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1 Introduction

Since the discovery of the high temperature superconductivity in cuprates, it
has been believed by many researchers that an electronic mechanism could be
responsible for the high values of T,. The accumulated experimental evidence
of the singlet d,2_,2-wave superconducting pairing in high-T, cuprates strongly
supports this idea [1, 2]. At present, various phenomenological models for the
spin-fluctuation pairing mechanism are known [2, 3]. Numerical finite cluster
calculations also suggest dy2_,2-wave superconducting instability for models
with strong electron correlations [4]. Anderson [5] was the first to stress the
importance of the strong electron correlations in copper oxides. He proposed to
take them into account in the one-band two-dimensional (2D) Hubbard model
[6] in the vicinity of half-filling,

H=—t Z c}acjg + Uznnnu, (1)

(ij)o 7

where ¢ is an effective transfer integral for the nearest neighbor sites, (ij), U is
the repulsive Coulomb single-site energy. A number of attempts to obtain su-
perconducting pairing within the microscopical theory for the Hubbard model
have been made.

Several papers considered the Hubbard model (1) in the weak correlation
limit, U < W, where W = 2zt is the bandwidth, z = 4, in a 2D model. In
the framework of the conserving fluctuation exchange approximation (FLEX),
self-consistent systems of equations for the normal and anomalous one-electron
Green functions were solved [7]-[10]. In the vicinity of the antiferromagnetic
(AFM) instability near half filling, dy2_,2-wave superconducting pairing with
temperature T, ~ 0.02 ¢t was obtained. These direct numerical solutions of the
strong coupling Eliashberg-type equations for the Hubbard model in the weak
correlation limit unambiguously predict the occurrence of a dj2_,2-wave pair-
ing mediated by spin fluctuation exchange. Nevertheless, the superconducting
solution was found only in a narrow range of U, very close to the AFM insta-
bility in the model. Higher order corrections to the effective interactions can
also be important [11].

A realistic description of the cuprates is obtained in the strong correlation
limit, U > W, however. The superconducting pairing due to the kinematic
interaction in the Hubbard model (1) in the limit U — oo was first proposed
by Zaitsev and Ivanov [12]. Similar results were obtained by Plakida and Sta-
syuk [13] by means of the equation of motion method for the two-time Green
functions (GF) [14]. The mean-field approximation (MFA) considered in these
papers yielded s-wave pairing, which is irrelevant for strongly correlated sys-
tems [15]. Later on, the GF approach to the study of the MFA of the t—J model
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[15, 16] resulted in d,2_,2-wave superconducting pairing due to the exchange
interaction J. Self-energy corrections to the ¢ —J model were considered by
Izyumov et al. [17] within a diagram technique for the Hubbard operators and
by Plakida et al. [18] within a projection technique for the GF. In the latter
paper a direct numerical solution of the strong coupling equations in the self-
consistent Born approximation demonstrated the occurrence of d,z_,2-wave
pairing mediated by AFM superexchange and spin fluctuations.

Mean-field type approximations of the strong correlation limit U > W of
the original Hubbard model (1), within the projection technique for GF, were
reported in a number of papers. The use of the Roth method as a decou-
pling scheme for the calculation of higher order correlation functions resulted
in d,2_y2-wave superconducting symmetry [19]. To escape uncontrollable de-
coupling, Avella et al. [20] imposed kinematical restrictions to the Hubbard
operators (the Pauli principle) to obtain superconducting solutions of the s-
and d-type symmetry. Later on, Stanescu et al. [21] showed that the supercon-
ducting pairing for conventional electron (hole) pairs in MFA was absent and
proposed a pairing mechanism for the composite excitations 7;;, = ci;n;s (with
(¢,7) being the nearest neighbors). The use of the Roth decoupling procedure
for the calculation of the anomalous correlation function (ciz¢;—ynj5) and of
the Pauli principle for the calculation of higher order normal correlation func-
tions were found to emerge in high 7. superconductivity in the dy2_,2-channel
for the composite excitations [21]. However, the onset temperature following
from these calculations strongly depends on the scheme of approximation,
[19, 20] or on the particular solution [21]. In the limit of large U, extremely
small T; values are obtained as a consequence of the fact that the anomalous
correlations are induced by pairing at the same lattice site, hence they should
disappear in the limit U — oo. In addition, in the MFA, the self-energy oper-
ator caused by kinematic interaction is ignored, while as shown for the t—J
model [18], the self-energy of the anomalous GF is also responsible for the
nonlocal spin-fluctuation d-wave superconducting pairing.

An open question is whether the one-band Hubbard model (1) is compre-
hensive enough to include all the essential features of the high temperature su-
perconductors, or a model of increased complexity is needed. As demonstrated
previously, [22, 23] an appropriate description of the normal state properties
of these systems needs the consideration of a two-band singlet-hole Hubbard
model derived from the p—d model [24]. A description of the superconducting
properties emerging from this two-band model is possible within an approach
based on the GF technique [25].

In the present paper, we report an in-depth exploration of some key fea-
tures of the two-band singlet-hole Hubbard model [22, 23]. We find that the



exchange interaction in the MFA and the spin-fluctuation electron scattering
induced by the kinematical interaction in the second order result in the sin-
glet dz2_,2-wave pairing of the conventional electron pairs at different lattice
sites. To treat rigorously the strong correlations, the Hubbard operator tech-
nique within the projection method for the GF [18] is used. The equation for
the superconducting gap is numerically solved within the weak coupling ap-
proximation and T is calculated for several hole concentrations. Our results
agree with the recent investigations of the Hubbard model within the dynam-
ical cluster approximation, where the self-energy has been calculated in the
non-crossing approximation for the 4-cluster model [26, 27].

The paper is organized as follows. In Sec. 2, the general formalism and the
Dyson equation for the matrix GF in Nambu notation are derived for the two-
band Hubbard model. In Sec. 3, it is shown that the superconducting pairing is
mediated by the exchange interaction in the MFA. The self-energy is calculated
in Sec. 4 and the weak coupling approximation limit is considered in Sec. 4.2.
Numerical results and their discussion are provided in Sec. 5. Conclusions are
presented in Sec. 6.

2 General formalism

For the high-T, cuprates, the p—d model [24] is more realistic than the original
Hubbard model (1). It can be reduced to the asymmetric Hubbard model with
the lower Hubbard subband occupied by one-hole Cu d-like states and the
upper Hubbard subband occupied by two-hole p—d singlet states [22, 23]

H = BY X" +EY X2+ Y {thX70Xy
i0 i i#£),0

+EXFX + 20t (XX + He)) @

where X' = |in)(im| are the Hubbard operators for the four states n,m =
|0), |o), 12) = | 1), 0 = £1/2, = —0. The energy parameters are given
by By = € — 1 and Ey = 2F; + A respectively, where €¢; is a reference
(renormalized) energy of the d-hole, 1 is the chemical potential, and A = ¢,—e4
is the renormalized charge transfer energy (see [22]). Here and in what follows,
the superscript 2 and 1 refers to the singlet and one-hole subbands, respectively.
The hopping integrals can be written as tf;-ﬁ = Kop Vij, Vij = 2tv;;, where ¢
is the p—d hybridization parameter and v;; are the overlapping parameters
for the Wannier oxygen states. For the nearest and second neighbors they are
equal to: v; = v, jtag, = —0.14, v = Vj jig,4q, = —0.02. The coefficients
K.s depend on the dimensionless parameter ¢t/A and for the realistic value
A = 2t we have for the singlet subbands t.ss ~ K201t ~ 0.14t. Hence the
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ratio of the charge-transfer gap to the bandwidth W = 8t.zr, A/W =~ 2, so
that the Hubbard model (2) corresponds to the strong correlation limit.
The Hubbard operators entering (2) obey the completeness relation

X+ X7+ X7+ X2 =1, (3)

which rigorously preserves the constraint of no double occupancy at each lat-
tice site 1.

To discuss the superconducting pairing within the model Hamiltonian (2),
we define the two-band four-component Nambu operators X} and X;,, where

XL = (XP X7 X7 X[°) (4)

and X, is obtained from (4) by Hermitian conjugation. The pairing correla-
tions of these operators are described within the GF approach. The two-time
anticommutator retarded GF associated to the site (7, 7) is a 4 x 4 matrix

Gijolt = ') = —ib(t — ) ({Xio (), XL ()}) = (Xio (&) | XL, (D)), (5)

where Zubarev’s notation [14] was used. The (q,w) Fourier-representation of
the GF is defined by the equation

+00

~ 1 —iw(t—t' 1 iq-(i—j) A

Gurlt =¥) =7 [ e O GT e Gogle).
—00

To get the QP spectrum of the system, we use the equation of motion method.
Differentiation with respect to t of the GF (5) and use of the Fourier transform
(6) result in the following equation [25]

waija(w) = 0ii X + (Zio |X]Tg)>w, (7)
where Z;, = [Xw, H] and

x2 0 0 xs
- O O 0 x1 x3 O
= ({Xi0, XL}) = .
=X XN =| g 08

x5 0 0 xi

Assuming that the system is in the paramagnetic state, we get for the diagonal
terms xo = (X2 + X77) = (X2 + X7%) and y; = (X2 + X7%) = (X +
X77) . In view of (3), they fulfill the relationship xo = 1 — x; = n/2, where n
denotes the hole concentration. The correlation function x3 = (X??) provides
a measure to the statistical average of the singlet destruction at the i-th site.
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Using the definitions of the Fermi annihilation operators: ¢;; = X7 + 20 X7?
and the identities for the Hubbard operators, X)X = 0, X72X7%? = 0,
XM X = X2 we get

X7 = XX = cyen, (8)

hence (X??) describes the pairing at the i-th lattice site in two subband. It
vanishes for the d;:_,2-wave symmetry:

X3 = <sz2> =0. (9)

The chemical potential y is calculated from the equation for the average num-
ber of holes,
n= (N = SX7) +2(XE) (10)
o
Using the projection technique described by Plakida, [28] the operator Z;,
which enters the last term of Eq. (7) is split into two parts:

ic = [Xz'aa H] = ZEilUXlo' + Zf;T) (11)
l

Here, the linear combination of the operators X, includes the effect of time
averaged forces (the mean-field solution). The irreducible part, Zfo , originates
in the inelastic quasi-particle scattering. It 1s defined by the orthogonality con-

dition to the one-particle operators, ({Zw , a}) = 0. From this definition
we get the frequency matrix:
Eijtf = AZN)Z'l ~uo ({[sz H] A]Ta}>- (12)

If the finite lifetime effects due to ZAi(;T) in (11) are neglected and the expres-
sion (12) of the frequency matrix is used, then Eq. (7) provides the zero-order
GF within the generalized MFA. In the (q,w)-representation, its expression is
given by _
G(a,w) = (wio - A (@x ) %, (13)
where 7y is the 4 X 4 unity matrix.
Differentiation of the many-particle GF (7) with respect to the second

time ¢’ and use of the same projection procedure as in (11) result in the Dyson
equation for the GF (5). In the (q,w)-representation, the Dyson equation is

- 1 -~ —1 -
(Gola,w)) = (GYa,w) - So(q,w). (14)
The self energy operator 3, (q,w) is defined by
To(a,w) = o(q,w) + Zo(q, w)Go(q,w) T, (q, ), (15)
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where T, (q,w) = (24 | Zlinty) qwX ! denotes the scattering matrix. From
Eq. (15) it follows that the self-energy operator is given by the proper part
of the scattering matrix that has no parts connected by the single-particle
zero-order GF (13):

2 (q, ) —I«Z(zr) | Z ir) >> (prop) X 1_ (16)

The equations (13), (14), and (16) provide an exact representation for the
GF (5). Its calculation, however, requires the use of some approximations for
the many-particle GF in the self-energy matrix (16) which describes the finite
lifetime effects (inelastic scattering of electrons on spin and charge fluctua-
tions).

3 Mean-field approximation

3.1 The frequency matrix

In the MFA, the calculation of the frequency matrix and of the zero-order
GF (13) requires the knowledge of the quantity A;;;, Eq. (12). This needs the
equations of motion of the Hubbard operators:

Z{ﬂ = [X£727H] (El + A XU2 + Z (tzzlszrl’)(lgl2 - 20t WU'X )

l#1,0'
— Y XP (X + 2083 X7 (17)
I#i
27 = [X{°,H]=EBXY" + Y (t/Bl, X"~ 20t} B2, X?)
I#i,0!
— Y XP (X + 20t X70) (18)
I#i
and Z¥ = —(272)',  Z2° = —(2%)". Here, B, are Bose-like operators
describing the number (charge) and spin fluctuations:
5 1
BZ, = (XP+X{")0uo+ X% 6p5 = (5Ni + 57)do10 + 57801, (19)
1
BZO'U' = (§N + Sz)(s g — Sg(sgl(—,, (20)
Bwa’ = 5 Bfga ’ Bwa’ - 50 'o Bwu’7 (21)

where use was made of the completeness relation (3), the number operator
N;, Eq. (10), and the spin operators Sf = 3, 0X7%, S = X7°. With these



prerequisites, the calculation of the matrix (12) is straightforward,

qu’jq

= i ) &

ijo

where @;;, and Aija are 2 X 2 matrices, while the superscript (T) denotes the
operation of transposition. We have,

22 21
&)ija — 6ij ( (El + A)X? + ay ay )

(a')* Eixi + aZ
K22 K21
v - ( ). 23)
? (Y kI
A b2 byt L, Ly,
Aijo = 03 < _p2toplt ) + (1= 05)Vij ( L]21 L1]1 ) . (24)
o o ij& ijo
In Eq. (23), the quantities a2” determine energy shifts:
0 = Y Vim (Kaa(XPXZ2) — Kiy(X20X()), (25)
m#i
@' = = Vi (Ko X7°XZ2) + K1y (XP2XD))
m#i
— 20 Y Vinks ((X7OX2) - (X2 X7%) (26)
m#i
while the quantities Kgﬁ define renormalized hopping parameters,
K1?72¢7 = ngxfj - K11<X02X]20), (27)
K:;lg— = Kll(XU +1- n) K22<XiO2X]?O>1 (28)
1
K3, = 20Kl - on - (XPXD), (29)
where x{7 stands for the static charge and spin correlation functions
CcS 1
Xij = Z(NiNﬁ + (SiS;). (30)
In Eq. (24), the site independent correlation functions are given by
b7 = D Vin{Kn((XT2X72) — (X7 X7D))
m#i
- 20Ku((X72X7) +(XPPX00)} (31)



b = =3 Vil Ku((XPX5) - (XPX5))

o

m#i
— 20K((X7 X720 + (X7 X7}, (32)
b2 = Y Vin{ K (X7 X77) + (X7 X72))
m#i
— 20K (X7 X7) = (X° X))} (33)

The site-dependent anomalous correlation functions are convenient to wrlte as
follows

L7, = —20Kn(XP"N;), (34)
Ly, = —20—1{21(( - N)X2), (35)
L, = §(K22(X?2Nj>—K11<(2_Nj)X?2>)- (36)

According to Eq. (8), the anomalous correlation functions describe the pair-
ing at one lattice site but in dlfferent subbands: (X2N;) = (XMX°N,) =
(cuycirN;).

3.2 Anomalous Correlation Functions

Let us consider anomalous part Aiﬁ,, Eq. (24), of the frequency matrix. Con-
cerning the site independent anomalous correlation functions in Egs. (31)-(33),
we can show that under the assumption of d;2_, pairing they vanish identical-
ly. Indeed, each of the sums occurring in these equations vanishes identically
due to the fact that the summands in the g-representation are odd functions.
Consider for instance the first sum in Eq. (31),

2?; Vim(XZ2X52) = Z V(Q)(X32X2).

In the right hand side, the sum over q remains invariant under those changes of
the summation vector q which leave the Brillouin zone invariant, in particular
under the permutation of the components ¢, and ¢, of q (in the tetragonal
phase). Such a transform, however, leaves the interaction V(q) invariant while
resulting in the change of sign of the anomalous correlation function (XJ2X°2)
having the dg:_j2-wave symmetry. Thus, the sum over q equals zero, hence
the correlation function at the left-hand side vanishes.

To calculate the site dependent contributions to the matrix, Eqs. (34)-(36),
we should derive equation for the anomalous correlation function (XP2N;).
In Refs. [19, 21], to calculate it the Roth procedure was applied based on
a decoupling of the Hubbard operators on the same lattice site by writing
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the time-dependent correlation function in the form: (c; (¢)|ci+(t')N;(t)) =
(X2(t)| X (#)N;(#)). Since for the Hubbard operators we have the identity:
X = XX7P for any intermediate state |7), the decoupling of the oper-
ators on the same lattice site is not unique (as has been really observed in
Refs. [19, 21]) and unreliable resulting in underestimation of single site strong
correlations. However, a direct calculation of the correlation function (XP2N;)
can be performed if one consider the equation of motion of the corresponding
commutator GF ‘
Lij(t — ') = ((X*() | N;(¢))-

After differentiation with respect to the time variable ¢ and use of the Fourier
transform (6), we get the equation:

(W= By) Lij(w) = 205(X;%) + 3 20t [ (X7 X7 ING))o

m#i,o

= ((XPPXZIN))o] - (37)

Here we have neglected contributions from the intraband hopping integrals
in the Hubbard Hamiltonian (2), while have retained the interband hopping
which mediates the exchange interaction. This approximation can be proved
if one takes into account that the pair excitation energy |Ep| ~ A > [tif|.
Therefore, the intraband hopping integrals give only a small renormalization
of the large excitation energy |E,|, while the exchange interaction between
subbands results in nonzero superconducting pairing in one subband. Eq. (37)
with the condition (9) provides the expression of the GF of interest, L;;(w).
The statistical average (X)?N;) at sites i # j can now be evaluated from the
spectral representation theorem:

02y _ [t dw 2y 1 1
(XEN;) = /—oo 1 —exp(—w/T) m;.:’a 2atim{ wIm[w - Ey+1e
X (((X?BXSLJINj»wHe - <<X52X$2|Nj>>w+ia)] } (38)

We consider below the case of hole doping. Then the Fermi level (which
defines the zero of the energy) stays in the singlet subband, hence in the
Hamiltonian (2) the chemical potential 4 ~ A and the energy parameters,
Ey ~ E; ~ —A. The contribution to the above integral coming from §(w— E5)
can be neglected since it is proportional to exp(—A/T) < 1. The one-hole
subband Green function entering the Cauchy principal value integral can be
estimated from its equation of motion to contribute a term

1 ; ]
~=Im ({7 X7 [N} wie = 0mi (X7 X7)0 (w0 — 22),
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therefore it is proportional to exp(—2A/T) < 1 and can be neglected as well.
The only non-vanishing contribution to the Cauchy principal value integral in
Eq. (38) comes from the Green function of the singlet subband:

1 _
(XPNj) = -5 ¥ 20t (XPXZN;). (39)
m#i,o
The exchange interaction is usually considered in the two-site approximation,
which is obtained equating m = j in Eq. (39). In this approximation, we get
after summation over the spin o:

12
(XPN;) = ~ 90 (XPXT) = (e ;) (40)
where we have used the identity for the Hubbard operators, X72N; = 2X7?
and the symmetry property of the anomalous averages: (X72X ”2) = —(X7?X7%).
We have therefore proved that in the MFA the intersite anomalous corre-
lation function is of the order of ¢}?/A and it is proportional to the statistical
average of the conventional electron (hole) pairs at neighboring lattice sites,
(X7?X72). This finally allows us to write the expressions of the anomalous
component Eq. (34) for the case of hole doping as following

1 iq-(i—j o 2
A = 2D AR (q) = Jy(XPPXTP). (41)
q

This result recovers the exchange interaction contribution to the pairing, with
an exchange energy parameter J;; = 4 (t;?)?/A. The anomalous component
Eq. (35) for the case of hole doping can be neglected since its contribution to
the gap equation (see Eq. (55))is extremely small, of the order of All(q)/A.

In the case of electron doping, on the contrary, we can neglect the anoma-
lous correlation function for the singlet subband, AZ? ;oo While an analogous
calculation for the anomalous correlation function of the one-hole subband
gives

Aj, = Ji (XPX)). (42)

We may therefore conclude that the anomalous contributions to the zero-
order GF, Eq. (13), originate in conventional anomalous pairs of quasi-particles
and their pairing in MFA is mediated by the exchange interaction which has
been studied in the ¢-J model (see, e.g., [15, 18]). In view of this conclusion, the
MFA nonzero superconducting pairing reported [19]-[21] in the frame of the
conventional Hubbard model (1) can be inferred to stem from the exchange
interaction, which equals J;; = 4¢*/U in this model. The exchange interaction
vanishes in the limit U — oo, a feature which explains the disappearance of
the pairing at large U [19]-[21].
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3.3 Spectrum in the mean-field approximation

Let us study at first the zero-order GF (13) in the normal state in MFA when
it can be written in the form

~ G%(q,w) 0
0 _ o\ R
Glaw = (PG 0w (13)
where the 2 x 2 matrix GF reads [22]:
A0 — [a _E a1 x2 O
Gotas) = {wro- By (% 0 ) (49

The g-representation of the energy matrix is given by

- _ [ wla) W2(q)
Bela) = <WJ2(q) wi(q) ) ' (49)

The energy spectra of the unhybridized singlets and holes are defined by the
equations

wa(a) = Ei+A+a?/xe +V2(Q)/xz,
wifq) = Bi+a?/xa +V}Ha)/x1, (46)

while the hybridization interaction is given by xo W2! = a2! + V?'(q) =
x1 W12 . The effective interaction in these equations has the form

V(e = T v (ea) (47)

where K #(q) denotes the Fourier transform of K;;ﬁ, Egs. (27)-(29), while v(q)
is the geometrical structure factor with overlapping parameters of the Wannier

oxygen states coming from the nearest and the next nearest neighbors

v(q) =23 vye7 ~ 8u1y(q) + 817/ (a), (48)
i70

where y(q) = (1/2)(cos g, + cosgy), 7' (q) = cos gy cos g .
From Eqgs. (44) and (45) we find that the off-diagonal matrix elements of
the zero-order GF can be neglected since they are of the order |¢*?|/A and

appear to give a small contribution to the density of states [22]. We are thus
left with the diagonal form of the zero-order GF,

40 _ [ xeo/lw—Qa(a)] 0
G = (M ) @
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where the hybridized spectra Q,(q) for singlets (w=2) and for holes (ax=1)
are given respectively by

2,1(a) = glon(a) + w1 (@) = 5 {n(a) ~ (@ + AWPWS2Y (50)

2

To get a closed solution for the zero-order GF, the correlation functions enter-
ing (23) are calculated self-consistently. The energy shifts a®® (25) and (26) are
readily calculated by using the spectral representation of the GF (49). Howev-
er, the calculation of the two-particle correlation functions Kf;’g in (27)-(29)
requires the use of some approximations. In Refs. [19, 21], the Roth’s proce-
dure was used that resulted in the decoupling of the Hubbard operators at the
same lattice site, e.g., (XP?X7%) = (X7 X72X?°) . As discussed in Sec. 3.2, it is
possible to calculate this correlation function by using the equation of motion
of the many-particle GF. Due to the large pair excitation energy |Ep| ~ A
the contribution of this correlation function appears to be small, of the order
(ti7/A)?, and can be neglected. Finally, to evaluate the correlation functions
in Eq. (30), we neglect the charge correlations and decouple the product N;N;
of the number operators N; at different lattice sites i # j to get

X5 = (x2)? + (SiS;). (51)

For spin-singlet states without long-range magnetic order, the GF (49) and
the one-hole spectrum (50) do not depend on spin. However, the short-range
AFM spin-spin correlations are very important and, as calculations in Ref. [22]
have shown, the spin-spin correlation functions (S;S;) in (51) bring significant
contribution to the renormalization of the dispersion relation (50). Under large
spin-spin correlations, one finds a next-nearest neighbor dispersion at small
doping values. Under decreasing intensity of the spin-spin correlations, the
dispersion changes to an ordinary nearest neighbor one with doping.

To summarize the study of MFA let us we consider a particular case of
hole doping with the chemical potential in the singlet subband. In that case
we can restrict our studies to the 2 x 2 matrix GF for the singlet subband:

62 = (i) | X X7 (52)

By taking into account the normal part of the GF in the diagonal form,
Eq. (49), and the anomalous part of the frequency matrix for the singlet sub-

band, Eq. (41), we can write the GF (52) in the form:

G2 (q,w) = xo{who — V(@) — ¢2(Q)P} 7Y, (53)
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where 7y, 71, 73 are the Pauli matrices. Here we introduce the gap function in
MFA for the singlet subband ¢2%(q) = A??(q)/x2 induced by the exchange
interaction. From Eq. (41) we get

#*(q NX2 3 J(k-q) (XZ X2, (54)

where we introduced the Fourier component for the nearest neighbor exchange
interaction, J(q) = 4Jv(q). To compare our results derived for the Hub-
bard model with that ones for the ¢-J model we disregarded here off-diagonal
anomalous parts of the frequency matrix, Eq. (36), which effectively gives only
renormalization to the exchange interaction. Apparently, in the one subband
t-J model off-diagonal anomalous correlation functions could not appear.

The anomalous correlation function for the singlet subband now can be
calculated self-consistently from the anomalous part of the GF (53) that results
in the following BCS-type equation for gap function (54) in the MFA:

¢7(q Z J(k-q ;5]32((11‘{)) tanh 22 22‘), (55)

with the quasiparticle energy &;(k) = [, (k)? + ¢22(k)?]"/2. This equation
is identical to the MFA results for the ¢-J model (see, e.g., [15, 18]).

Analogous equations can be obtained for the electron doped case, n < 1,
with the chemical potential in the one-hole band by considering GF for the
Hubbard operators XD7, X270,

4 Self-energy corrections

4.1 Self-consistent Born approximation

The starting point for the calculation of self-energy corrections is the (r,t)-
representation of the self-energy (16):

Dot — ) = X128 @) | 2801 @)y 5. (56)

The operators Z(") are obtained from Eqgs. (17)-(18) by substltutmg the Bose-
like operators Bwa, by their fluctuating parts: JBWU, = Bwa, (Bwa,)
which describe charge and spin fluctuations around the averages following
from Egs. (19)—(21). The terms which contain X? operators, whose contribu-
tion to the low energy dynamics of the system is assumed to be small (since it

involves large charge fluctuations at one site) can be disregarded.
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The self-energy (56) is calculated below in the self-consistent Born approx-
imation (SCBA) (or the non-crossing approximation). In SCBA, the propaga-
tion of the Fermi-like and Bose-like excitations in the many-particle GF in (56)
are assumed to be independent of each other and therefore the SCBA results
from the decoupling of the corresponding operators in the time-dependent cor-
relation functions as follows:

(B () X1(t) By (') Xa(t')) ~ (X1(t) Xo(t'))(By (t) By (t')). (57)

Using the spectral theorem, the SCBA results in the following decoupling re-
lation for the emerging GF in the (r,w)-representation:

17 dwydw
1 2
(B X1 | By XY ] / / -
1
x5 (tanh oL+ coth —) (X, | Xo)o Im(By | ByYe,.  (58)

Within this approximation, the GF associated to the irreducible operators in
Eq. (56) can be evaluated and we get the self-energy in the (r, w)-representation,

& ~— Mza w éi'zr w ~—
Eu'a(w)ZXl(@T(Zr)() AJ)() )Xl,

M) D (—w) (59)

where the 2 x 2 matrices M and ® denote the normal and anomalous contri-
butions to the self-energy respectively:

o= (1) = ([0 ) ()

w

bt = (o i )= (e (e (@)"))

The GF (5) can thus be written as a 2 x 2 super-matrix of normal, Gjj,(w),
and anomalous, Fjjo(w), 2 X 2 matrix components:

Gigol) = < c;fjlv,(w) E,:U(w) ) _ (60)

Egs. (59) and (60) provide a closed self-consistent system of equations for the
self-energy and GF within the SCBA (58).

14



To get a tractable problem, this system is simplified using diagonal approx-
imations for the GF solution, while the matrix elements of M;j, (w) and &, (w)
are calculated keeping the leading terms only in V;;. Use of Fourier transforms
similar to (6) results in the (q,w)-representation of the contributions to the
normal and anomalous parts of the self-energy [25]:

+o00
A 1 —
My(qw) = =3 [dok®(w,wlk,q-k)
k

1 A ~
x {—;Im[PQ(“L)GﬁQ(k,wI)+P1(+)Gc1,1(k,w1)]}, (61)
3, (q,w) Z /dw1 ) (w,w |k, q — k)
{——Im[P VF2(k,wi) — POFY (k,w))]}, (62)
where
P = K3, +20 K9 Ky P _ K2 +20 K5 K11
20'K21K22 :EK221 ’ 1 20’K21K11 :EK121 ’

The kernel of the integral equations for the self-energy operators is defined in
the standard way:

+00

K™ (w,w |k, q — k) = * [v(k)[? /

dLU2
W — W; — Wy

Ve <tanh YL | coth &2 ) [——ImD( (a -k w)], (63)

with a spectral density of spln-charge fluctuations given by the commutator
GF

D)(q,) = (SalS-a)u + T(ONalON o) = X' (@.0) % x(a,),  (64)

and v(k) is given by Eq. (48). The QP energies Q,(q) of the normal state for
the diagonal GF in Egs. (61) and (62) are evaluated from

Qa,a(q) = Qa(q) - X;lM:rla(qa w= Qa(q))v (65)

where the MFA energy Q,(q) is defined by Eq. (50).
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4.2 Weak coupling approximation

Once the self-energy corrections (61) and (62) have been calculated in SCBA
and the exchange corrections to the GF, Eqgs. (53) and (54), have been estimat-
ed, we can replace the result in the Dyson equation (14) to get the one-particle
matrix GF. An important simplification of the Dyson equation (14) occurs if
we observe that the off-diagonal normal and anomalous matrix elements of
the GF, Eq. (60), are small as compared to the diagonal ones. Neglecting the
small matrix elements, the inversion of the GF matrix in (14) results in simple
enough analytical formulas.

In spite of these simplification, the numerical complexity of the resulting
integral equations which define the critical temperature predicted by the two-
band singlet-hole model is enormous. Before embarking to the full solution of
such a problem, we study a simplified, yet meaningful, limit case offered by
the weak coupling approximation (WCA), which assumes that the behavior of
the physical system is dominated by the interactions around the Fermi level.

Within WCA, the interaction kernel (63) at frequencies (w,w;) close to
the Fermi surface is factorized in the form

K® (w0, wik, q - k) ~ —~ta h( )M* (k,q - k), (66)

for |w,w;| < ws < W where wy is a characteristic pairing energy and W is
the band width. In this approximation, the effective interaction is defined by
the static susceptibility

AE(kq—Lk) = £ [p(k)]? / d°’2[__1 D) (q - K, wy)]
- |V(k)I2ReD(* (@ =k, wp = 0)] . (67)

The WCA is suitable for the band which crosses the FS. For the another
band, which is far away from the FS at an energy of the order of the band
gap, wi; =~ A, an integration over w; in Eqs.(61) and (62) is straightforward.

For a slightly doped hole system, n = 1+ 6 > 1, the chemical potential is
in the singlet band, 1 ~ A, and we can write the dispersion relations for the
two bands in the normal state, Eq. (65), as follows

Qo(q) A —p+e(q) ~ea(q), (e ~ —p+ealq) ~—A+elq), (68)

with the zero of the energy fixed at the Fermi wave-vector ex(qr) = 0 .
Integration over w; in (62) gives the following system of equations for the
diagonal components of the self-energy, ®**(q) = 20%2%(q,w = 0),

%(q) = —K58(q)+KhSi(a),
o''(q) = K},8(q) — K31 S1(q) .- (69)
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The sum S5(q) for the singlet band at the F'S is given by

Z)\ (k,q — k) ;Ekg tanh EQ(T) , (70)

with the integration over k restricted to an energy shell around the Fermi ener-
gy of the order of a characteristic energy w, of the spin (charge) fluctuations.
The quasiparticle energy is given by

&(q) = [B(a)+ | x;'2%(a) ]2, (71)

where (2,(q) is the quasi-particle dispersion in the normal state, Eq. (65).

The one-hole band lies below the FS at an energy of the order A > W.
The integration over w; in Eq. (62) can therefore be done by neglecting the
dispersion in this band in Eq. (68) as well as the superconducting gap in the
anomalous GF in Eq. (62). This results in the estimate

1 <I>11(k)
= N ;tzly(k)P A2 sc (k q) (72)
In this equation, the spin-charge correlation function

X (@) = (SqS-q) - <N N_g).

resulted from the integration over wy in Eq. (63).

A simple estimate shows that the sum S;(q) gives a small contribution,
of the order (t.;;/A)?®'(q) ~ 1072®''(q), and it can be neglected in the
system of equations (69). By taking into account the contribution due to the
exchange interaction in MFA, Eq. (55), the equation for the singlet gap in the
WCA can be written as follows:

22 C
<I>22(q) _ %;[](k -q) — K:,?2 )\(—)(k, q- k)];pg_zéllg tanh g;glf) .

(73)

Although the one-hole band brings negligible contribution to Egs. (69), the
band coupling may result in a nonzero gap in the one-hole band, ®!!(q) =~
K%, 85(q), as shown by the second equation (69).

Similar considerations hold true for an electron doped system, n =146 <
1 when g~ 01in (68). In that case, the significant WCA equation involves the
gap ®''(q) and critical T, defined by the second equation (69), with proper
inclusion of an exchange interaction term similar to that occurring in Eq. (73).
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5 Numerical results and discussion

To solve the gap equations, a model for the bosonic GF in the effective inter-
action (67) is needed. The charge-charge fluctuations are small as compared
to the spin-spin fluctuations and they are neglected. To evaluate the spin-
spin fluctuations, a model representation of the spin-fluctuation susceptibility
is necessary. We used the following expression which has been suggested in
numerical studies: [29]

Xi(@,w) = —TIm{(S, | S_ghusis = xs(@X)()
X0 w 1
T e @] M T T (/)

with v(q) = (1/2)(cosg; + cosgy,). Thus, the effective coupling due to spin
fluctuations, Eq. (67), reduces to

(74)

/\s(kaq_k) = t2|V(k)|2Xs(q_ k)Fs(O)’ (75)
where 9wd 1
o 2wdw w
= ———— tanh ————————— .
Ey(z) /0 W2+ 22 AT T (Wi, )?

The parameters of the model susceptibility (74) are fixed under conditions spe-
cific to the present model. The q-dependent part has a peak at the AFM wave
vector with its intensity defined by the short-range AFM correlation length
&. The typical values of { are in the range from one to three (in lattice con-
stant units) and & is taken for a fitting parameter of the model. The constant
Xo(€) defines the intensity of the spin fluctuations at the AFM wave vector
Q = (m,7) when 1+ (Q) = 0. It is found from the normalization condition
forn=1+6>1:

+00

%Z}(Sisi) = %;Xs(Q)_ZO ——(ﬁx;'(ZPWsz(q)
= %(2_”')’

which gives (SqS_q) = mw,sXs(q)/2 and xo = 3(2 — n)/(27w,C,), Ci =
(I/N) {1+ &1+ y(q)]} . At large £, xo o £2/In&. For the frequency-
dependent part, we choose the scaling function with an enhanced intensity at
frequencies w < T and a large cut-off energy w; of the order of the exchange
energy J.

In the neighborhood of T, the gap equation (73) can be linearized by ne-
glecting the gap function in (71). We start with the derivation of an analytical

18



estimation of the superconducting 7, mediated by the spin fluctuation cou-
pling As(k, q — k) only. For the d,2_,2-wave pairing symmetry we assume the
conventional g-dependence of the gaps:

@°%(q) = Pa(cos g — cos gy) = dan(a) - (76)

Then integrating over q both sides of the equation (73) multiplied by n(q) =
(cos gz — cosg,) we get the following equation for 7.:

K222 n(q)n(k) Qo _
Z)\ 202,1( tanh —== o, 1. (77)

Since the sign of the susceptibility term x,(q — k) in ),(k,q — k) remains
constant over the summation domain, the sum over q in Eq. (77) can be
evaluated by the mean value theorem. Taking into consideration the symmetry
of the k vectors around the AFM wave-vector Q = (m,7) (the S symmetry
point of the BZ), it results that the mean value theorem yields the optimal
estimate

= Zn (@)xs(a —k) ~nk+Q)— sz =—nk)xCi.  (78)

Replacing it in Eq. (77) and averaging over the direction of the wave-vector
k, we get the following equation for 7, mediated by spin fluctuation:

As22 1 Qa2 (k)

N ; 2%, () tanh T = 1, (79)

with an effective spin-fluctuation coupling

K2, t2
22 Z n(k ~ L (80)

Ws

As22 = XoC1 F

where ter; = K211t and we assumed Fj(0) ~ 1 . The estimates (78) and (80)
are reliable for £ >> 1. In the logarithmic approximation, Eq. (79) yields

s € Ws
2 Z tanh‘ ;(in) ~ Xg22 N(0) 1n(1.13i) :

(81)
where N(0) is the density of states at the Fermi energy for the singlet band.
To derive a numerical estimate, we assume the model parameters [22]: Ky, ~
—0.89, Koy ~ —0.48, K5 ~ 0.83, for the energy A = 2t = 3 eV. A reasonable
value for the density of states is inferred to be N(0) ~ 1 (eV - spin)~!, which
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follows from the numerical calculations discussed below, while for the spin-
fluctuation energy we suppose ws = 0.15 eV — the characteristic exchange ener-
gy in cuprates, wy < W ~ t. This set of parameter values leads to the estimate
As22 = 0.27 eV, which results in a weak coupling, V;22 = As22 N(0) ~ 0.27.
However, due to a large spin-fluctuation energy ws, a high critical temperature
for the singlet band is inferred:

Te ~ wsexp{—1/V; 2} ~ 0.03ws ~ 50 K. (82)

The superconducting gap ¢; in the one-hole band induced, according to Egs. (69),
by the gap in the singlet band, is quite large: ¢1/¢s ~ —(K12/Ko)? =~ -3 .
However, its contribution to the superconducting density of state is negligible,
of the order of (¢1/A)? at the energy w ~ —A. ‘

Similar estimations can be done for the electron doped case, n =1+6 <1,
where p ~ 0. In this case, the dominating contribution to T, comes from the
integral S;. For a symmetric Hubbard model with equal hopping integrals,
K11 = Ky, we will have the electron-hole symmetry and a same T,. In the
reduced p-d model (2), the effective coupling constant V11 = As 11 Ni(0) can
be smaller due to lower density of state, whence a lower T, as observed in
cuprates. The uncertainty associated to the value of N;(0) prevents other
considerations on T, in this case.

More precise results concerning the relative weights of the contributions to
the critical temperature coming from the kinematic and exchange interactions
follow from the numerical solution of the gap equation (73) (linearized as
T — T,) under the constraint of no-double-occupancy in the upper and lower
Hubbard subbands:

(XPX7?) = (XP7X07) = 0.

These constraints are automatically satisfied by the order parameter with
dg2_,2 symmetry of a square lattice. The discretization of this Fredholm inte-
gral equation results in an eigenvalue problem for the gap parameter ®??(q)
of the singlet band. The temperature at which the largest eigenvalue equals
one, while the corresponding eigenvector shows d,z_,2 symmetry, will be taken
for the critical temperature 7T,. We note that the eigenvalues of the integral
equation are discrete (since the kernel is compact) and real (since the kernel
can be made symmetric). The numerical results reported below have been de-
rived under the following parameter values. The antiferromagnetic correlation
length was equated to the typical value £ = 3, which was kept constant over
the whole domain of the investigated hole concentrations. The other parame-
ters resulting in the effective spin fluctuation coupling A;22(k,q—k) are those
defined above in this section. For the exchange interaction, we assumed the
value J = 0.4t.77, usually considered in the ¢-J model.
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Fig. 1 shows the dependence of the critical temperature T, (in tefp =~
K21t ~ 0.14t ~ 0.2 eV units) on the doping parameter . The kinemat-
ic interaction alone results in a lower T, (the solid line in Fig. 1) as compared
to the exchange interaction (the dashed line). The highest T, (dotted line) is
obtained when both interactions are included in Eq. (73). The maximum values
of T¢, are quite high in all cases. They vary from T;"** ~ 0.12¢.5; ~ 270 K at
optimum doping dop; = 0.13 in the highest curve to T;"** ~ 0.04t.5f ~ 90 K
at dopt =~ 0.07 in the lowest curve. There is a reasonable agreement of the
latter value with the crude analytical estimate (82). It is important to note
that the WCA results overestimate T, because of the neglect of the strong
inelastic scattering, the effect of which would be a marked T, damping [18].
At smaller antiferromagnetic correlation lengths, the numerical solution sug-
gested a strong decrease of the contribution of the kinematic interaction to 7.
This feature stems from the decrease of the parameter yo which controls the
magnitude of the electron-electron coupling induced by the spin-fluctuations.
However, the parabolic behavior of T, with §, showing a maximum at some
optimum doping, is similar to the experimental data. This behavior of T,(6)
originates in the occurrence of a strong dependence of the density of states
on the doping, with a marked peak at the optimum value d,p;, as shown in
Ref. [22] for the Hubbard model with narrow bands.

Further insight is obtained from the analysis of the various factors which
control the temperature dependence of the behavior of the order parameter
% (k) inside BZ and the investigation of the relationship established via these
factors with the Fermi surface of the sample. To this aim, we considered several
temperature and doping sampling and computed in each case the q-dependence
of the gap under the inclusion in the gap equation of the kinematic interaction
term alone, of the exchange term alone, and of both contributions to the su-
perconducting pairing. Fig. 2 provides excerpts from the obtained data, under
consideration of the kinematic interaction term alone in Eq. (73), at three tem-
peratures, T'= 0, T = 0.5T; and T' = 0.9T;, at optimum doping (6 = 0.07)
and in the "overdoped"case 6 = 0.2. For comparison, Fig. 3 provides similar
excerpts from the solution of the complete gap equation (73) at the same tem-
perature sampling, at optimum doping (4 = 0.13) and in the "overdoped"case
0 = 0.2. The occurrence of a superconducting state with dy2_,2 symmetry
is observed, with a q-dependence pattern of the gap shown by isolines. This
dependence is much more complicated than that depicted by the simple ana-
lytical model (76). The inspection of the temperature dependence of the Fermi
surface at optimum doping reveals the occurrence of different behaviors in
Fig. 2 (a)—(c) and Fig. 3 (a)-(c). As T — T, the kinematic interaction results
in a shift away of the FS from the star of the (,0) point of the BZ. The
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Puc. 1: Dependence of the solution T, (in ¢ units) of the gap equation (73) on
the doping parameter ¢: (i) under consideration of the kinematic interaction,
M) (k,q — k) (with £ = 3), only (solid line); (ii) under consideration of the
exchange interaction, J = 0.4¢.5f, only (dashed line); (iii) under consideration
of both contributions (dotted line).

inclusion of the exchange interaction results in an opposite trend of the FS
variation. The comparison of the isolines occurring in figures 2 and 3 shows
that, while the kinematic interaction term alone results in gap maxima placed
inside the BZ (see Fig. 2), the inclusion of the exchange interaction as well
(Fig. 3) shifts the maxima towards the (7, 0)-type points of the BZ, which are
close to the F'S too ("hot spots"). The shift of the optimum doping value from
the smaller value 6 = 0.07, in Fig. 2 to the higher value § = 0.13, in Fig. 3
shows that the inclusion of the exchange term is essential for the achievement
of an optimum doping close to those experimentally observed in cuprates. The
features of the kinematic interaction come from its specific wave-vector depen-
dence through the factor |v(k)|* in Eq. (75), where from it results that the
main contribution due to the nearest neighbor hopping damps quadratically
in the neighborhood of the lines |k,| + |k,| = 7. Therefore, there is no con-
tribution of the kinematic interaction to the pairing at larger doping where
there are significant regions of the FS close to those lines. On the contrary, in
Eq. (73), the exchange interaction gives the largest contribution close to the
"hot spots", such that the larger F'S at higher hole concentrations results in
higher T..

22



1

08 b ™NQ.05 Ay R4 d
06 | .

k +

Yo L -9
02 .

LN fa
08| .05 b) 4 e
06 | .

o[
Yo4 -}
02 F —

e =~
08 L 0.03 ol .0. 0
06 P .

k
Yo.4 -) 4)
02 F ]
0 1 I/:\ 1 /l—_\ 1 1
0 02040608 1 02040608 1
k k

X

Puc. 2: Contribution of the kinematic interaction to the temperature depen-
dence of the order parameter ®??(k) [solution of Eq. (73) at J = 0] over the
first quadrant of the BZ (k,, k, in 7/a units): at optimum doping (§ = 0.07)
{T = 0(a); 0.5T,(b); 0.9T,(c)} and at overdoping (6 = 0.2) {T = 0(d);
0.5T, (e); 0.9T,(f) }. The circles plot the Fermi surface. The +/— denote gap
signs inside octants. The numbers in graphs show the maximum isoline value.

When comparing the contributions of the exchange and spin-fluctuation
interactions to Eq. (73), another point which deserves attention is the eluci-
dation of the reason why the former results in a 7, which is twice as large as
the T, resulting from the latter. The interactions are of the same second order
in the hopping matrix elements. In our calculations, the exchange interaction
parameter J = 0.4t,5; ~ 0.08 eV is roughly three times smaller than the
parameter of the spin-fluctuation coupling, Eq. (80), As22 ~ 0.27 €V. There
are, however, two opposite features which change the overall effect in favor of
the exchange interaction. The first is the particular wave-vector dependence of
the two interactions mentioned above, which suppresses the spin-fluctuation
coupling at the "hot spots", while securing maximum contribution from the
exchange interaction. A second factor is the width of the energy shell of the
effective interaction. The exchange interaction, being mediated by the inter-
band hopping, o (t?)?, with large energy transfer and negligible retardation
effects, couples the charge carriers in a broad energy shell, of the order of the
bandwidth W = 8t.ss. The spin-fluctuation interaction, o (¢7?)%, acting in
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Puc. 3: Combined effect of the kinematic and exchange interactions to the
temperature dependence of the order parameter ®*?(k) [solution of Eq. (73)]
over the first quadrant of the BZ: at optimum doping (6 = 0.13) {T = 0 (a);
0.5T; (b); 0.9T,(c)} and at overdoping (§ = 0.2) {T = 0(d); 0.5T,(e);
0.97, (f) }. Other notations are detailed in Fig. 2. The step in-between the
equally spaced isolines is the same on both figures.

the subband which crosses the Fermi surface, couples the holes (electrons) in
a much narrower energy shell, w, < W and that results in lower 7.

Therefore, the most important pairing interaction in the strong correlation
limit of the Hubbard model (2) is the exchange interaction, while the spin-
fluctuation coupling mediated by the kinematic interaction results only in a
moderate enhancement of T,. The same result has been obtained in studies of
the £—J model beyond the WCA in Ref. [18]. This observation could explain
why the numerical simulations of the ¢ —J model usually predict a much
stronger pairing tendency than the original Hubbard model [2, 4].

From Fig. 2 and Fig. 3 we can also infer the ratio between the maximum gap
value at the Fermi surface and k7. For our model we have 2@, (FS)/kT, ~ 3.5
at any doping, which is close the BCS ratio. It is to be emphasized that our
approach is a mean-field type theory in which the phase of the order parameter
is fixed — the gaps are taken to be real and the problem of the phase coherence
of the superconducting order parameter [30] is beyond the scope of our theory.
This remark also explains why we have obtained the pairing long-range or-
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der (LRO) for the two-dimensional Hubbard model while it can be rigorously
proved, within the Bogoliubov-Mermin-Wagner theory, a nonexistence of this
LRO [31]. A finite 3D coupling will stabilize the phase fluctuations and imple-
ment the LRO. As observed in cuprates, the T, dependence on the inter-layer
coupling is rather weak which can occur only for strong intra-layer pairing.

6 Conclusions

A microscopical theory of the superconducting pairing has been developed
within the reduced two-band p—d Hubbard model (2) with two microscopical
parameters only, the p—d hybridization parameter ¢ and the charge-transfer
gap A. Making use of the projection technique [28] for the two-time GF in
terms of the Hubbard operators, we obtained the Dyson equation for the 4 x 4
matrix GF (14) with the corresponding matrix self-energy (16). In the zero-
order approximation for GF, Eq. (53), we have obtained d-wave supercon-
ducting pairing of conventional hole (electron) pairs in one Hubbard subband
which is mediated by the exchange interaction given by the interband hop-
ping: Ji; = 4(ti;)?/A. The normal and anomalous components of the self-
energy matrix were calculated in the self-consistent Born approximation for
the electron—spin-fluctuation scattering, Eqgs. (61) and (62) mediated by kine-
matic interaction of the second order of the intraband hopping. It is to be
stressed that, within the present model, the electron-electron coupling is in-
duced by the exchange and kinematic interactions resulting from non-fermionic
commutation relations, as pointed out first by Hubbard [6], without needing
additional fitting parameters to accommodate that interaction.

The self-consistent system of equations of the two diagonal gap parameters
for the lower and upper Hubbard subbands was obtained in the weak coupling
approximation, Eq. (69). Analytical and numerical estimates of the super-
conducting T have been derived under the use of a model antiferromagnetic
spin-fluctuation susceptibility, Eq. (74). Simple analytical evaluations proved
a possibility of the d,2_,2-wave pairing with moderate T, even for a low density
of states, Eq. (82), outside the van Hove singularity. It is important to note
that the superconducting pairing due to kinematic interaction in the second
order occurs in one subband even in the limit A — oo, which corresponds
to U — oo in the original Hubbard model (1) when the exchange interaction
J o (ti?)?/A vanishes. However, in this limit the spin-fluctuations, Eq. (74),
may be suppressed and that prevents the quasiparticle formation and the oc-
currence of the corresponding superconducting pairing.

More accurate results for the gap in the singlet subband have been obtained
from the numerical solution of the integral equation (73). The insight gained
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from these computations points to the relative importance of the exchange
interaction versus the spin-fluctuation coupling. The former is shown to be
the most important pairing interaction in the Hubbard model in the strong
correlation limit, while the latter results only in a moderate enhancement of
T.. The smaller weight of the spin-fluctuation coupling comes from two specific
features of it: its vanishing inside the BZ along the lines |k;|+|k,| = 7 pointing
towards the hot spots and the existence of a small energy shell within which
the pairing is effective. By contrast, the exchange interaction is maximal along
the above-mentioned lines inside BZ and it couples the electrons (holes) in a
much broader energy shell, of the order of the bandwidth W = 8t.s;, due to
the interband hopping where the retardation effects are unimportant.

The T, exhibits parabolic dependence on the doping parameter § (Fig. 1).
The optimum doping values d,,; as well as the maximum values reached by 7T,
at 0oyt show a marked dependence on the coupling interactions included in the
model. Sampling at several temperatures of the wave-vector behavior of the
order parameters ®??(k) over the first quadrant of the BZ (Fig. 2 and Fig. 3)
show the occurrence of a peculiar d,2_,»-wave gap pattern which strongly
depends on the type of the involved interactions as well.

In conclusion, the present investigation points to the existence of a singlet
dg2_,2-wave superconducting pairing for holes or electrons in the two-band
Hubbard model mediated by the exchange interaction and antiferromagnetic
spin-fluctuation scattering induced by the kinematic interaction, characteris-
tic to the Hubbard model. These mechanisms of superconducting pairing are
absent in the fermionic models (for a discussion, see Anderson [32]). The pair-
ing interaction occurs in the second order of small hopping parameters: the
exchange interaction is mediated by the iterband hopping, while the kine-
matic interaction is induced by the intraband hopping. The weak point of the
argument is the derivation of the reported results in the weak coupling approx-
imation of the superconducting equations. To substantiate the present results,
more rigorous inferences emerging from the direct numerical solution of strong
coupling Eliashberg-type equations in the (q,w)—space, as done recently for
the t—J model, [18] should be elaborated.
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IMnaxuma H.M. u nop. E17-2001-59
O6MeHHOe U CIIMH-(ITKTYalOHHOE CBEPXIPOBOJSLIEe ClIapUBaHUE
B Moneimu Xa60apna B npezene CHUIbHBIX KOPpesIsaLuii

ITpennoxeHa MHKpPOCKOIMYECKass TEOPUs CBEPXIIPOBOAMMOCTH B JBYX30HHOHM, CHH-
DIeT-IbIpoyHoit Monenu Xa66apsa B npeiesie CHIIbHBIX 3JIEKTPOHHBIX Koppensauuid. Ha ocHo-
BE NIPOEKUMOHHOM TEXHUKH U1 MAaTPUYHON (yHKUMHK ['puHa ot oneparopos Xa66apaa momy-
yeHo ypaBHeHue JlaiicoHa. Iloka3aHO, 4TO yxXe B NPUONIKEHUM CPENHEro MOJs BOSHMKAET
d-BOJIHOBOE CBEPXIIPOBOASILEE CHapMBaHHE IS CTaHOAPTHBIX 2JIEKTPOHHBIX (IBIPOYHBIX)
nap, oOycIOBlIeHHOe OOMEHHBIM B3auMmopelcTaueM. IlomyyeHa Takxe CHCTEMa ypaBHEHMH
VIl CBEPXIPOBOIAIIMX ILesIeil B ABYX Xxa66apaOBCKUX MOJ30HAX IIPH yuyeTe COOCTBEHHO BHEP-
[ETHYECKHUX MOMPaBOK, OOYCIOBJICHHBIX KMHEMAaTHM4eCKMM B3aumopeicTBueM. UucieHHoe
U aHATMTHYECKOE pEeLIEeHUe YPaBHEHMIA NIPe/ICKa3bIBaeT CYIECTBOBAHHE CHHINIETHOTO d-BOII-
HOBOTO CITapHBaHUs B ABIPOYHON U CHHIVIETHOHN MOA30HaX. BeI4uCIeHb! 3aBUCAIE OT BOJIHO-
BOTO BEKTOpA ILielieBble (PYHKUNM M Temneparypa T, Npu pasInyHOi KOHLEHTPAlMHU JbIPOK.
IMonyyeHHble Pe3ysIbTaTHl MOKA3bIBAIOT, YTO OOMEHHOE B3auMoneicTBUe (00YCIIOBIEHHOE
MEX30HHBIMH ITePeCKOKaMH) AaeT OONbIIMI BKJIaX B CBEPXIIPOBOJAILEE CIIAPHBAHHE, YeM KH-
HeMaTu4eckoe B3aumozeicTeue (00yCIOBIEHHOE BHYTPHM3OHHBIMU NEPECKOKAMH).

Pa6ora Beimondena B JlaGopatopum Teoperudeckoit ¢usuku uM. H.H.Boromo6osa
OWIN.

Ipenpunr OGbeIUHEHHOTO HHCTUTYTA SAEPHBIX HccrenoBanuil. Jy6Ha, 2001

Plakida N.M. et al. E17-2001-59
Exchange and Spin-Fluctuation Superconducting Pairing
in the Hubbard Model in the Strong Correlation Limit

A microscopic theory of superconductivity within the two-band singlet-hole Hubbard
model in the strong correlation limit is developed. Making use of the projection technique
for the matrix Green function in terms of the Hubbard operators, the Dyson equation is de-
rived. It is proved that in the mean-field approximation d-wave superconducting pairing me-
diated by the exchange interaction occurs for conventional electron (hole) pairs. Allowing
for the self-energy corrections due to kinematic interaction, a coupled system of equations
for the superconducting gaps in the two Hubbard subbands is obtained. The derived numeri-
cal and analytical solutions predict the occurrence of singlet d-wave pairing both
in the one-hole and singlet Hubbard subbands. The wave-vector dependent gap functions
and T, are calculated for different hole concentrations. The results show that in pairing
the exchange interaction (which stems from the interband hopping) prevails over the kine-
matic interaction (which stems form the intraband hopping).

The investigation has been performed at the Bogoliubov Laboratory of Theoretical
Physics, JINR.
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