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1. Introduction

If we can solve the quantum problems with the quantum computers [1], we
can probably solve the classical problems, too. With this paper we start the
investigation of computational hard problems of classical physics such as the
turbulent phase of hydrodynamics, with the methods of Quantum Computing
(QQ).

In Sec.2 of this paper we consider time-reversible classical dynamical sys-
tems and corresponding quantum extensions.

Sec.3 describes an algorithm of solution of the quantum problems with QC.

Sec.4 deals with a (re)formulation of the classical dynamics in the form of
quantum dynamics and gives an algorithm of solution of classical problems
with QC.

In Sec.5, we present our conclusions and show some perspectives.

Some technical details and illustrations are considered in Appendixes.

2. Time-reversible classical discrete dynamical systems (comput-
ers) and corresponding (quantum) extraparts

The contemporary digital computer and its logical elements can be consid-
ered as a spatial type of discrete dynamical systems described by the following
motion equation:

sn(k +1) = ¢n(s(k)), (1)

where s,(k), 1 <n < N(k), is the state vector of the system at the discrete
time step k. Note that with time steps, k& can change not only value, but also
the dimension, N(k) of the state vector, s(k).

Definition. We assume that the system (1) is time-reversible if we can
define the reverse dynamical system

sn(k) = 67" (s(k +1)). (2)
In this case the following matrix

O¢n(s(k))
Man = =55 %) 3)

is regular, i.e. has an inverse.

If the matrix is not regular, this is the case, for example, when
N(k + 1) # N(k), we have an irreversible dynamical system (usual digital
computers and/or corresponding irreversible gates).

Let us consider an extension of the dynamical system (1) given by following
action functional:

A= S (B (snlk+ 1) = als(R) (4)
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and corresponding motion equations

sa(k +1) = ¢n(s(k)),

k= 1) = () 2525 = 1 06V s(8). 5)

In the regular case, we put this system in an explicit form

sa(k +1) = ¢a(s(k)),
la(k + 1) = Lu(k) M1 (s(k + 1)). (6)

From this system it is obvious that, when the initial value [,(ko) is given,
the evolution of vector [(k) is defined by evolution of the state vector s(k). So
we have the following

Theorem. The regular dynamical system (1) and the extended system (6)
are equivalent.

Note that the corresponding statement from [2] concerning to the continual
time dynamical systems is not as transparent as our statement for discrete time
dynamical systems.

In the continual time approximation, the discrete system (6) reduces to the
corresponding continual one, [3]:
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Indeed. Let us change the dependent variables as follows:

sn(k) = a(tk),
lo(k) = pa(t), th=kAL, At <<1. , (8)

Then the action functional (4) can be transformed as follows:
A =3 pate)(@alte + At) = da(2(tr)))
kn
= Atpa(te)(&n(tr) — va(2(ts)))

kn

= [ dtpu(t)(én = va(a)), 9)

where

Palw(tr)) — zn(tr) = Atvn(te), (10)

and the corresponding motion equations are presented by the system (7).
The equation of motion for /,(k) is linear and has an important property
that a linear superpositions of the solutions are also solutions.
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Statement. Any time-reversible dynamical system (e.g. a time-reversible
computer) can be extended by a corresponding linear dynamical system (quan-
tum processor) which is controlled by the dynamical system and which, due
to the superposition and entanglement properties, has a huge computational
power.

3. Solution of the Quantum problems with the Methods of the
Quantum Computing

The standard classical computing - the technology of storing and trans-
forming information, is based on the classical physical theory and can be uni-
versally divided (factored) on the hardware (body)-memory and processor of
computers, and software (soul)- algorithms and programs of users, parts, [4].

Under the Quantum computing, we mean an extension of the classical
computing by hardware which is described by the (corresponding formulation
of the) quantum theory - quantum registers and quantum logical units and
corresponding software, [5].

A quantum system can be described by corresponding Schrodinger equa-
tion, [6] ’

L d -
th | >= Hldp >, (11)

where [tp >= |1(¢) > is the state vector from the state Hilbert space and H=
H(p, #) is operator-Hamiltonian. In the case of one nonrelativistic particle the
operator is

52

N % N P R
— T4V =24V

H + 5 + V(z) (12)

The fundamental bracket is
[&,p] = &p — p& = ih. (13)
The configuration space form of the equation (11) is

L OP(z,t) o
zh—at—— = Hiy(z,1), (14)

where 1(z,1) =< z|¢(t) > and Hamiltonian is
- B d?
In the momentum space form, we have

w2820 _ gy ue



where 9(p,t) =< p|¢(t) > and Hamiltonian is
2
N p d
. 2. 1
H 5 T V(zdp) (17)

With proper normalization,
L= [ dew (@00, 1) =< 6(0)] [ dele >< alp(t) >=< (O >=1,019)
p(z,t) = ¢¥*(z,t)¢(x,t) is the probability density of finding the particle at the

point .
The formal solution of the equation (11) is

() >= U(t)lpo >, (19)
where |
() = exp(—%tff). (20)
The main steps maid in QC is the following: |
U(t) = (UMY = (UrUv)Y + O(1/N), (21)
where
UYN = exp(—0H) = exp(—0T)exp(—0V) + O(1/N?)
= Urliv +O(/N*), 0=, 7= % (22)

Then, for corresponding matrix element we have (see Appendix 1)

< |V, > exp(0( (T < V(wa)) + O1/NY) - (23)

-
and

i Xom Tnt1 — Tnyy
<@oilU(O)lein > ~ [ dardas..doeap(zr 3 (TR~ V()
n=0

-
+ O(1/N), |zo>=|zin >, < an41| =< Tout]- (24)

This finite dimensional integral representation of the matrix element is in the
ground of the functional (continual) integral formulation of the quantum theory
7.

We can discretize the wave function in (14) and impose the periodic bound-
ary condition (8] :

an(t) = (20, 1), aniN = an, T, = nAx. (25)
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We store these amplitudes in a k-bit quantum register

N
[p(t) >= Y anln >, N =25, (26)

n=1

where |n > is the basis state corresponding to the binary representation of the
number n.

The second factor in (22) in a coordinate representation corresponds to a
diagonal unitary transformation of the quantum computer state 1(z, ). After
Fourier transforming t(z,t) into momentum-space representation, ¥ (p,t) the
first factor in (22) can be applied in the same way.

Diagonal unitary transformations of the type

In >— eF™n > (27)

where F'(n) is some function of n, can be done [8] with the following succession
of steps

[n> = [n,0 >= |n, F(n) >— T, F(n) >— eT™n, 0 >
— F®n >, (28)

For n particles in d dimensions we need nd quantum registers. If the po-
tential V (21,22, ...) couples different degrees of freedom, we need the diagonal
unitary transformations acting on several registers, e.g.

Iny,ny >— eFm2) |y ny > (29)

_ The discretized bosonic quantum fields correspond to one scalar particle for
each lattice point, one vector particle for each lattice link, one tensor particle
for each lattice placket, and so on (see e.g. [10]). Note that in Kdhler’s
formulation of the Dirac’s equation [9]

(6+d—m)p =0

we cannot  associate the fermion field to a geometric object like site, link,
placket, and so on. This is an indication about the extended (composed, co-
herent, non-fundamental) nature of the fermion particles, from the viewpoint
of the discrete models of space.

4. Solution of the Classical problems with the Methods of the
Quantum Computing

Operational and functional formulations of classical theories (see e.g. [11])
with the QC methods might help to investigate some interesting phenomena,
e.g. that of fully developed turbulence (see e.g. [12]), which are difficult for
other methods. :



We usually formulate the classical problems as a Hamiltonian system of
motion equations [13]

OH
qn = 7
Opy,
OH
.n = "3 1< S Na
P 9q. =" (30)

where g, are coordinates for the configuration space of the system and p,
are corresponding momentum, H = H(g,p) is a Hamiltonian function(al).
The system (30) belongs to the more general class of the dynamical systems
defined by the following system of motion equations

Zn =vn(z), 1<n <N, (31)
when N is an even integer and

9H (z)

2R

n(T) = €nm
where the fundamental canonical bracket is

{xnv xm} = 6nm-

Note that any dynamical system (31) can be extended to the following Hamil-
tonian form, (see, e.g. [3] and section 2 of this paper )

&n = vp(x) = {a,, H},
vm

Pn = _6xnpm = {pna H}a (32)

where Hamiltonian is

H(z,p) = va(2)pn (33)
and the fundamental canonical bracket is

{xmpm} = dnm- (34)

For any observable ¢ (z) of a Hamiltonian dynamical system, we have the
following motion equation:

: _ _ oY OH,
'(/)(.13) _{d)’Hl}—'Enma_xna—_Lw

= [v, Hy, (35)

where



b= o) = pouloin
= %Hz. (36)
H, is the classical Hamiltonian function and ]:IZ is the quantum Hamiltonian
operator. Now we can consider Eq.(35) as a classical Hamiltonian one with
Hamiltonian H; or as a quantum Schrodinger equation with the Hamiltonian
operator H,. For the second point of view we can apply the QC methods
developed in the previous section.
Note that the operator H, is a self-adjoint operator, H2 = H,, when
divv = 0 and we can put it in the second-order form with respect to the
momentum operator,

A

Hy, = wpyp = §(ﬁkvk + vrP)
= %[ﬁz7uk]7 (37)
where
1
ukzi/dxkvk, 1<k<d, d>2. (38)

As an example, we consider the harmonic oscillator in Appendix 2.
Now the formal solution (19) is

Lt 7)o >

[$(t) >= U)o >= eap(~ gt Ha)lbo >= cap(—

h

and for factorized form (21) we have

d

UI/N — e:cp(—Tz[&,ﬁz]) - H eiq-fzkeiwi;ie—wake—iv-ﬁi + O(TB), (39)
k=1

where

=+ 1z,

( h2N)
Now we are ready to apply the formalism of the QC considered in Sec.3 to
the classical problems.

5. Conclusions and perspectives

In this paper we constructed the algorithm of solving the computational
hard problems of classical physics on quantum computers. In the future pub-
lications we will consider some applications to the three-body problem of clas-
sical mechanics, the Hamiltonian dynamics of heavy particle accelerators, the



Hamiltonian dynamics of the incompressible fluid and propose algorithms of
solution and estimate the corresponding resources of QC.

Note that before we will get a real quantum computer, we can simulate it on
classical computers [14].

We are free to take [,(k) in (4) and p, in (9) as grassmann valued, than
the corresponding Hamiltonian Hy = v,py, (33) will be nilpotent, HZ = 0 and
corresponding bracket (34) will be odd, [3].

It is interesting to investigate the functional integral formulation of the
classical theory based on the discrete representation (39).

Then, Dirac’s equation for electron

hon(t,x) = (onpn + Bm)Y(t,z)

[N
where
Up = %/dmnan = 0p%n/2, (41)

for m = 0, has the form similar to the classical equation (35), where a, is
velocity matrices and the Planck’s constant A can be cancelled. This is an
inverse to the consideration made when we try to find quantum (photon) nature
of the (classical) Maxwell’s equations and put them in the "Dirac’s form”, (see
e.g. [15]). It is possible to formulate similar equations for high spin massless
fields . It is interesting to find a corresponding classical interpretation of these
equations and make observable predictions, [16]. The effects of two of them
(the photon’s and graviton’s) are obvious in everyday life. What about the
effects of other massless particles?

After the development of the classical theory of the Cherenkov’s radiation
[17], the question arises if there exist any differences between radiation of
(massive) particles with different spins and corresponding corrections due to
spin degrees of freedom where calculated. It was found that these correction
are small with respect to the spin independent classical contribution. The point
is that at the threshold of the Cherenkov’s radiation the classical contribution
is zero and remains just quantum corrections [18].

Then, in a discrete form, Dirac’s equation has problems, (see e.g.[19]),
with a chiral invariance or a spectrum multiplication or it is nonlocal. In the
second-order form, we hope to solve these problems.



Appendix 1
In the main text of this paper we used the following relation,

efAeeBeA B — esz[A,B] + 0(53). (42)
The following relation may also be useful:
(1+eA)(1+eB)(1+ecA)(1+eB) =1+ e[A, B]) + O(&%). (43)

Now we calculate the following matrix element

< Tnpalexp(—ap’)|z, > = /de < Tapa|p >< pla, > exp(—ap?)
de P(Tpg1 — Tn) 2
= / nh)D exp(i h — ap®)
AP (Tn41 = Tn)?
= Wemp(——w)’ (44)
where in the case of the quantum mechanics of the particle, (22)
t
=i 4
"OmhN (45)
and in the case of classical mechanics, (39)
L1
4= i), (46)

A= /dpewp(——aﬁ) = \/g. (47)

Coordinate and momentum state vectors are correspondingly |z > and |p >,
tlz >==zlz>, plp >= plp >,
i
< plz >= ¢,(p) = ——=exp(——pz
pl va(p) = o p(=3pa),

L0
TP(p) = zﬁa—p%(p) = 2a(p),

d i
<zly >= /dp <zlp><ply >= /%exp(gp(x -y))
=d(z —y). (48)

Appendix 2
As an example, we consider the harmonic oscillator. The Hamiltonian in
this case is

2 kg 1 '



Corresponding Hamiltonian equations of motion are

)

Ty=—=y = k22$27
iz = —-k"l?l = Vg = —kll.’tl. (50)
For any observable ¢ (z),
. oY OH 0 0
'(rb - {1:[)7 H} - €nm'a_{;;% = 5nmkml$la_wn¢ - vna_xn¢7 (51)
Uy = /dwnvn, Uy = koo Ty, Uy = —k11T1T,. (52)

References

[1] A. Ecert and R. Jozsa, Rev. Mod. Phys. 68 115 (1996).

[2] G.D. Birkhoff, Dynamical Systems, Amer. Math. Soc.,
Providance, R.I., 1927.

[3] N. Makhaldiani, O. Voskresenskaya, Communications of the JINR,
Dubna E2-97-418 1997.

[4] Dictionary of Computing, Market House Books Ltd., 1986.
[5] N. Makhaldiani, Quantum Computing, in preparation.
[6] F. Berezin, M. Shubin, Schrodinger equation, Kluwer, Dordrecht, 1991.

[7] R.P. Feynman and A.R. Hibbs, Quantum Mechanics and Path Integrals,
McGraw-Hill, New York, 1965.

[8] C. Zalka, Proc.Roy.Soc.Lond. A454 313 (1998).
[9] P. Becher, H. Joos, Z. Phys. C 15 343 (1982).

[10] N.V. Makhaldiani, Computational Quantum Field Theory,
Communications of the JINR, Dubna P2-86-849 1986.

[11] E. Gozzi, Progr. Theor. Pﬁys. Suppl. 111 115 (1992).

[12] L.Ts. Adzhemyan, N.V. Antonov, A.N. Vasiliev, Field Theoretic Renor-
malization Group in Fully Developed Turbulence, Gordon and Breach
Science Publishers, 1998.

[13] L.D. Faddeev and L.A. Takhtajan, Hamiltonian methods in the theory of
solitons, Springer, Berlin, 1987.

10



[14] Hans De Raedt et al. Comp. Phys. Com. 132 1 (2001).

[15] James D. Bjorken, Sidney D. Drell, Relativistic Quantum Mechanics,
McGraw-Hill, New York, 1965.

[16] N. Makhaldiani, work in progress.

[17] LM. Frank and LE. Tamm, Dokl. Akad. Nauk, SSSR 14 (3) 109 (1937).
[18] N. Makhaldiani, in preparation.

[19] N.B. Nielsen and M. Ninomiya, Phys. Lett. B105 219 (1981).

Received by Publishing Department
on June 28, 2001.

11



Maxanguanu H. E2-2001-137
Kak Oymer peiats KBaHTOBBIH KOMIBIOTEDP KJIACCHYECKHUE 3a1aud

Haiineno pacuuupeHue to60i 3a1aHHON JUHAMUYECKOH CUCTEMBI C IIOMOLUBIO
COOTBETCTBYIOLIEH JINHEHHOM (KBaHTOBOH) cucTeMbl. PaccMoTpeHsI yHKIMOHAND-
Has U oneparopHas ¢opMbI (POPMaTbHBIX PELUIEHHH COOTBETCTBYIOLIMX YPABHEHHIH
aBuxeHus. IlocTpoeH alropuTM pacyeTa KjIacCHYECKMX 3aJay Ha KBaHTOBBIX
KOMITBIOTEpPaX.

Pa6ora BeimonHeHa B JlaGopatopuu HGOPMalHOHHBIX TexHonoruit OMSIH.

Coobenne OObeAMHEHHOTO HHCTUTYTA SAEPHBIX HccrenoBanui. ly6na, 2001

Makhaldiani N. E2-2001-137
How to Solve the Classical Problems on Quantum Computers

An extension of a time-reversible dynamical system by corresponding linear
(quantum) system is given. Functional and operational forms of the formal solu-
tions to the corresponding motion equations are considered. An algorithm of solu-
tion to the motion equations of the classical dynamical systems on the quantum
computers is constructed.

The investigation has been performed at the Laboratory of Information Tech-
nologies, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna, 2001
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