Eq.(1)) which now can be
written in the form

Ry: {p* -, a-aty; o)} . (3)

We called this product invariant charge and first introduced the term
renormalization group.

Let us emphasize that, unlike in Refs.[1, 3], in the Bogoliubov formu-
lation there is no reference to UV divergences and their subtraction or
regularization. At the same time, technically, there is no simplification
due to the massless nature of the UV asymptotics. Here, the homogene-
ity of the transfer momentum scale @ is explicitly violated by the mass
m. Nevertheless, the symmetry with respect to transformation R, (even
though a bit more involved) underlying RG is formulated as an ezact prop-
erty of the solution. This is what we mean when using the term Bogoliubov
renormalization group or renormgroup for short.

The differential Lie equations for @ and for the electron propagator

oa(z, y; a Os(z, v, [
e Lt 2 (8 i) e
with

s,y = ZEB 0 BE ynr

were first derived in [4] by differentiating FEs (1) and (2) over z at the
point ¢ = z. On the other hand, by differentiating the same equations over
t one obtains [8]
Xa(z,y;0) =0; Xs(z,y,0) =v(y,0)s(z,y; ) (6)
with
X =20, +yby — B(y,2)0, (0, = 9/0z) , (7)
the Lie infinitesimal operator.



1.1.2  Creation of the RG method

Another important achievement of [4] consisted in formulating a simple al-
gorithm for improving an approximate perturbative solution by combining
it with Lie group equations — for detail, see below Section 1.3.

In the adjacent publication [5] this algorithm was effectively used to
analyse the UV and infrared (IR) behaviour in QED. In particular, the one-
loop UV asymptotics of the photon propagator as well as the IR behavior
of the electron propagator in the transverse gauge

(67
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oy (z;0) =
were derived. At that time, these expressions, summing the leading log’s
terms were already known from papers by Landau with collaborators [9].
However, Landau’s approach did not provide a means for constructing
subsequent approximations.

The simple technique for calculating higher approximations was found
only within the new renormgroup method. In the same paper, starting with
the next order perturbation expression c‘zg) (z; @) containing the o®lnz
term, the second renormgroup approximation (see below Section 1.3.2)
which performs infinite summation of the o?(a1n)" terms

o
—Zlnz+32In(l - ZInzx)

al)

(z; ) = )
has been obtained.

This two-loop solution for invariant coupling first obtained in [5] con-
tains the nontrivial log-of-log dependence which is now widely known of
the “next-to-leading logs” approximation for the running coupling in quan-
tum chromodynamics (QCD) — see, below, Eq.(21).

Comparing (9) with (8), one concludes that two-loop correction is es-
sential in the vicinity of the ghost pole at z; = exp (37/a). This also
shows that the RG method is a regular procedure, within which it is easy
to estimate the range of applicability of its results.

Quite soon, this approach was formulated [6] for the case of QFT with
two coupling constants. To the system of FEs for two invariant cou-
plings there corresponds a coupled system of nonlinear differential equa-
tions (DEs). The last was used [10] to study the UV behavior of the 7 — N
interaction at the one-loop level.



Thus, in Refs.[4, 5, 6] and [10] RG was directly connected with practical
computations of the UV and IR asymptotics. Since then, this technique,
the renormalization group method (RGM)3, has become the sole means of
asymptotic analysis in local QFT.

1.2 The Bogoliubov RG: Symmetry of a solution

The RG transformation. Generally, RG can be defined as a continuous
one-parameter group of specific transformations of a partial solution (or
the solution characteristic) of a problem, a solution that is fixed by a
boundary condition. The RG transformation involves boundary condition
parameters and corresponds to some change in the way of imposing this
condition.

For illustration, imagine one-argument solution characteristic f(z) that
has to be specified by the boundary condition f(zo) = fo. Formally, rep-
resent a given characteristic of a partial solution as a function of boundary
parameters as well: f(z) = f(z, zo, fo). This step can be treated as an em-
bedding operation. Without loss of generality f can be written in a form
of a two-argument function F(z/zg, fo) with the property F(1,v) = ~.

The RG transformation then corresponds to a changeover of the way
of parameterization, say from {zo, fo} to {z1, fi} for the same solution.
In other words, the z argument value, at which the boundary condition is
given, can be changed for z; with f(z,) = fi. The equality F(z/zy, fo) =
F(z/z1, f1) now reflects the fact that under such a change the form of the
function F itself is not modified. Noting that fi = F(z1/zo, fo) , we get

F(&, fo)=F(§/t,F(t,fo)) ; €=x/x0, t=1x1/0 .

The group transformation here is { £ — £/t, fo — F(t, fo) } -
The renormgroup transformation for a given solution of some physical
problem in the simplest case can now be defined as
a simultaneous one-parameter transformation of two variables, say z
and g, by
Ry : {z—d'=z/t, gog =709}, (10)

the first being a scaling of a coordinate z (or reference point) and the
second — a more complicated functional transformation of the solution

3Being summarized in the special chapter of the first edition of monograph [11].



characteristic. The equation

g(z,9) =g (=/t, g(t,9)) (11)

for the transformation function g provides the group property T, = T, T;
of the transformation (10).

Egs.(10) and (11) are just transformation and FE for a massless QFT
model with one coupling constant g. In that case z = Q?/u? is the ratio
of a 4-momentum @ squared to a “normalization” momentum p squared
and g, the coupling constant.

The RG transformation (10) of a QFT amplitude s is of the form
(compare with Eq.(2))

Res(s,9) = "X s(s,9) = (3, 3(t,9)) = " s(z,9)i 2 = s(t,9) . (12)

Several generalizations are in order.

a. “Massive” case. For example, in QFT, if we do not neglect mass m
of a particle, we have to insert an additional argument into the invariant
coupling g which now has to be considered as a function of three variables:
r = Q?/u?, y=m?/p? and g. The presence of a new “mass” argument y
modifies the group transformation (10) and the FE (11)

Ry: {:v’ =2, y= %; 9= §(t,y;g)}; 9(z,y,9) =7 (% %; ﬁ(t,y;g)) :
(13)

Here, it is important that the new parameter y (which, physically, should
be close to the z variable, as it scales similarly) enters also into the trans-
formation law of g .

If the considered QFT model, like QCD, contains several masses, there
will be several mass arguments y = {y} = v1,¥2,- -, Yn -

b. Multi-coupling case. A more involved generalization corresponds

to transition to the case with several coupling constants: g — {g} =

g1,- .-,k - Here, there arise a “family” of effective couplings

=143}, si=glzy{g}); i=12. .k, (14)
satisfying the system of coupled functional equations

gi(z,y; {9}) =3 (z/t, y/t; {3ty {g}) }) - (15)

The RG transformation now is
z ) —
Rei{a> 3, 5= Y (> 00} |, s =Tt ui{e). (9
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1.3 Renorm-group method
1.3.1  The algorithm

The idea of the approximate solution marriage [4, 5] to group symmetry can
be realized with the help of group DEs. If we define § and vy (the so-called
“generators” on physical slang) from some approximate solutions and then
solve evolutional DEs (4), we obtain the RG improved solutions that obey
the group symmetry and correspond to the approximate solutions used as
an input.

The algorithm of improving an approximate solution can formulated by
the following prescription which we illustrate by a massless one-coupling
case (4) and (5):

Assume some approximate solution g, (z, g) , Sappr(Z, g) is known.

1. On the basis of Eq.(5) define the beta— and gamma-functions

0 _ 0
IB(g) o 5 appr 6ag)’ g) o Esappr(gag) -1 ' (17)
2. Integrate the first of Egs.(4), i.e., construct the function
def [9 dT
= —_— 18
f(9) B0 (18)
3. Resolve the obtained equation, i.e.,
(2, 9) = F7{f(9) +Inz} . (19)

4. Integrate the second of Egs.(4) using this expression Org initsr.hus.
to obtain sg(z,g) in the explicit form.

5. The expressions g,, and s, thus obtained precisely satisfy the RG
symmetry, i.e., they are exact solutions of Egs.(11) and (12) corresponding
t0 Goppr @0d Sappr used as an input.

1.3.2  Simple illustration

To illustrate, take the one-loop approximation §§,t) = g—g2B Inz for Tappr

and sg,lt) =1—gvInz. Here, f(g9) = —f1¢?, 7(g9) = —11g and integration
of (4) gives explicit expressions

Q(l)( g) = m , Sl(r,l;)(x;g) = (‘g‘(_xg,g_y)_) ; vi=m/P1, (20)

8



which, on the one hand, exactly satisfy the RG symmetry and, on the
other, being expanded in powers of g, correlate with Jpt and sy
Now, on the basis of geometric progression (20), present the two-loop
perturbatlve approximation for § in the form g() = g— ¢g*flnz +
93(B2In*z — B;Inz). By using this expression as an input in Eq. (17), we
have B@(g) = —p1g? — B29° and then (step 2)

z dr 1 A B2
(2) = — —— = - ) =z
BLfP(2) / T2 4013 - 2 +blnl+bz b B’

To make the last step, we have to start with the equation

Ol (2.9)] = fP(g) + filnz

which is a transcendental one and has no simple explicit solution?. Due to
this, one usually resolves this relation approximately. Take into account
that the second, logarithmic, contribution to f (2)(z) is a small correction
to the first one at bz < 1. Under this reservation, we can substitute the
one-loop RG expression (20) instead of g (2) into this correction and obtain
the explicit “iterative” solution

7@ = g e lua.
Irg 1+ gBul + g(B/B1) In[1 + gBil] ’ I=Inz (21)

An analogous procedure for

spe =1—gnIne+g* (n(n + 1)z — 7, Inz)

yields
S (#(,9)) B =B
5(2) = 2 = 7 With S — Vlellzg a.nd — 172 ’Yl 2 . 22
g S(g) (9)=g 7 (22)

These results are interesting from several aspects.

e First, being expanded in g and gl powers, they produce an infinite se-
ries containing “leading” and “next-to-leading” UV logarithmic con-
tributions.

It can be resolved in terms of a special, Lambert W-function: W(2)exp? 2 = z;
see, e.g., Ref.[12].



¢ Second, they contain a nontrivial analytic dependence In(1+ gB;1) ~
In(In @?) which is absent in the perturbation input.

o Third, being compared with the one-loop solution, Eq.(20), they
demonstrate an algorithm of subsequent improving of accuracy, i.e.,
of RGM regularity.

1.3.3 RGM usage in QFT

As can be shown, QFT perturbation expression of any finite order does not
obey the RG symmetry. On the other hand, it was shown that the one-
loop and two-loop approximations, used as an input for the construction
of “generators” S(g) and 7(g), yield expressions (20), (21) and (22) that
obeys the group symmetry and exactly satisfy FEs (11) and (12).

More generally, one can state the following logical structure of the RGM
procedure.

— Solving group equation(s) for invariant coupling(s) Teg(7, 9) with
some approximate solution Tyt used as an input.

— Obtaining RG solutions for some other QFT objects (like vertices
and propagator amplitudes) on the basis of the expression(s) for Jrg just
derived. Typically, they satisfy the equation

X M(z,y,9) =(y,9) M(z,y,9). (23)
General structure of these solutions is of the form
M(z,y;9) = 2y (v, 9) M (z/y, F(z,9;9)). (24)

Note that the function M in the r.h.s. depends only on the RG invariants,
that is on the first integrals of the RG operator X introduced in Egs.(6)
and (7). It satisfies homogeneous partial differential equations (PDEs)
X M = 0. For the RG invariant objects, like observables, z;; = 1, y=0.

Now we can resume the RGM features. The RGM is a regular procedure
of combining dynamical information (taken from an approximate solution)
with the RG symmetry. The essence of RGM is the following:

1) The mathematical tool used in RGM is Lie differential equations.

2) The key element of RGM is possibility of an (approximate) determina-
tion of “generators”, like 5(g),v(g), from dynamics.

3) The RGM works effectively in the case when the solution has a singular
behaviour. It restores the structure of singularity compatible with the RG
symmetry.

10



2 Evolution of Renormalization Group

In the 70s and 80s RG ideas have been applied to critical phenomena:
spontaneous magnetization, polymerization, percolation, non-coherent ra-
diation transfer, dynamic chaos, and so on. Less sophisticated motivation
by Wilson in spin lattice phenomena (than in QFT) made this “explosion”
of RG applications possible.

2.1 Renormalization Group Evolving
2.1.1 Kadanoff-Wilson RG in critical phenomena

a. Spin lattice. The so—called renormalization group in critical phenomena
is based on the Kadanoff-Wilson procedure [13, 14] referred to as “deci-
mation” or “blocking”. It emerged from the problem of spin lattice.

Imagine a regular (two- or three-dimensional) lattice consisting of
N¢, d = 2,3 cites with an ‘elementary step’ a between them. Suppose
that at every site a spin vector o is located. The Hamiltonian, describing
the spin interaction between nearest neighbours

H=k) o; oin
;

contains k, the coupling constant. A statistical sum is obtained from the
partition function, S =< exp(—H/0) >ayer -

To realize blocking, one has to perform the “spin averaging” over blocks
consisting of n¢ elementary sites. This step diminishes the number of
degree of freedom from N¢ to (N/n)?. 1t also destroys the small-range
properties of a system, in the averaging course some information being
lost. However, the long-range physics (like correlation length essential for
phase transition) is not affected by it, and one gains simplification of the
problem.

As a result of this blocking procedure, some effective spins ¥ arise in
new sites forming an effective lattice with a step na. We arrive also at the
new effective Hamiltonian

Hg=K,Y X; Ty +AH,
T

with an effective coupling K, between spins ¥; at new neighbouring sites;
K, has to be defined by the averaging process as a function of k and 7.

11



Here, AH contains quartic and higher spin forms which are irrelevant for
the IR (long-distance) properties. Due to this, one can drop AH and
conclude that the spin averaging leads to an approximate transformation,

kZa’-a’—)KnZE-E,
i I

or, taking into account the “elementary step” change, toa = na, k - K, .
The latter is the Kadanoff-Wilson transformation. It is convenient to write
down the new coupling K, in the form K, = K (1/n,K). Then, the KW
transformation reads

KW, : {a = na, k— K, =K (1/n,k)} . (25)

These transformations obey composition law K Wy - KW, = KW,,, if the
relation

K(z,k) = K(z/t,K(t,k)), z=1/nm, t=1/n. (26)

holds. This is very close to continuous RG symmetry of the QFT type.
We observe the following points:

e The RG symmetry is approximate (due to neglecting AH ).

The transformations KW,, are discrete.
e There exist no reverse transformation to X W, .
e Transformations KW, relate different auxiliary models.

Hence, the ‘Kadanoff-Wilson renormalization group’ (KW-RG) is an ap-
prozimate and discrete semi-group. For a long-distance physics, however,
A(1/n) is small and it is possible to use differential Lie equations’.

b. Polymer theory. In polymer physics, one considers statistical prop-
erties of polymer macromolecules which can be imagined as a very long
chain of identical elements (with the number of elements N as big as 105).
Molecules are swimming in a solvent and form globulars. This big mole-
cular chain forms a specific pattern resembling the pattern of a random

®In application of these transformations to critical phenomena, the notion of a fized
point is important. Generally, a fixed point is associated with power-type asymptotic
behavior. Note here that, contrary to the QFT case considered in Section 1.3.2, in
phase transitions one deals with the IR stable point.

12



walk. The central problem of the polymer theory is very close to that of a
random walk and can be formulated as follows.

For a long chain of N “steps” (the size of step = a), one has to find
the “chain size” Ry, the distance between the “start” and the “finish”
points (the size a of globular), with the distribution function f(¢) of angles
between the neighboring elements being given.

For large N values, the molecular size Ry follows the power Fleury law
Ry ~ N¥ with v, the Fleury index. When N is given, Ry is a functional of
f(¢) which depends on external conditions (e.g., temperature T, properties
of solvent, etc. ). If, e.g., T grows, Ry increases and at some moment
globulars touch one another. This is the polymerization process which is
very similar to a phase transition phenomenon.

The Kadanoff-Wilson blocking ideology has been introduced in physics
of polymers by De Gennes [15]. The key idea is a grouping of n neigbour-
ing elements of a chain into a new “elementary block”. It leads to the
transformation {1 - n; a — A,} which is analogous to one for the spin
lattice decimation. This transformation must be specified by a direct cal-
culation which gives an explicit form of 4, = a(n,a). Here, we have a
discrete semi-group. Then, by using the KW-RG technique, one finds the
fixed point, obtains the Fleury power law and can calculate its index v.

The essential feature of a polymer chain is the impossibility of a self-
intersection. This is known as an ezcluded volume effect in the random
walk problem. Generally, this effect yields some complications. However,
inside the QFT RG approach to polymers [16], it can be treated rather
simply by introducing an one more argument which is similar to particle
mass m in QFT or to finite length L in the transfer problem - see, below,
page 15.

Besides polymers, the KW-RG technique has been used in some fields

of physics, like percolation, non-coherent radiation transfer [17], dynamical
chaos [18] and some others.

2.1.2  Bogoliubov symmetry outside QFT

Meanwhile, the original QFT-RG approach proliferated into some other
parts of theoretical physics. In the late 50s, it was used [19] for summation
of Coulomb singularities in Bogoliubov’s theory of superconductivity based
on the Fréhlich electron—phonon interaction. Twenty years later it was
used in the theory of turbulence.

13



a. Turbulence. To formulate the turbulence problem in terms of RG,
one has to perform the following steps [20, 21]:

L. Introduce the generating functional for correlation functions.
2. Write down the path integral representation for this functional.

3. By changing the functional integration variable, find the equivalence
of the statistical system to some quantum field theory model.

4. Construct the system of Schwinger-Dyson equations for this equiva-
lent QFT model.

5. Perform the finite renormalization procedure and derive the RG
equations.

Here, the reparameterization degree of freedom, physically corresponds
to a change of long wave-length cutoff which is built-in into the definition
of a few effective parameters.

b. Weak shock wave. Another example can be taken from hydrody-
namics. Consider a weak shock wave in the one-dimensional case of a
large distance ! from the starting (implosion) point. The dependence of
velocity v of a matter as a function of [ at a given moment of time ¢ has a
simple triangular shape and can be described by the expression

v(l)=%Vat I<L; =0for I> L,

where L = L(t) is the front position and V = v(L) ~ the front velocity.
They are functions of time. In the absence of viscosity, the “conservation
law” LV = Const. holds. Due to this, they can be treated as functions
of the front wave position L = z, V = V(z) as well. If the physical
situation is homogeneous, then the front velocity V() should be considered
as a function of only two additional relevant arguments - its own value
Vo = V(z0) at some precedent point (z, < z) and of the zy coordinate.
In can be written down in the form : V(z) = G(x/x0,Vp) . If we pick up
three points zo, z; and z, (for details, see Refs.[22, 23]), then the initial
condition may be given either at ; or ;. "Thus, we obtain the FE equation
equivalent to (11)

‘/2 = G(.T2/$E0, VE)) = G((L‘z/l‘l,‘/l) = G(:vz/:zrl,G(xl/xo, Vb)) .

14



¢. One-dimensional transfer. A similar argument has been done by
Mnatzakanian [26] in the transfer problem at one dimension. Imagine
a half-space filled with a homogeneous medium on the surface of which
some flow (of radiation or particles) with intensity gq falls from the vacuum
half-space.

Follow the flow as it moves inwards the medium at the distance !
from the boundary. Due to homogeneity along the ! coordinate, the in-
tensity of the penetrated flow g(I) depends on two essential arguments,
g9() = G(I,90). The values of the flow at three different points gy (on
the boundary), g; and go > g1 can be connected with each other by the
transitivity relations, g1 = G(A, 90), g2 =G(A+1,90) = G(l,41), which
lead to the FE

G(l7g) = G(l - )‘: G(’\ag)) : (27)

Performing a logarithmic change of variables
l=Inz, A=Int, G(,g) = §(z,9),

we see that (27) is equivalent to (11).

Consider now intensity of a reverse flow, that is total amount of par-
ticles at the point [ moving in the backward direction. It is completely
defined by go and can be written down as R(l, 90)- This function can be
represented in the form R(l,g) = Ry(9)N(l,g9) with Ry, = R(0,g) and
function N “normalized” on the boundary N(0,g) = 1. Playing the same
game with transitivity, we arrive at FE

N(l,9)=Z(, )N~ XG(,G()\9); Z=Ry(g)/Ro(g)  (28)

related to Eq.(12) by logarithmic change of variables. One can refer to (27)
and (28) as to the additive version of RG FEs and to previous equations
of Section 1, like (11), (12) and (13) as to the multiplicative one.

The transfer problem admits a modification connected with discrete
inhomogeneity: imagine the case of two different kinds of homogeneous
materials separated by the inner boundary surface at | = L. The point of
breaking /= L may correspond to the boundary with empty space, and
resulting equation is equivalent to Eq.(13).

One more generalization is related to “multiplication” of argument g
as expressed by Eq.(14). Physically, this relates to the case of radiation on

15



different frequencies w;, i =1,2,... k (or particles of different energies or
of different types).

Take the case of k = 2 and suppose that the material of the medium
has such properties that the transfer processes of the two flows are not
independent. In this case, the characteristic functions of these flows G and
H are dependent on both the boundary values gy and hg and can be taken
as functions g(I) = G(l, g0, ho) , h(l) = H(, go, ho) .

After a group operation [ — [ — X , we arrive at a coupled set of
functional equations

G(l + )‘ag7h) = G(lyg)nh/\) ) H(l + /\:gah) = H(lag)nh')\) )

9= G(/\7ga h): hz\ = H(’\7g7 h)
which is just an additive version of system (15) at k = 2.

Now we can make the important conclusion that a common property
yielding functional group equations is just the transitivity property of some
physical quantity with respect to the way of giving its boundary or initial
value. Again, we see that in all these cases the RG symmetry is not a
symmetry of equations but a symmetry of solution, that is of equations
and boundary conditions considered as a whole.

2.2 Difference between Bogoliubov RG and KW-RG

As we have mentioned above, the RG ideas expanded in diverse fields of
physics in two different ways:

e via direct analogy with the Kadanoff-Wilson construction (averag-
ing over some set of degrees of freedom) in polymers, non-coherent
transfer and percolation, i.e., constructing a set of models for a given
physical problem.

e via finding an exact RG symmetry by proof of the equivalence with
a QFT model (e.g., in turbulence [20, 21]), plasma turbulence [27])
or by some other reasoning (like in a transfer problem).

To the question Are there different renormalization groups? the answer
is positive:
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1. In QFT and some simple macroscopic examples, RG symmetry is
an exact symmetry of the solution formulated in its natural variables.

2. In turbulence, continuous spin-field models and some others, it is a
symmetry of an equivalent QFT model.

3. In polymers, percolation, etc. , (with KW blocking), the RG trans-
formation is a transformation between different auziliary models (spe-
cially constructed for this purpose) of a given system.

As we have shown, there is no essential difference in the mathematical
formulation. There exists, however, a profound difference in physics:

— In the cases 1 and 2 (as well as in some macroscopic examples), the
RG is an exact symmetry of a solution.

— In the Kadanoff-Wilson type problem (spin lattice, polymers, etc. ),
one has to construct a set M of models M;. The KW-RG transformation

KW, M; = M,; , with integer n (29)

s acting inside a set of models.

2.3 Functional self-similarity

The RG transformations have close connection with the concept of self-
similarity. The self-similarity transformations for problems formulated by
nonlinear PDEs are well known since the last century, mainly in dynamics
of liquids and gases. They are one parameter )\ transformations defined
as a simultaneous power scaling of independent variables 2z = {z,t,...},
solutions fx(z) and other functions Vj(z) (like external force)
Sy {g' =zX, ¢ =tX%, fL=X%f , V! =V }

entering into the equations.

'To emphasize their power structure, we use a term power self-similarity
= PS. According to Zel'dovich and Barenblatt, [28] the PS can be classified
as:

a/ PS of the 1st kind with all indices a, ..., v, ... being integers or ra-
tional (Rational PS) that are usually found from the theory of dimensions;

b/ PS of the 2nd kind with irrational indices (Fractal PS) which should
be defined from dynamics.
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To relate RG with PS, turn to the renormgroup FE

g(et, ) =7(z,3(t, 9)) -

Its general solution is known; it depends on an arbitrary function of one
argument — see Eq.(19). However, at the moment, we are interested in
a special solution linear in the second argument: g(z,g) = gX(z). The
function X (z) should satisfy the equation X(zt) = X(z)X(t) with the
solution X(z) = z¥ . Hence, g(z,t) = gz. This means that in our
special case, linear in g, the RG transformation (10) is reduced to the PS
transformation,

R = Si:{d=at!, g=gt"} . (30)

Generally, in RG, instead of a power law, we have an arbitrary func-
tional dependence. Thus, one can consider transformations (10), (13) and
(16) as functional generalizations of usual (i.e., power) self-similarity trans-
formations. Hence, it is natural to refer to them as to the transformations
of functional scaling or functional (self)similarity (FS) rather than to RG-
transformations. In short,

RG=FS ,

with FS standing for Functional Similarity®.

Now we can answer the question on the physical meaning of the sym-
metry underlying F'S and the Bogoliubov renormgroup. As we have men-
tioned, it is not a symmetry of a physical system or of equation(s) of the
problem at hand, but a symmetry of a solution considered as a function of
the relevant physical variables and suitable boundary parameters. A sym-
metry like that can be related, in particular, to the invariance of a physical
quantity described by this solution with respect to the way in which the
boundary conditions are imposed. The changing of this way constitutes a
group operation in the sense that the group composition law is related to
the transitivity property of such changes.

Homogeneity is an important feature of a physical system under con-
sideration. However, homogeneity can be violated in a discrete manner.
Imagine that such a discrete violation is connected with a certain value of
T, say, ¢ = y. Here, RG transformation with the canonical parameter ¢
has the form (13).

®This notion was first mentioned in [29] and formally introduced [30] in the beginning
of 80s.
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The symmetry connected with FS is a very simple and frequently en-
countered property of physical solutions. It can easily be “discovered” in
numerous problems of theoretical physics like classical mechanics, transfer
theory, classical hydrodynamics, and so on [30, 26, 22, 23] - see, above,
Section 2.1.2.

3 Symmetry of solution in Math. Physics

3.1 Constructing RG-symmetries and their use

From the discussion in Sections 1.1 and 1.2 it follows that FS transfor-
mation in QFT is the scaling transformation of an independent variable z
(and, possibly, the parameter y) accompanied by a functional transforma-
tion of the solution characteristic g. It is introduced by means of either
finite transformations (10), (13) and (16) or the infinitesimal operator (7).
Hence, the symmetry of a solution, i.e., FS symmetry, is commonly under-
stood in QFT as the Lie point symmetry of a one-parameter transformation
group defined by the operator of the (7)-type.
Now, we are interested in getting answers to the following questions:

e is it possible to extend the notion of RG symmetry (RGS) and gen-
eralize the form of RGS implementation that may differ from that
given by (7) 7 — and if "yes”,

e is it possible to create a regular algorithm of finding these symme-
tries 7

The answer is positive to both the questions, and below we demon-
strate the regular algorithm of constructing RGS in mathematical physics
that up to now has been devised only for boundary value problem (BVP)
for the (system of) differential equation(s) which we shall refer to as basic
equations (BEs). The point is that these models can be analyzed by meth-
ods of Lie group analysis which employ infinitesimal group transformations
instead of the finite one.

The general idea of the algorithm is to find a specific TENOTMYTOUP Man-
ifold RM that contains the desired solution of BVP. Then construction
of a RGS, that leaves this solution unaltered, is performed by standard
methods of a group analysis of DEs.
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The regular algorithm of constructing RGS (and their application) can
be formulated in a form of a scheme’ which comprises a few steps. It is
illustrated in Figure 1.

([ Constructing | )
ons ruc.mg RG-manifold for
the specific particular BVP

L RG-n{l}amfold y,

(" Calculating th ( )
atcwiating the n Algebra of group
group G for >

RG-manifold generators J

\. {} J \.

e ™ s 3

Restriction of group RG symmetries
{§:§ G on particular > and
L BvP ;}olunon ) L RG operators y
N\
( Constructing ( Analytical
RG invariant > expressions
L solution ) 9 for BVP solutions y

Figure 1: RGS constructing and application to BVP in Mathematical
Physics.

I. First of all, a specific renormgroup manifold RM for the given
BVP should be constructed which is identified below with a system of the
kth-order DEs

Fg(z,u,uu),...,u(k))=0, 0'=1,...,.S'. (31)

In (31) and what follows we use terminology of group analysis and the notation
of differential algebra. In contrast with the mathematical analysis, where we usually
deal with functions u®, @ = 1,...,m of independent variables i, i = 1, ...,n and
derivatives uf(z) = 9u®/d2', uf(z) = 8°u®/02'0z7 , ... that are also considered
as functions of z, in differential algebra we treat u®, uf, ufi,... as variables as well.
Therefore, in differential algebra we deal with an infinite number of variables

z={z'}, u={u}, umy = {uf}, we ={uf,} ... (32)

"In the present form this scheme was described in [31]. One can find there historical
comments and references on the pioneering publications.
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with (4,41,... = 1,...,n), where z* are called independent variables, u® dependent
variables and u(1y,uy), ... derivatives. A locally analytic function f(@,u,uqy,. .. 2 U(k))
of variables (32), with the highest kth-order derivative involved, is called a differential
function of order k. The set of all differential functions of a given order form a space
of differential functions .4, the universal space of modern group analysis [32]-[35].

A particular way of realization of the first step can hardly be described
uniquely, as it depends on both a form of basic equations and a boundary
condition; generally, RM does not coincide with BEs. We indicate here a
few feasible routines for this step.

e One can use an extension of the space of variables involved in group
transformations. These variables, e.g., may be parameters, p =
{p'},7=1,...,1 entering into a solution via the equations and/or
boundary conditions. Adding parameters p to the list of indepen-
dent variables z = {z,p} we treat BEs in this extended space as RM
(31). Similarly, one can extend the space of differential variables by
treating derivatives with respect to p as additional differential vari-
ables.

¢ Another possibility employs reformulating of boundary conditions in
terms of embedding equations or differential constraints which are
then combined with BEs. The key idea here is to treat the solution
of BVP as an analytic function of independent variables and bound-
ary parameters b = {z{,ug} as well. Differentiation with respect to
these parameters gives additional DEs (embedding equations) that,
together with BEs, form RM. In some cases, while calculating Lie
point RGS, the role of embedding equations can be played by dif-
ferential constraints (for details see [31]) that come from an invari-
ance condition for BEs with respect to the Lie-Bédcklund & symmetry

group.

¢ In the case when BEs contain a small parameter «, the desired RM
can be obtained by simplification of these equations and use of “per-
turbation methods of group analysis” (see Vol.3, Chapter 2, p.31 in
[34]). The main idea here is to consider a simplified (@ = 0) model,
which admits a wider symmetry group (see examples in the Section
4.2 below) in comparison with the case o # 0. When we take the

8We use here the terminology adopted in Russian literature (32, 35]. This symmetry
is also known as generalized or higher-order symmetry [33, 34].
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contributions from small o into account, this symmetry is inherited
by BEs, which results in the additional terms, corrections in powers
of , in the RGS generator.

II. The next step consists in calculating the most general symmetry
group G that leaves the manifold RM unaltered. The term “symmetry
group”, as used in the classical group analysis, means the property of the
system (31) to admit a local Lie group of point transformations in the
universal space A.

The Lie algorithm of finding such symmetries consists in constructing
tangent vector fields defined by the operator

X =80, +n%0, &,m"€A, (33)

with the coordinates, £, n® that are functions of group variables and have
to be determined by a system of equations

XFO-I(sl):O, 0'=1,...,S, (34)

that follow from the invariance of RM. Here X is extended® to all deriv-
atives involved in Fj; and the symbol |(31) means calculated on the frame
(31). A system of linear homogeneous PDEs (34) for coordinates £ ne
known as determining equations, is an overdetermined system, as a rule.
The solution of Egs.(34) define a set of infinitesimal operators (33) (also
known as group generators), which correspond to the admitted vector field
and form a Lie algebra. In the case that the general element of this algebra,

X=ZAij, 1<j<l (35)
J

where A7 are arbitrary constants, contains finite number of operators, X,
the group is called finite-dimensional (or simply finite) with the dimension
[; otherwise, for unlimited j or in the case that coordinates £ n® depend
upon arbitrary functions of group variables, the group is called infinite.
The use of the infinitesimal criterion (34) for calculating the symmetry
groups makes the whole procedure algorithmic and can be carried out not
only “by hand” but using the symbolic packages of the computer algebra

9The extending of generators to the derivatives employs the prolongation formulas
and is a regular procedure in group analysis (see, e.g. [34]).
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(see, e.g., Vol.3 in [34]) as well. In modern group analysis, different modifi-
cations of the classical Lie scheme are in use (see [32, 33, 34] and references
therein).

The generator (33) of the group G is equivalent to the canonical Lie—
Backlund operator

Y =K%, K*=n"-Eul, (36)

that is known as a canonical representation of X and plays an essential
role in RGS constructing.

However, the group defined by the generators (33) and (36) cannot
yet be referred to as a renormgroup, as it is not related to a partial BVP
solution of interest.

III. To obtain RGS, the restriction of the group G on particular BVP
solution should be made which forms the third step. Mathematically,
this procedure appears as checking the vanishing condition for the linear
combination of coordinates x7 of the canonical operator equivalent to (35)
on a particular approximate (or exact) BVP solution U%(%)

S ARE =3 A (ng - gug) =0. (37)
J J u® = U%(z)

Evaluating (37) on a particular BVP solution U®(z) transforms the
system of DEs for group invariants into algebraic relations'®. Firstly, it
gives relations between A7 thus “combining” different coordinates of group
generators X; admitted by the RM (31). Secondly, it eliminates (partially
or entirely) the arbitrariness that may appear in coordinates £, 1% in the
case of an infinite group G.

In terms of the “classic” QFT RG terminology, where it exists only
one operator X of (7)-type (i.e., all A; except one are equal to zero), the
procedure of group restriction on a particular BVP solution Jappr €liminates
arbitrariness in the form of 8(g)-function.

While the general form of the condition given by Eq.(37) is the same
for any BVP solution, the way of realization of the restriction procedure

in every particular case employs a particular perturbation approximation
(PA) for the concrete BVP.

10Similar relations were discussed in [32], Chapter 8, when constructing invariant
solutions for the Cauchy problem for a quasi-linear system of first order PDEs.
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Generally, the restriction procedure reduces the dimension of G. 1t also
“fits” boundary conditions into the operator (35) by a special choice of
coeflicients A; and/or by choosing the particular form of arbitrary func-
tions in coordinates ¢, n®. Hence, the general element (35) of the group
G after the fulfillment of a restriction procedure is expressed as a linear
combination of new generators R; with the coordinates &, %,

X = R=) B'R;, R;= 10y + GHP (38)
J

where BY are arbitrary constants.

The set of RGS generators R; each containing the desired BVP solution
in its invariant manifold, define a group of transformations that we also
refer to as renormgroup. Therefore, here we extend the notion of renorm-
group and RG symmetry and the direct analogy with the “Bogoliubov RG”
is preserved only for one-parameter group of point transformations.

IV. The prescribed three steps entirely define the regular algorithm of
RGS construction but do not touch on how a BVP solution is found. Hence,
one more important, the fourth, step should be added. It consists in using
RGS generators to find analytical expressions for the new, “improved”,
solution of the BVP.

Mathematically, this step makes use of RG=FS invariance conditions
that are given by a combined system of (31) and the vanishing condi-
tion for the linear combination of coordinates K3 of the canonical operator
equivalent to (38),

SRR =Y B (i - &ug) =o. (39)
J J

One can see that conditions (39) are akin to (37). However, in contrast
with the previous step, the differential variables v in (39) should not be
replaced by an approximate expression for the BVP solution I/ (2), but
should be rather treated as usual dependent variables.

For the one-parameter Lie point renormgroup, RG invariance condi-
tions lead to the first order PDE that gives rise to the so-called group
invariants (like invariant couplings in QFT) which arise as solutions of
associated characteristic equations.

A general solution of the BVP is now expressed in terms of these in-
variants. On the one hand, this is in direct analogy with the structure of
RG invariant solutions in QFT - compare with Eqgs.(22) and (24).
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On the other hand, it reminds the so-called II-theorem from the theory
of dimensional analysis and similitude (see, Section 19 in [32], Section 6
of Chapter 1 in [36] and historical comment to Section 43 in [37]) directly
related to power self-similarity, discussed above in Section 2.3.

However, as we shall see later, in the general case of arbitrary RGS the
group invariance condition obtained for BVP is not necessarily character-
istic equations for the Lie point group operator. They may appear in a
more complicated form, e.g., as a combination of PDE and higher order
ODE (see Section 4.2). Nevertheless, the general idea of finding solution
of the BVP as RG invariant solutions remains valid.

3.2 Examples of solution improving

We present now a few examples of the RGS construction with further use
of the symmetry for “improving” an approximate solution.

3.2.1 Modified Burgers equation

As the first educative example, take the initial value problem for the mod-
ified Burgers equation

u —aul —vu,, =0, u(0,z) = f(z). (40)
It is connected with the heat equation
ﬂt = uﬂm (41)

by transformation % = exp(au/v) and has an exact solution. Due to
this, while using RGS to find a solution, one can check the validity of
our approach. The RGS constructing for (40) is an apt illustration of the
general scheme, shown in Figure 1 which may be helpful in understanding
other examples of the general algorithm implementation. We review here
in short the procedure and results of paper Ref.[38].

The RG-manifold RM (step I) is given by Eq.(40) with the parame-
ters of nonlinearity a and dissipation » included in the list of independent
variables. The Lie calculational algorithm applied to RM gives, for the
admitted group G (step II), nine independent terms in the general expres-
sion for the group generator

8
X =) A(a,V)X; + alt,z,a,v)e" " §,, (42)

i=1
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X, = w0, + wtzd, — (v/a)(z? + 2vt)0,, X, =2t0, + 20,
X3 = (1/v)0:, X4 = 20t0, — (v/a)zdy, X5 =0;, X¢ = —(v/a)dy,

X7 =a0, +[(v/a) ~u]8,, Xs=200,+ 20, +2[u~— (v/a)] 8, .

Here, Ai(a, v) are arbitrary functions of their arguments and a(t, z, a, v)
is an arbitrary function of four variables, satisfying the heat equation (41).

A set of operators X; form an eight-dimensional Lie algebra, Lg. The
first six generators relate to the well-known symmetries of the modified
(potential) Burgers equation (see, e.g., Vol.1, p.183 in [34]). They describe
projective transformation in the (¢, z)—plane (X;), dilatations in the same
plane (X3), translations along the ¢, z and u axes (X3, X5 and Xg) and
Galilean transformations X, . The last two generators X7 and Xj relate to
dilatations of parameters a and v now involved in group transformations.

The procedure of restriction (step III) of the group (42) admitted by
RM (40) implies the check of the invariance condition (37 ) on a particular
BVP solution u = U(¢, z, a, v)

8
oo + Y A'(a,v) k; =0, (43)
i=1 u=U(t, z, a, V)

with k; = n; — &luy — Eu, — Eu, — Efu, . This formula expresses the
coordinate o of the last term in (42) via the remaining coordinates of eight
generators X; for arbitrary ¢, and hence for t = 0, when U (0,z,a,v) =
f(z). As a result, we obtain the “initial” value «(0,z,a,v) and then,
using the standard representation for the solution to the linear parabolic
equation (41), the value of « at arbitrary ¢ # 0

a(t,z,a,v) = —ZAi(a, v) < Ri(z,a,v) > . | (44)

=1

Here, %;(z,a,v) denote “partial” canonical coordinates K; taken at ¢t = 0
and u = f(z). Symbol < F > designates the convolution of a function
F with the fundamental solution of (41), multiplied by the exponential
function of f entering into the boundary condition

_ 1 7 (z-9)*  af()
< F(IL‘,t, a, I/) >= \/M—ZO dy F(y, t, a,V) €xp ( 4dut + v ’
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Substitution (44) in the general expression (42) gives the desired RG gen-
erators
R = X; + gie™®/" 0,

v 1

gl=5<m2>, 02 =< zf >, 93=;<af:+’/fm>’
v 14

oa=_<z> @=<[fo>, =_<1>,

14
=<f—'(;>, Qg=<1'fz—2f+2g>.

Operators R; form an eight-dimensional RG algebra RLg that has the
same tensor of structural constants as Lg, i.e. RLg and Lg are isomorphic.
Hence, the procedure of the group restriction eliminates the arbitrariness
presented by the function « and “fits” the boundary conditions into RG
generators by means of p;.

It can be verified that the exact solution of the problem (40)

/ dye —ZT—,,%L+“f(v)) } (45)

u(t,z;a,v) = -  m<1>=Z ln{

Varvt

is the invariant manifold for any of the above RGS operators. And vice
versa, (45) can be reconstructed from an approximate solution with the
help of any of the RGS operators or their linear combination. For example,
two such operators, ¥Rz = R; and (1/a)(Rs + R7) = R, were used in
[38] to reconstruct the exact solution from perturbative (in time and in
nonlinearity parameter a) solutions. Below, we describe this procedure
(step IV) using the operator R,,

Ry =08, +(1/a) (~u+e™™" < f(z) >) ,. (46)

It is evident that ¢,z and v are invariants of group transformations with
(46), whilst finite RG transformations of the two remaining variables, a
and u, are obtained by solving the Lie equations for (46), with £ the group
parameter
d du’ '
djz =1, d];m0=a; %-—a(t z,d',v) e ¥/ —
Combining these equations yields one more invariant J = e®/*— < 1 >
for the RGS generator (46). Solution of (47) along with (44) gives the

ul
7 Ulgmo=1u. (47)
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formulae for finite RG transformations of the group variables

t=t, o' =z, =v, a':a+£,u':a—:lln(e““/”+<eef(x)/”—l>) .
(48)

Choosing the value a equal to zero, which is a starting point of PA in
a, we get a’ = £. Then after excluding ¢, z, v and £ from the expression
for u' (48) and omitting accents over #, 2/, ,u' and o’ the desired BVP
solution (45) is obtained. It also follows directly from J in view of the
initial condition J |4—¢= 0.

A similar procedure can be fulfilled for the other RG operator,

Ry =0,+e ™" < af2 + vfoe > 0,,

which is consistent with the PA in time ¢. Although invariants for R, and
finite RG transformations differ from that for (46), the final result, i.e.,
the exact solution of BVP (40) given by (45), is the same. This possibility
is the distinct demonstration of the multi-dimensional RGS to reconstruct
the unique BVP solution from different PA: either in parameter a or in t
(though we used only two one-dimensional subalgebras here!?).

3.2.2 BVP for ODE: simple example

Quite recently, the QFT renormalization group ideology has been applied,
a bit straightforward, in mathematical physics for asymptotic analysis of
solutions to DEs [41, 42] and in constructing an envelope of the family of
solutions [43].

Our second methodological example with linear ODE is presented here
in order to illustrate the difference between our approach and the “pertur-
bative RG theory” devised in [41] for a global analysis of BVP solutions
in mathematical physics.

Consider a linear second order ODE for y(t) with the initial conditions
att=r,

Ynt+y+ey =0, y(r) =4, y(r) =, (49)

which has the exact solution:

y= C+e-’7+(t'-T) +C_e7-(t-7) , (50)

"This can be considered as a construction parallel to the one used in Ref.[39).

28



1+ K W+ U
’Yi=—2—, K=V1—4€,C:}:=:F—?’Y:F—

Provided that the parameter ¢ is small, the solutions to Eq.(49) has
been treated in [41] with the aim to demonstrate effectiveness of the “per-
turbative RG theory” for an asymptotic analysis of a solution behaviour.
The main goal of this treatment was to improve a perturbative expansion
in powers of £ with secular terms oc (¢ — 7) and obtain'? a uniformly valid
asymptotic of a solution

y = c+e(—1+e(1+s)) t-71) + C_e—e(1+e) (t—7) + 0(82) ’ (51)

e —((L+2)0+ed), e~ ((1+2)0+(1+e)a),

which is accurate for small values £ < 1 but for arbitrary values of the
product e(t — 7).

We are going to show that the use of our regular RG algorithm enables
one to improve a PA solution (either in powers of € or in ¢ — 7) up to the
exact BVP solution (50).

Rewriting (49) in the form of the system of two first order ODEs for
functions u = y and w = y;,

U =W, W= —€W—Uu, (52)

we construct RM (step I) using the invariant embedding method (this
approach has first been realized in [44]). Then, RM is presented as a joint
system of BEs (52) and embedding equations

UT—(€1I)+'EL)U15—'LT)U{,=O, Wy — (eu"z+fz)w,;,—u")wﬁ=0,

treated in the extended space of group variables which include the para-
meters 7, W, 4@ of boundary conditions in addition to ¢ and dependent
variables u, w.

'2The algorithm used in [41] for improving PA solutions with secular terms involves
a) an introduction of some additional parameters in solutions, b) a special choice of
these parameters that eliminates secular divergencies, and ¢) imposing a condition of
independence of a solution upon the way of introducing these parameters. In some
cases, this algorithm, directly borrowed from QFT RG-method, gives an exact solution.
However, the question of correspondence of this construction to a transformation group
of a solution of BEs remains open.
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Omitting tedious calculations related to the following two steps (steps
IT and IIT ), we present here two examples of resulting RGS generators

R, = 8, — (& + £f)dy + W0y ,

1 t
Ro= 0= (GGl + - )+ @) du+ Lo r o

1, . . _ T
- (a0 -7/ + (0/23) 00+ T 0o+ 0,

that involve the initial values @, % and initial point 7 in RG transforma-
tions. In addition, R, transforms the parameter ¢.

Now, the procedure of constructing the BVP solution (50) (step Iv)
is similar to that used in the previous Section 3.2.1 and employ finite
transformations that are defined by the Lie equations for the operators
(53). For R, functions u, w and the parameter ¢ are group invariants,
while the translations of 7 and the corresponding transformations of @, @
restores the exact solution (50) from the PA in powers of t — 7 (note that
the parameter ¢ is not necessarily small in this PA!).

For R, the difference ¢ — 7 is group invariant, whilst the transformation
of ¢ and related transformations of u, w, @, @ restore the exact solution (50)
from the PA (discussed in [41]) in powers of £. Hence, as in the previous
Section 3.2.1, both the RGS generators (53) reconstruct the unique BVP
solution from different PAs.

4 RG in Nonlinear optics

4.1 Formulation of a problem

As a problem of real physical interest, take BVP that describes self-focusing
of a high-power light beam. While the problem plays an important role in
nonlinear electrodynamics since 60s, the detailed quantitative understand-
ing of self-focusing is still missing [45], and there is no method which allows
to find an analytic solution to the corresponding equations with arbitrary
boundary conditions.

Here, we demonstrate the great potential of the RGS approach in con-
structing analytic solutions of BVP equations with arbitrary boundary
conditions. The RGS method allows to consider different types of BEs for
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self-focusing process which include plane and cylindrical beam geometry,

nonlinear refraction and diffraction. The merit of the RGS method is that

it describes BVP solutions with one— or two—-dimensional singularities in

the entire range of variables from the boundary up to the singularity point.
Let us start with BVP for the system of two DEs

Uz + 0 —ang =0, n, +nu, +on, + (v —1) (nv/z) =0, (54)
v(0,2) =0,  n(0,2) = N(z), (35)

which are used in nonlinear optics of self-focusing wave beams when dif-
fraction is negligible.

We study spatial evolution of the derivative of the beam eikonal v and
the beam intensity n in the direction inwards the medium 2z and in the
transverse direction z. The term proportional to « is related to nonlinear
refraction effects; v = 1 and v = 2 refers to the plane and cylindrical beam
geometry, respectively. Boundary conditions (65) correspond to the plane
front of the beam and the arbitrary transverse intensity distribution.

4.2 Plane geometry

In the plane beam geometry (at v = 1) Egs.(54) can be reduced to the
system of BEs
Tw =X =0, Xxy+am=0, (56)

for functions 7 = nz and xy =z — vz of w = v/ and n arguments, with
boundary conditions

7(0,n) =0, x(0,n)= H(n), (67)

where H(n) is the inverse to N(z). Here, the procedure of RGS construct-
ing makes use of the Lie-Bicklund symmetry and is described as follows
[31]. The manifold RM (step I) is defined by Egs.(56) treated in the ex-
tended space that include dependent and independent variables T, X, W, N
and derivatives of 7 and y with respect to n of an arbitrary high order.
The admitted symmetry group G (step IT) is represented by the canonical
Lie-Bécklund operator

X=f67'+gax> (58)

with the coordinates f and g that are linear combinations of 7 and y
and their derivatives 8'7/0n' and 8'x/n', i > 1 with the coefficients
depending on w and n.
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The restriction of the group admitted by RM (56) (step III)) implies
the check of the invariance condition (37) that yields two relations

f=0, g=0. (59)

These relations should be valid on a particular solution of BVP with the
boundary data (57). For example, choosing the so-called “soliton” profile,
N(z) = cosh™(z), i.e., H(n) = Arccosh (1/+/7), we have

2
ow
f=2n(1 -n)r, —nr, — 2nw(Xn + NXnn) + —5 T »

2
w
9 = 2n(1~1)Xnn+(2—3n) Xy +ow (2n7,, + Tn)+g2— ("Xnn + Xn) - (60)

Dependence on 7, and Xn, indicates that here RGS is the second-order
Lie-Bdcklund symmetry. In order to find a particular solution of a BVP
(step IV), one should solve the joint system of BEs (56) and second-order
ODEs that follow from the RG=FS invariance conditions (59) and (60).
The resulting expressions [46] - the well-known Khokhlov solutions!®

v = —2omztanh(z — vz), an®2? = ncosh?(z — vz) —1, (61)

describe the process of self-focusing of a soliton beam: the sharpening of
the beam intensity profile with the increase of z is accompanied by the
intensity growth on the beam axis. The solution (61) is valid up to the
singularity point where the derivatives vz and n, tend to infinity whilst
the beam intensity n remains finite

g =1/2Va, @ =2 (62)

Here, the Lie-Bécklund RGS enables one to reconstruct the BVP s0-
lution and describe the solution singularity for the light beam with the
soliton initial intensity profile. One more example of an ezact BVP solu-
tion obtained with the help of Lie-Bicklund RGS (with the initial beam
profile in the form of a ”smoothed” step) can be found in [46].

For arbitrary boundary data, it turns to be impossible to fulfill the
condition (59) with the help of the Lie-Backlund symmetries of any fi-
nite order, and one is forced to use a different algorithm (31, 46] of RGS

'3In Ref.[47], where this solution was first obtained, it did not result from a regular
procedure.

zZ
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constructing, based on the approximate group methods. Here, (step I))
RM is given by BEs (56) with a small parameter @, and coordinates of
the group generator (58) (and, hence, coordinates of the RGS operators)
appear as infinite series in powers of «

f=Xdf g=Y dig. (63)
=0 =0

The procedure of finding the coefficients f, g (step II)) leads to the
system of recurrent relations that express higher-order coefficients fity
¢"*! in terms of previous ones f', g'. It means that once the zero-order
terms are specified, the other terms are reconstructed by the recurrent
relations.

The coefficients f* and g contain an arbitrary function of n, X(s) and
Tis) — W(8X(s] + MX[s+1)) Where subscript s] denotes the partial derivative
of the order s with respect to n. This arbitrariness is eliminated by the
procedure of group restriction (step III)), i.e., by imposing the invari-
ance condition (59). For particular forms of f° and ¢°, that is for partial
boundary conditions (57), infinite series are truncated automatically, and
we arrive at the ezact RGS.

One example of this kind is given by Egs.(60) that have a binomial
structure f = f'+ af!, g = ¢+ agl. If we neglect the higher-order
terms in the case of arbitrary boundary conditions (when series (63) are
not truncated automatically), then we get an approzimate RGS which
produces an approximate solution to the BVP. As an example, we give
here two sets of expressions for the coordinates f* and g' for the Gaussian
initial profile with N(z) = exp(—z2), i.., H(n) = (In(1/n))"/?, which
define approximate RGS

2
a) fO=1+2nxxn, ¢®=0, f'= “27'7'n+%1 9' = =2(7xn + x™),

b) % =2n(rxn+7X), 8° = 1+ 2nxxn, 1 = 27, o' = 2 (XXa — TT0) -

Here, linear dependencies of f and g upon first-order derivatives indicate
that RGS is equivalent to Lie point symmetry. The peculiarity of the case
b is a dependence of f and g not only on derivatives with respect to n but
also with respect to a: it means that the parameter o is also involved in
group transformations. In the non-canonical representation (33), the RGS
generator in this case has the form

Reausst = 270, + 2nx0, + 2ax8, — Oy . (64)

33



The last step IV is performed in a usual way by solving the joint sys-
tem of BEs (56) and equations that follow from the RG=FS invariance
condition (59), or else, using invariants of associated characteristic equa-
tions for RG operator provided that RGS is a Lie point symmetry. We
give here the solution that follows from RGS (64),

1 2z anz
2= (1-20m2)’In——__ - __2omz
o ( anz ) g n(l — anz?)’ v 1 — 2an2? (65)

These expressions describe a self-focusing Gaussian beam (the plot n(z)
for this solution is presented at the end of the section on Figure 2), that is
qualitatively very similar to the spatial evolution of the soliton beam (61).
Moreover, the singularity position and the value of maximum beam inten-
sity at this point coincide with analogous values (62) for the soliton beam.
Although formulae (65) correspond to an approximate BVP solution, they
exactly describe the behaviour of 7 on the beam axis at z = 0. To estimate
the reliability of result (65) in the off-axis region, we compared it with an-
other approximate BVP solution which arises from the approximate RGS
in the case a. These approximations agree very well (details are presented
in [46]), thus proving the accuracy'* of the RG approach.

4.3 Cylindrical geometry

In the above discussion we dealt with the plane beam geometry and took
into account only effects of nonlinear beam refraction, neglecting diffrac-
tion. The flexibility of RGS algorithm allows one to apply it in a similar
way to a more complicated model as compared to (56), e.g., for the cylin-
drical beam geometry, v = 2. Omitting technical details, we present the
RGS generator for the cylindrical parabolic beam with N = 1 — z?

Rper = (1 - 2az2) 0, — 20220, — 20 (z — v2) Oy + 4020, .

The BVP solution is expressed in terms of group invariants for this
generator:

2
T v
Ji = 2 R=ne; Js= 2aw2—v29+70z; o= (1-20az%) . (66)
4One more evidence is provided by the comparison of approximate and exact BVP
solution for the soliton beam performed in (46].
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The explicit form of dependencies of J, = 1 - J2, J5 = 2a.7; upon J;
follows from the boundary conditions (55). They lead to the well-known
solution [47]

v=(2/(20))e.,  n=(1/0)(1- (*/0)) (67)
that describes the convergence of the beam to the singularity point Zying =

1/V2a where p = 0 and n — oco. The solution singularity is two-
dimensional here: the infinite growth of beam intensity in the vicinity
of the singularity z — 257 is accompanied by the infinite growth of the
derivative v, and collapsing of the beam size in the transverse direction.

The RGS algorithm based on approximate group methods can also be
applied in the case when besides nonlinear refraction also diffraction effects
are taken into account. Then, the first equation in (54) should be modified
by adding the diffraction term

0. { (o) s (0]

Standard calculations done in compliance with a general scheme for
thus modified RM (for details see [48]) give the RGS generator for the
cylindrical beam geometry (v = 2)

Roaussz = (14 228yy) 8, + (28, + v2"Syy ) Oz + SyBy—

vz nz
- [nz (1 + ?) Sy + ?Sx] B (68)

Here the function S, defined by the form of the intensity boundary distri-
bution,

. :
$00 =N () + 20, (xa/N )

contains two small parameters, a and 5, and, as in the case B =0, there
exist specific forms of boundary distribution, N , for which the RGS op-
erator (68) defines exact (not approximate) symmetry valid for arbitrary
values of & and .

Constructing a particular BVP solution (step IV) implies the use of
group invariants related to (68), and the procedure is similar to that one
for the parabolic beam. For the Gaussian wave beam, N = exp(—z?), the
result is as follows:

- 2 IB_ X’
v(z,x)=xzx, n(z,z) =e* %%ﬂ—%g—. (69)
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Here x and p are expressed in terms of ¢ and z by the implicit relations
2
B (u2 - xz) + (e"‘2 - e‘xz) = 2222 (ﬂ - ae“xz) ;

T=x (1 + 222 (5 — ae‘x2)) .

The solution (69) describes the self-focusing of the cylindrical Gaussian
beam that gives rise to the two-dimensional singularity: both the beam
intensity n and derivatives v;,n, go to infinity at the point zﬁ:’;” =
1/4/2(a — B) provided that & > B. A detailed analysis of (69) and more
general solutions with a parabolic form of an eikonal at z = 0, v(0,z) =
—z/T, is given in [48, 45].

To illustrate the difference between the one- and two-dimensional so-
lution singularities, in Figure 2 we present a typical behavior of the wave
beam intensity, defined by Eq.(65) and (69). The left panel corresponds

n n
2
Zz 8
1.5 6!z
1
Z 4 2
0.5 2{;N
X X
0204 06 08 1 12 02040608 1 12

Figure 2: Intensity n versus transverse coordinate z for a plane (left panel)
and cylindrical (right panel) beam geometry for a few values of distance z
from the boundary z, > 21 > z; = 0.

to the plane beam geometry, » = 1, and without diffraction, § = 0,
while the right one is concerned with a cylindrical wave beam, v = 2,
with both nonlinearity and diffraction effects included. Diverse curves de-
scribe beam intensity distribution upon coordinate z at different distances
from the medium boundary, where we have the collimated Gaussian beam,
N = exp(—z?).

It is clear that in the plane geometry the derivative of the beam in-
tensity with respect to z turns to infinity at some singular point, while
the value of intensity on the axis remains finite. In cylindrical case the
solution singularity is two-dimensional: both the beam intensity and its
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derivative with respect to transverse coordinate turn to infinity simulta-
neously at point zyn,. This last example demonstrates the possibility of
the RGS approach to analyse two-dimensional singularity. In the practice
of RG application to critical phenomena, this correlates with the case of
“two renormalization groups”[39).

5 Overview

To complete our review, we indicate milestones in evolution of the RG
concept. Since its appearance in QFT, RG served as a powerful tool of
analyzing diverse physical problems and improving solution singularities
disturbed by perturbation approximation.

The development of the RG concept can be divided into two stages. The
first one (since the mid-50s up to the mid-80s) is summarized in Figure
3. Besides early history (discovery of RG, formulation of the RG method

{ N
Functional
Similarity

s ~\
Polymers, Wilson RG Turbulence,
Percolation Spin lattice Stochastics
& Chaos & Transfer J

\.
A V4N

{E} [ Bogoliubov ]
L RG in QFT

48

{ N
Renormalization

inQFT |

Figure 3: Early development of concept: from Bogoliubov RG to Wilson
RG and FS.

and application to UV and IR asymptotics), it comprises the devising of
the Kadanoff~-Wilson RG in the 70s and following explosive expansion into
other fields of theoretical physics.
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During this stage, the formulation of the RG method was based on the
unified scaling transformation of an independent variable (and/or some
parameters) accompanied by a more complicated transformation of a so-
lution characteristic g, = g(u, g) - see Egs.(10), (13) and (16) in Section
1.2.

Here, the main role of RG=FS was the d prioriestablishment of the fact
that the solution under consideration admits functional transformations
that form a group.

Any particular implementation of the RG symmetry differs in the form
of the function(s) g(u, g) (or B(g)) which, in an every partial case, is ob-
tained from some approximate solution.

The next stage, after the mid-80s, is depicted in the Figure 4. The
scheme describes the entire evolution of the Bogoliubov RG. There were

RG-Symmetries ( Modern
in Math.Phys. \_ Group Analysis

I

Functional
Self Similarity

e )
Extention of Lie
computational
algorithm.
New types of
symmetries:

- approximate,
RGM in other Lie-Backlund,

fields of physics nonlocal, etc
| -
r (

Bogoliubov | .. S Lie
RenormGroup e _ Group Analysis

e

.

Figure 4: Evolution of concept: from the Bogoliubov RG via FS to RG-
symmetries.

several important reasons in further devising the RG concept in theoret-
ical physics at this period. On the one hand, it was due to the exten-
sion of the notion of FS and RG symmetry that until then were based
on one-parameter Lie group of point transformations. Appending multi-
dimensional Lie point groups and Lie-Bécklund groups to possible real-

38



ization of group symmetry enhanced the capability of RG method. On
the other hand, this additional possibility arose due to the mathematical
apparatus that was used in mathematical physics to reveal RGS. The ad-
vantage came from infinitesimal transformations that enabled to describe
RGS by an algebra of RG generators. However, in contrast to the situation
typical of QFT models with only one operator, in mathematical physics
we have finite or infinite-dimensional algebras. Both their dimension and
the method of construction depend upon a model employed and upon a
form of boundary conditions.

The use of infinitesimal approach results in constructing the RG-type
symmetry with the help of regular methods of group analysis of DEs.
Precisely, this regular algorithm naturally includes the RG=FS invariance
condition in the general scheme of constructing and application of RGS
generators (see also our recent review [49]). Within the infinitesimal ap-
proach this condition is formulated in terms of vanishing of canonical RG
operator coordinates, which is especially important for Lie-Backlund RGS
because finite transformations in this case are expressed as formal series.
In particular, this property attribute a new feature to the RG analysis of a
BVP solution with singular behavior, making a singularity analysis more
powerful.

At the same time, as the group analysis technique is still developing —
here we mean both extension to new types of symmetries and application to
more complicated mathematical models, e.g., including integro—differential
equations — we have a clear perspective that the possibilities of a regular
scheme based upon the Bogoliubov renormalization group method are far
from being exhausted.
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Penopmrpynna Borono6oBa M cMMMETpHH peLleHuit
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Paccmorpena sBosoums Konuenuuu Penopmanuzaumonnoit Ipynnbl. Cootser-
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IOLIMM HEKOTOpblE MapaMeTphbl (HampuMep W3 IPaHUYHBIX YC/IOBMIl), Onpeaensiome
JaHHOE peLIeHHe.
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BOGOLIUBOV Renormalization Group
and Symmetry of Solution in Mathematical Physics

Evolution of the concept known in the theoretical physics as the Renormalization
Group (RG) is presented. The corresponding symmetry, that has been first introduced
in QFT in mid-fifties, is a continuous symmetry of a solution with respect to transfor-
mation involving parameters (e.g., of boundary condition) specifying some particular
solution.

After short detour into Wilson’s discrete semi-group, we follow the expansion of
QFT RG and argue that the underlying transformation, being considered as a reparame-
terisation one, is closely related to the self-similarity property. It can be treated as its
generalization, the Functional Self-similarity (FS).

Then, we review the essential progress during the last decade of the FS concept in
application to boundary value problem formulated in terms of differential equations. A
summary of a regular approach recently devised for discovering the RG = FS symme-
tries with the help of the modern Lie group analysis and some of its applications
are given.

As a main physical illustration, we give application of new approach to solution for
a problem of self-focusing laser beam in a nonlinear medium.

The investigation has been performed at the Bogoliubov Laboratory of Theoretical
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