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1 Introduction

It is of interest to investigate total reaction cross sections at energies
from tens of MeV to 1 GeV per nucleon in view of studying the heavy-
ion reaction mechanism and important practical tasks, for example, the
problem of transmutation of radioactive waste (see [1]). At intermedi-
ate energies when £ > U, kR >> 1, the reaction cross section can be
calculated within the Glauber-Sitenko approach [2], [3] accounting to
which

0R=27r/ db b (1— e 2Im Oy, (1.1)
0

where b is the impact parameter, and the nuclear component of total
eikonal phase ®y

@(b):—glg /dz U(Vb2+z2)=-g—zl(b) (1.2)
is expressed through the profile integral

I(b) = / dz u(V/b? + 22). (1.3)

—00

Here u(b) is the distribution function of a potential, and the path inte-
gration is performed along the axis z directed as the momentum £; of a
projectile nucleus.

Nucleus-nucleus optical potentials are obtained, in general, as a re-
sult of a fit to experimental data of the elastic scattering differential
cross sections and total cross sections at a given collision energy. Their
dependence on energy can be determined if one calculates the phase ®(b)
in the multiple diffraction scattering method where & is expressed by
the total nucleon- nucleon cross section whose E-dependence is known.
Within such an approximation, the phase is constructed as the convolu-
tion of the density distribution functions of nucleons in the projectile Pp
and target nucleus p;. Thus, ultimate calculations of integrals like (1.3)
are necessary, too, but with integrands p(v/b? + 22).

Usually, integrals like (1.3) are estimated by using the Gaussian func-
tions for both the potential and density distributions. Thus, final ex-
pressions are obtained in a certain analytic form (see, for instance, [4],



[5], [6]). But the Gaussian type distributions are only acceptable for
light nuclei, whereas for medium and heavy nuclei, one should deal with
functions of a greatly extended shape of distributions. To this aim, the
Fermi function up(r) occurs to be more appropriate, and it is usually
applied in numerical calculations. However, if one uses it in analytic
estimations, then one encounters serious mathematical and numerical
difficulties. Sometimes, one can overcome these difficulties by represent-
ing up(r) as the sum of Gaussian functions [7]

up(r,R,a) = 1+exp[ — %74 Ecn exp< d2) (1.4)

giving for (1.3) the result

[ee]

(b _/ dz
P )—_oo 1 + exp[(vb? + 22 — R)/a]

Zﬁcn d, exp (—2—2). (1.5)

n=1

Here ¢y, d, and N are fitted so that the adjusted form of up(r) is
remained to be close to the initial one within a necessary accuracy.
Unfortunately, a fit like that should be performed numerically anew for
every new set of the input parameters R and a. In another work [8], the
following prescription

Ip(b) = 2R — 2mia Z {)\(+ - )},
P

p=1,3,5...

(1.6)

has been established for (1.3), where b¥ = R + irap, (p = 1,3,5..)
are poles of the function ug(b), Ay AL = (Ift2 b?)1/2 and the condition

Im )\g,i) > 0 should be fulfilled. Keeping several ten terms of the sum
in (1.6), it is possible to reconstruct the behavior of Ir(b) in the range
of changes of b from 0 to its values slightly greater than the radius R.
However, at greater values of b, it is not possible to get a correct ex-
ponential decrease of Ir(b), even when several hundred terms are taken
into account.

In the present work, we suggest to use another and very simple ana-
lytic expression for the profile integral (1.3) obtained in [9] for realistic
distributions described by the symmetrized Fermi function ugr. This



expression reconstructs fairly well its exact behavior within the whole
range of real b values and keeps the above-mentioned poles at b = bf.
On this basis in [10], calculations were done of differential cross sections
which well coincide with the results of numerical solutions of the wave
equation. In Sec.2, we show that this profile integral and the corre-
sponding eikonal phase ®x(b) can also be successfully used for calcula-
tions of the total reaction cross sections. In Sec.3, an obvious model is
constructed for analytic calculations of the total reaction cross sections
which enables one to distinguish easily between the contributions from
internal and peripheral regions of the nucleus-nucleus interaction. Also,
we have traced effects of the Coulomb field inclusion on these contribu-
tions, as well as on transparency of nuclei. In Sec.4, the origin is pointed
out of continuous ambiguity inherent in the optical potential parameters
obtained from experimental cross sections, and general conclusions are
drawn.

2 Eikonal phase for a symmetrized Fermi func-
tion and calculations of the total reaction
cross sections

The popular Woods-Saxon potential, having an extended spatial distri-

bution, corresponds to behavior of the Fermi function up(r) (1.4). But
it comes more true to deal with its symmetrized form:

usk(r) = cosh(}si/z})l(fézsh(r/a)’ = ur(r) = §(r) (2.1)
where
§(r) = exp(—fi/a) (2.2)

exp(r/a) + exp(~R/a)’
Indeed, starting with calculations of nuclear form factors [11] and [12],
this shape has been used frequently instead of up. At R > a when
6(r) < 1, they almost completely coincide with one another in the range
of r > 0. It means that they can be employed with the same success for
simulation of the matter distribution in medium and heavy nuclei and
also used as patterns when constructing the nucleus- nucleus potentials.
However, for light nuclei with a very developed surface (a ~ R), these



functions have rather different shapes at r <. R. Moreover, from the
physical point of view, the lack of the Fermi distribution is because of
ur having a nonzero derivative in the center of a nucleus, e.g. u%(0) # 0
while u/-(0) = 0. The same shortage of the Fermi function makes its use
difficult in the complex plane when calculating amplitudes of scattering,
many troubles arise if one tries to get explicit expressions for several
integrals, etc. (see, for instance, [13], [14]). So, namely with the help
of the function usp in [9], a strict enough and explicit expression was
found for a profile integral that we are going to use below. Substituting
(2.1) into (1.3) we represent the profile integral in a more convenient
form by changing variables { = z/a, 8 = b/R, and C = R/a:

I(b) = I(BR) = 2RI(B), (2.3)

17 sinh C d¢ B
e 0/ cosh C + cosh /(8C)? + (2 usEIPSC)

In this expression, the main dependence on the impact parameter b
or 3 is determined by the symmetrized Fermi function

sinh C
cosh C' + cosh 8C”’

2.4)

USF(ﬂ) = (25)
and the second function P(J3,C) makes only a small correction to its
behavior at fixed C. For P(3,C), it is possible to obtain a compact
expression [9] as

P(3,C) ~ Py(z) = %111(4/.@), (2.6)
where ) ) )
K —
=(8,€) = K 1 cosh ' {1 + cosh ﬂC} ' (27
u cosh C

Here the parameter « is connected with C' according to the formula
log k = 0.47909 + 0.15025 C' — 0.001938 C?, (2.8)

found in [9] by fitting the approximate analytic form of the integral Z(p)
(the right hand-side of (2.4)) to its magnitudes obtained by numerical



calculations when the parameters # and C are displayed in their typical
physical limits 0 < 8 < 2 and 5 < C < 20. If one takes into account that
for heavy ions the region of the main contribution is concentrated near
the nuclear surface b = R or 3 = 1, then 2 ~ 1/ and for the correcting
function we have a simple expression as follows
1
C
It results in the corresponding nuclear phase
2RUy sinh(R/a)
o cosh(R/a) + cosh(b/a)
Figure 1 exhibits the comparison of the behavior of profile integrals,
calculated by numerical integrations of (2.4) and by its analytic repre-
sentation in the left hand-side of eq.(2.4). It is seen that at different
combinations of colliding nuclei, the results are in appropriate agree-
ment with each other when the correcting function P,(8,C) is taken in
its analytic form (2.6). A little worse coincidence is for P,(1,C) approxi-
mated by (2.9). Nevertheless, this difference is noticeable only at b < R,
in the range of strong absorption, and, as it will be seen below, weakly
affects the behavior of cross sections. The values of C' = R/a pointed in
the Figure correspond to geometric parameters of Fermi distributions of
Woods-Saxon potentials fitted to the experimental data in [15] and [16].

1
Pa(1,0) = ZIndrk = = [2.480453 + 0.34507 C ~ 0.0046 C?] . (2.9)

N (b) =

P,(1,0). (2.10)

To check how successful the analytic expressions for nuclear eikonal
phases can reproduce the differential cross sections, calculated by the
exact numerical solution of the wave equation, we have to do the respec-
tive calculations of the elastic scattering amplitude in the framework of
the Glauber-Sitenko approach [2], [3]

flay =ik [ b baa(ap) (L= PN H ) g < R 20

A characteristic feature of nucleus-nucleus scattering is such that
the Coulomb interaction plays a significant role. As usual, we utilize an
explicit expression of the Coulomb eikonal phase for the potential of the
uniformly charged sphere with radius R,:

@(){mh@mnmuhh_§p§1_§“_g]bgm
ucb= u u % .

B, (b) b> R,
(2.12)
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Figure 1: Comparison of exact (full lines) and approzimate profile func-
tions calculated with correcting functions P,(8,C) (2.6) (squares) and
P (1,C) (2.9) (dashed lines) for the symmetrized Fermi function.

Here n = Z1Z,e*/hv is the Sommerfeld parameter; and @,.(b) =
2n1n(kb), the eikonal scattering phase of a point- like charge. It is seen
that, once (2.12) is included into the amplitude (2.11), the problem arises
in integrating at large distances because of divergent terms of the form
exp(2niln(kb)). This difficulty can be removed if in the parentheses un-
der the integral (2.11) one adds and subtracts the eikonal function of
the point-like charge exp(i®,.). So, we have

$(0) = Fela) + ik [ b baolah) e (1= SOV 000 (o 13

where the addition §®,. = ®,. — ®,. to the nuclear phase does not
comprise the logarithmic term at large b, and ®n(b — 00) = 0. The
point-like charge scattering amplitude f,:(¢) in (2.13) is known in the
explicit form [2]:

foelq) = —ik / db b1+ 20 1 (gb) =
o

_ __2%72 e—2inn(q/2k) + 2targ T'(1 + in) (2.14)
q

In this way, the problem is resolved of numerical integration of the scat-

tering amplitude when the Coulomb phase is taken into consideration.
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Figure 2: Differential cross sections of nucleus-nucleus scattering:
squares represent experimental data; the calculations with the analytic
phases with P,(83,C) are pointed as full lines; and with P,(1,C), dotted
lines for two left figures. In the right picture, the dotted line shows the
curve calculated without the Coulomb distortion of the trajectory.

In scattering of heavy ions, one more modification of the amplitude
(2.11) should be made in view of the effects of distortion of the straight
line path of integration. Indeed, in the strong long-range Coulomb po-
tential, this effect can be taken into account [17] by adding the classical
momentum ¢. = 2ksin(0.(b)/2) to the transfer momentum ¢ where 6,
is a deflection angle in the Coulomb field. But if one works with the
transformed amplitude (2.11), then it is enough to change, in the nu-
clear eikonal, the impact parameter b in asymptotics by b, in the range
of contact of nuclei, and the probability flux v by (b/b.)v [18]. The value

b, =a+ Vb? + a?, (2.15)

where @ = n/k = (R./2)(U.(Rc)/E) is a half-distance of the closest
approach in the Coulomb field at b = 0, and U. = Z;Z5¢%/R. is the
Coulomb potential at the point of the characteristic radius of a charged
system.

As an example, Fig.2 shows differential cross sections calculated for
scattering of '13¢ and !4 on several nuclei at different energies. The
experimental data are taken from {15], [16], [19], where the fit of param-
eters of the Woods-Saxon optical potential was made on the basis of nu-
merical solutions of the wave equation. We used the same parameters in



our calculations with the help of eqs.(2.13)-(2.15) employing the analytic
eikonal phases for the symmetrized Woods-Saxon potential. It is seen
that the Glauber-Sitenko approach with the analytic phases of eikonals
describes well the experimental differential cross sections when one uses
both the P,(8,C) (2.6) correction function (full curves for 12C' + 12¢C
and %0 + *°Ca) and P,(1,C)) and P,(1,C) (dashed) (2.9). For the
case of 13C'+ 298 Pp at E = 390 MeV, we give the results (dashed curve)
without the Coulomb distortion. One can see that in this case the dis-
tortion is very important to be included, while in two other cases at
larger energies and lower Coulomb barriers its influence may be practi-
cally neglected. As one can expect, the distortion appears in scattering
on heavier nuclei and at relatively low energies. In other quoted cases
it turned out to be of no importance.

Table 1. Comparison of total reaction cross sections in the Glauber-
Sitenko approach with the exact calculations performed in [15,16,19].

Reaction | Eiap, MeV [ o (SF),mb | 0&°(F), mb |

1604+40Cy 1503 1983 1996
1604907y 1503 2711 2749
16()4.208py, 1503 3614 3602
13(C4.208py, 390 2868 2898
120412¢ 1016 1093 1040
12¢412¢ 360 1147 1258

In Table 1, we report the comparison of exact calculations of total re-
action cross sections, performed in [15] and [16] by numerical calculations
of the wave equation, and our results obtained according to the formula
(1.1) with analytic phases of nuclear eikonals. It should be stressed that
the exact calculations were done with the Woods-Saxon potential, and
our calculations with its symmetrized form but at the same parameters.
Moreover, for light nuclei 2C +12C these potentials significantly differ.
One more difference is that, in exact calculations, results depend both
on the real and imaginary parts of an optical potential while in the case
of high-energy approximation (1.1) they are formed only by its imagi-
nary part. Nevertheless, the difference in calculations does not exceed



1% of the cross sections for all the cases except for 12C + 2C at 390
MeV, where it equals 9% because of an increased role of the real part of
the potential at the relatively low energy £ = 360 MeV.

3 The model of broken trapezium and the to-
tal reaction cross section

In the previous section, we convinced that the eikonal nuclear phase
with the profile integral (2.4) in the form of symmetrized Fermi dis-
tribution ugpr(b) describes fairly well the differential scattering cross
sections and total reaction cross sections. The shape of this function
is such that, surface of the radius R is singled out, where ugp(R) =
1/2 and uz(R) = —1/4a, so that the decrease of this function occurs
in the "layer” of thickness 4a from the value usp(b < R — 2a) ~ 1 to
usr(b > R+ 2a) = 0. This shape can be simulated by the usual trapez-
ium. For example, this model allows one to calculate (1.1) for the total
7 A-reaction cross section [20]). Nevertheless, in the case of heavy ion
reactions, this model turns out to be too rough, as it does not take into
account a more smooth behavior of the function usg atb < Ro = R—«a
b > Rs = R + a. This shortage is to be improved if, at these points,
additional kinks are introduced so that the slopes of sides of relevant sec-
tions are determined by the derivatives wsp(R1 < b < Ry) = —1/2a and
Usp(R3 < b < Ry(s)) = —1/2a(—1/3a) (see Fig.3) where Ry = R — 3a
and Ry5) = R + 3a(4a). On the basis of this model, we give the nec-
essary formulae and comparisons with exact calculations, as well as the
analysis of experimental data.

In expression for the total cross section (1.1), we use the eikonal phase
in approximated form (2.10), and effects of the Coulomb distortion of the
trajectory are included by changing b — b.(b) and v — (b/b.)v ~ [1 —
U.(R.)/E]'/*v, where b, is defined by formula (2.15). Then, according
to (2.15) we have bdb = (b, — a)db. and

oR = 2m /000 dbb (1 —T(be)) =2r /; dbe (be—a) (1- T(bc)>, (3.1)

10



where the transparency function is defined as

. _\ usr(bg . ~
T(b.) = e=x(be) <To> sr(be) , To = e~ X0,
- X0 4RWO

Xo = 1—UC(RC)/E’ X0 = ho

Now we approximate the function ugp(b) with the help of the broken
trapezium uy(b):

upy = O(R1 —b) + > u{M(b), (3.3)

n=2,3,4(5)

Z20p (1,0). (3.2)

where every section from the three of them, displayed in a surface, is
given as

n 1
u = |4, + (R - b)] O(Ry — 5)0(b — Ry(ny). (3.4)

Here

6—n—0bp4

—
Ry=R+(2p-5-46y5)a, p=1,..5; k(n)=n—-1-6,5 n=2,..5. (3.6)

Substituting (3.3) into (3.2), and then into (3.1), and introducing the

width for each section

A, =R, - Rk(n) =(2+éb,5)a, n=2,..5, (3.7)

A, = an =4n—24260,2)a, n=2,..5 (3.5

after elementary integration we obtain

{QWAan(n)Ck(n) + FA?L—

aR:an[ Rl] (1—TO)+ 3

n=2,3,4(5)
n n C n a
— o IR Cbin) s fen, (3.8)
Xo
An jiln/a an 1 = An/a ]
N5 -Tg" "+ — (1 -T5m/ ,
[ Rim)Criny  ° Ri(n) C(n) XO( 0 )
where
7 1
Crny =1~ £ 1o K. U(Be) (3.9)

11
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Figure 3: Symmetrized Fermi function (dotted) with parameters of the
radius R and thickness a, and its approzimation by the broken trapezium
in the surface region (full line). Points show the phase of the square well
potential with the equivalent radius R,.

is a factor that appears side by side with other modifications (3.1) and
(3.2) due to the Coulomb distortion. When the Coulomb field is absent,
we have n = 0, @ = 0, and then in (3.8) one should substitute Crny = 1

and T — Ty = exp Xo, which gives

or =R (1 -Tpo) + Z {Qﬂ'Aan(n) + AL

n=2,3,4(5)
nR n - a
o In ) pn=tnfon, (3.10)
X0
Ay Apn/a ay 1 An/a jl
1 - —qpnlen gy In — (p _qin/an) | L
[ Riwmy 7° Rin) X0 ( 0 )

Usually the parameters of potentials in nucleus-nucleus collisions at
intermediate energies are such that the quantities xo > 1 and Ty < 1
(strong absorption in the internuclear region).This enables one to use
the following expression for quantitative estimations of the cross section

oR~TRI+ Y (2mALRyy + TAZ). (3.11)

n=2,3,4(5)

12



It is, as it should be expected, the sum of area of the circle with the
radius By = R — 3a and areas of the outer ring with the width about
(6 +T7)a.

Table 2. Distribution of contributions to cross sections of the
160+ 4Z reactions from inner and peripheral regions in different models
with the Coulomb distortion and without it. (Definitions of sections I-V
are given in Fig.3).

Ltarget | model | 1 [ I 111 [ IV (V) I (Rs, 00) | an,m
9Ca SF 517.7 | 425.5 | 538.4 | 462.5 (494.9) 59.8 2036.3
SF+C | 517.7 | 425.4 | 533.3 | 382.4 (454.6) 51.7 1982.7

BT 517.7 | 425.5 | 537.5 | 407.1 (590.3) 2050.9

BT+C | 517.7 | 425.5 | 531.8 | 465.5 (549.2) 2025.3

U 517.5 | 424.8 | 528.3 | 13.4 (13.4) 1530.7

U+4C | 5175 | 424.9 | 537.5 | 50.8 (50.8) 1484.0

07r SF 568.3 | 500.7 | 657.3 | 707.9 (917.2) 172.8 | 2816.8
SF+C | 568.3 | 500.7 | 656.8 | 667.7 (845.1) 139.9 | 2710.8

BT 568.3 | 500.7 | 657.2 | 770.6 (1008.5) 2734.7

BT+C | 568.3 | 500.7 | 656.7 | 749.1 (934.7) 2660.4

U 568.3 | 500.7 | 656.2 | 96.6 (96.6) 1821.8

U +4C | 568.3 | 500.7 | 655.3 | 13.9 (13.8) 1738.1

2% ph SF 1495.2 | 687.2 | 805.7 | 634.2 (765.3) 95.6 3849.0
SF+C | 1495.2 | 687.2 | 783.9 | 500.9 (587.5) 60.2 | 3614.1

BT 1495.2 | 687.2 | 804.7 | 737.6 (899.6) 3886.8
BT4C | 1495.2 | 687.2 | 784.5 | 634.8 (683.4) 3650.3
U 1495.0 | 686.1 | 715.9 2897.0
U+C 1495.0 | 685.2 | 513.0 2693.1

In Table 2, we report the total reaction cross section calculations
for collisions of the 180 projectiles and target nuclei °Ca, %°Zr, 208 Pp.
Contributions from different regions of b are singled out in accordance
with its values, shown in Fig.3 for the model of broken trapezium. The
results are given for three models which describe distributions of the
imaginary part of the optical potential: symmetrized Fermi function
(SF), broken trapezium (BT), and uniformed distribution (U) with the
radius R, = R[1+ (7/3)(ra/R)*"/? being equivalent to the SF-form.
In all three cases, calculations are shown when the Coulomb distor-

13



tion was taken into account (+C) and neglected. Kinetic energy of the
projectile nucleus '°0 is £ = 94 MeV/N, and the parameters R and
a are the same as in [19] where the cross sections were calculated by
numerical solutions of the wave equation with a Woods-Saxon poten-
tial (F-distribution). These cross sections are given in Table 1 and are
equal for the mentioned target-nuclei as follows °Ca - 1996 mb, °Zr -
2749 mb, 2°Pb - 3602 mb. In Table 2, we compare these exact values
with calculations in the Glauber-Sitenko approach. One can conclude
that the square well model (U-distribution) that is sometimes used for
experimental data analyses (see, for instance, [6]), is highly approxi-
mate. Indeed, calculations according both to the realistic SF-model and
the broken trapezium (BT) show that contributions to the total cross
sections, caused by the inner (b < R) and outer (b > R) interaction
regions, are approximately equal. This means that the surface region
and its structure play a highly important role in the formation of a total
reaction cross section. But the trapezium model, owing to its simplicity,
enables us to understand the mechanism of composition of cross sec-
tions from selected sections in the range of interaction surface. Then,
the Coulomb trajectory distortion reveals mainly itself in the peripheral
region, and when this effect is taken into account, the decrease of the
cross section by about 20% occurs in the case of heavy target-nucleus
298 Ph and by 10% at interactions with nuclei of medium atomic weight.
It is clear that, as the collision energy decreases, the Coulomb trajec-
tories deflect more far from the region of direct contacts of nuclei, and
therefore, the reaction cross sections diminish faster.

4 The problem of ambiguity of the potential.
Conclusions

One can mention one more advantage of the analytic approach, namely,
the possibility to understand the mechanism of revealing the so-called
continuous ambiguity in the choice of potential parameters. This is a
consequence of the fact that, owing to strong absorption in the inner
region, the fit to experimental data mainly depends on the peripheral
interaction region {21]. For the first time it was shown with an example
of calculations of the cross sections of fast alpha particles scattered on
atomic nuclei [22], when instead of the Woods-Saxon potential, a poten-

14



tial of the exponential form has been chosen as [U exp(R/a)]exp(—r/a)
that considerably differs from the Woods-Saxon potential inside the in-
ner region and coincides with it at r > R. Nevertheless, by means of
variations of the parameter a and the ”strength” [Uexp(R/a)] of the
new potential, one could explain some set of data on differential cross
sections. Moreover, it is seen that the same value in brackets can be
obtained at a continuous set of collections of R and U. In Sec. 3, we
saw that it was possible to explain experimental data when the primary
phase is replaced by a broken trapezium that, in contrast to the expo-
nential form, retains its form inside the inner region whilst the behavior
in the peripheral region is approximated by linear forms.

To investigate the origin of the ambiguity in our approach it is not
necessary to replace the initial symmetrized Woods-Saxon potential by
another, in particular, by approximating it in the peripheral region. The
ambiguity mechanism is revealed immediately in the expression for the
cross section itself (3.1). To this end, we express this cross section with
the help of substitutions b = 3R, C' = R/a in the following form:

orp = 2T R? [1 - U—EER—)J F(C,D), (4.1)

cm

where

F(C,D) _ /OOO dﬂ ﬂ [1 _ e—O4391DUSF(ﬂ,C)Pa(ﬁ,C) , (42)

A, 1 Eom
D= /———— RW,, €om = . 4.3
Ay + A ecp 0 Ay (43)

Here the symmetrized Fermi function usr(3,C) and correcting func-
tion P,(8,C) are given by formulae (2.5) and (2.6), respectively. The
common parameter of the problem D depends on the combination of
such input values as atomic numbers of nuclei 4; and A,, collision en-
ergy €:m(MeV) per one nucleon of the projectile nucleus, a depth of the
imaginary part of a potential Wy(MeV) and the radius R(Fermi). The
function F(C, D) is to be calculated only once for all the region of avail-
able changes of values C' and D, and then it is used for scanning their
values when comparing with experimental data. In Fig.4, as an illustra-
tion, the relevant curves F(C, D) are shown in the interval of changes of
D from 25 to 350, a step by 25 units, as a function of C in the interval

15



of 5+ 20. As a matter of fact, such curves cover continuously all the
surface of the figure.

It is convenient to construct the procedure of selecting parameters of
the imaginary part of nuclear potential as follows. An experimental cross
section at a given energy should be divided by 27 R?[1 — Uc(R:)/Een]
to obtain F(C, D) and to have the possibility to compare it with the
calculated ones in Fig.4. Then, the parameters of radii R and R, are to
be chosen to fix this value. Next, on the F(C, D) plot, a horizontal line
should be drawn, and by points of its intersections with the curves one
can find the values C' and D (continuous set), and according to them
one obtains the parameters of diffuseness a and Wp. It is interesting to
mention that at every given value of radius R there exists a continuous
set of parameters a, so that all phase curves ®n(b) intersect in the
range of the surface at one point & = R, and to each of them there
corresponds the parameter Wy, different from others. As in our approach
a, R and Wy are the parameters of the potential itself, the ambiguity
of phases means indefinite choice of the potential. Then, for example,
to the intersection point of phases at b = R, there corresponds the
point of intersection of the potentials in the region of its diffuseness
7~ Rcos™! 6., where 6. ~ U.(R.)/E.p. To select the sets of physically
important parameters, one can use the known procedures of conservation
of a "volume” of the potential and its mean-root squared radius, as well
as other physical criteria. All this fitting procedure is to be repeated
if, at the beginning, other values of radii R and R, are chosen. So, we
see that the transparency T'(b) in fact does not depend on the three
parameters a, R, Wy separately, but on two combinations among them
only as RWy and C' = R/a. These combinations are, to an extent, the
calibration, to be used in the procedure of fitting the cross sections to
experimental data narrowing in this way the available sets of parameters.

Summing up, one can conclude that at energies of primary nuclei
beginning ;from 10 MeV/N and more, the Glauber-Sitenko approach is
quite acceptable for calculations and analysis of differential cross sec-
tions. One can also mention that tested certain form of analytic expres-
sion of the profile integral (2.4) for the realistic optical potential with
the SF distribution enables us not only to accelerate substantially all
computational procedures, but, which is more important, to develop the
analytic methods of observable calculations, and, in this way, to analyze
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Figure 4: Plot of continuous ambiguity of fitting parameters R, a, Wy
of the imaginary part of potentials with a shape of symmetrized Fermi
Junction when the reaction cross section depends on their combinations
as C = R/a and D = 4RWy/hv.

the mechanism of cross section formation, as well as to study their ob-
vious form of the dependence of potential parameters, etc. Moreover,
dealing with explicit expressions for amplitudes and cross sections one
can simply take into account the influence of the Coulomb distortion on
final results of calculations. For this purpose, the formal renormalization
of the impact parameter should be done. At the same time, the initial
scheme of high-energy approximation does not change. Furthermore, in
all the cases of calculations, both for differential cross sections of elastic
scattering and the total reaction cross sections, we have convinced our-
selves that our analytic approximations for eikonal phases give the good
coincidence with the results of numerical solutions of the Schroedinger
equation at the same potentials of interaction.
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JlykpsHoB B.K., CnoBunckuii B., 3emnsanag E.B. E4-2000-103
O ponu sOepHOH MOBEPXHOCTH B (POPMHPOBAHMU IOJIHOTO CEYEHHUS
SA1pO-AEPHBIX pEaKLMH

B noaxone I'nay6epa—CureHko pa3paGoTaHa cxema pacyeTa sipo-sIepHBIX cede-
HHii TPH MPOMEXYTOYHBIX SHEPTHAX C MCIONb30BAHHEM aHATUTHYECKOH 3HKOHAIILHOM
¢azbl o cuMMeTpu3oBaHHOro mnoreHuuana Bynca—Cakcona. IlomyyenHble Ha 3TOM
ocHoBe mu(epeHIHaIbHbIE H TONHbIE CEYEHHs XOpOLIO COBMAJAIOT C pe3yIbTaTaMu
YHCJIEHHBIX pElleHHH BOJIHOBOrO ypaBHeHHs. [loctpoeHa HarnsaaHas Monens ¢assl, 4TO
M03BOJISET pa3le/IUTh B MOJHbIX CEYEHHSX PEeaKlMil BKJIaibl OT BHYTPEHHelH U nepude-
puuecKoii obsacTeil B3aUMOJEHCTBUA. YCTaHOBIEHA BaXHas POJib SAEPHOM MOBEPXHO-
cTd B hOPMUPOBAHHH CEYEHHH peaKliH, H3y4EHO BIMSHHE HAa HUX KYJOHOBCKOTO MOJIA.
BhigBleHa TNpUpPOfa HEOOHO3HAYHOCTH ONTHYECKMX MOTEHLMAIOB, MOJy4aeMbIX
NIpY MHTEPIPETALlMH 9KCIIEPUMEHTAIbHBIX CEYEHHH.

Pa6ora BoinonHeHa B Jlaboparopuu teopernyeckoi ¢usuku uM. H.H.Boromo6osa
u JIabopaTopuu BBIYMCIIUTENIBHOM TEXHUKH M aBToMaTu3auuu OWSIH.

INMpenpunt OGbEANHEHHOTO MHCTHTYTa AAEPHBIX HccnenoBanuii. ly6ua, 2000

Lukyanov V.K., Stowinski B., Zemlyanaya E.V. E4-2000-103
On the Role of Nuclear Surface in Heavy Ion Reaction Cross Section
Formation

The Glauber-Sitenko approach is developed for calculations of the nucleus-nucle-
us cross sections at intermediate energies on the basis of the analytic expression
of the eikonal phase for the symmetrized Woods—Saxon potential. Calculations show
that the differential elastic and total reaction cross sections occur in a good agreement
with those obtained by numerical solutions of the wave equation. For the total reaction
cross section, an instructive model of the phase is suggested that allows one to separate
contributions from internal and peripheral regions of interaction. An important role
of the surface is established in formation of the total cross section, and effects
of the Coulomb field are studied, too. The nature of the continuous ambiguity of optical
potentials is ascertained for interpreting experimental data.

The investigation has been performed at the Bogoliubov Laboratory of Theoretical
Physics and at the Laboratory of Computing Techniques and Automation, JINR.
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