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1. INTRODUCTION

The description of scalar mesons with masses from 0.4 to 1.7 GeV is an actual
and complex problem attracting attention of many physicists for last years [1-4].
The final solution of this problem is not yet found. It is complicated by the fact
that, in this interval of masses, there exists a scalar glueball which is noticeably
mixed with scalar isoscalar quarkonia. In [5-7], we for the first time suggested to
interpret 18 scalar mesons, lying in the mass interval under consideration, as two
meson nonets: the ground nonet of scalar quarkonia (with masses below 1 GeV)
and the nonet of their first radial excitations (with masses greater than 1 GeV).
However, here, an additional scalar meson state [8] has been seen experimentally.
The origin of this extra, 19th, state is supposed to be connected with the scalar
glueball. Two possible candidates for the glueball are often argued: f,(1500) and
fo(1710) [1,2,4-7,9-11]. Our present paper is devoted to solving the problem of
identification of the true glueball state with one of these states. This is to be done
by introducing the scalar glueball into the effective meson Lagrangian investigated
in [5-7).

A nonlocal U(3) x U(3) quark model of the Nambu-Jona-Lasinio (NJL) type
was first suggested in [12,13] to describe the ground and radially excited nonets
of pseudoscalar and vector mesons. Next, in [5-7], this model was used to study
scalar meson nonets. Its Lagrangian was completed by the 't Hooft interaction to
describe the singlet-octet mixing in the scalar and pseudoscalar sectors. For the
description of excited states, simple Lorentz-covariant form factors of a polynomial
form were used. To investigate the first radial excitations, polynomials of the
second order by momentum sufficed. The form factor was chosen in a form which
allowed to reproduce all low-energy theorems in the chiral limit and the mechanism
of spontaneous chiral symmetry breaking (SCSB) [12]. This model was applied for
the description of strong decays of radially excited scalar, pseudoscalar, and vector
mesons [5-7,14].

The chiral symmetry allowed us to use the same form factors both for the
pseudoscalar and scalar mesons. As a result, using the masses of excited pseudoscalar
meson states, we predicted the mass spectrum of radially excited states of scalar
mesons. We also showed that 18 scalar meson states with masses from 0.4 to 1.7
GeV can be considered as two scalar meson nonets: the ground and first radially
excited [5-7]. The state fo(1710) was considered as a quarkonium (the radial ex-
citation of f4(980)). A calculation of widths for the strong decay modes of these
mesons and subsequent matching them with experimental data corroborated our
conclusions concerning the quark nature of the 18 states. Meanwhile, the state
f0(1500) happened to be beyond our model, and its description required introduc-
ing a glueball into the model.

To solve the problem of describing the glueball, simple models that describe the
ground scalar quarkonia states only together with the glueball were constructed
in [9-11]. There, we introduced a glueball into a U(3) x U(3) quark Lagrangian
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with the 't Hooft interaction by means of the dilaton model. The dilaton model
has been often used for this purpose by many authors [1,15-17].

The mixing of the glueball with scalar isoscalar quarkonia was described and
widths of the main modes of their strong decays were calculated. Our calculations
showed that, among the most probable candidates for the glueball, f(1500) and
fo(1710), the state fo(1500) better meets the assumption that it is the glueball
than fy(1710). However, the final decision must be made after including radially
excited states and taking account of mixing between five scalar isoscalar states
(four quarkonia and a glueball), and describing their decays.

Methods used in [5-7], and in [9,10] are unified in the present paper to construct
an extended nonlocal U(3) x U(3) model with the glueball, allowing to describe
all 19 scalar meson states in the interested interval of masses. After calculation
of widths of the strong decay modes of scalar mesons, we once more saw that
the most probable candidate for the glueball is the state f;(1500). Meanwhile,
the glueball gets noticeably mixed with the states fo(400 — 1200) and fo(1370),
mostly composed of u and d quarks, and is almost not represented in fo(980) and
fo(1710) containing mostly s quarks. Isovector and strange states change little
after introducing the glueball. Therefore, the results, obtained here for isovectors
and strange mesons, are close to those derived in [5-7], where the glueball was not
considered. All changes are connected with new value of the constant K which,
unlike papers [5-7], is fixed in our paper not only by masses of  and 7’ but also
by the lower experimental bound for the mass of the lightest scalar isoscalar state
f0(400 — 1200).

The structure of our paper is following. In section 2, a nonlocal chiral quark
model of the NJL type with the six-quark 't Hooft interaction is bosonized to
construct an effective meson Lagrangian. In section 3, the meson Lagrangian is
extended by introducing a scalar glueball as a dilaton on the base of scale invariance.
The gap equations, the divergence of the dilatation current and quadratic terms of
the effective meson Lagrangian are derived in sect. 4. There, we also diagonalize
quadratic terms. Numerical estimates of the model parameters are given in sect. 5.
In section 6, the widths for the main modes of strong decays of scalar mesons are
calculated. The discussion over the obtained results is given in sect. 7. A detailed
description of how to calculate the quark loop contribution to the width of strong
decays of scalar mesons is given Appendix A.

2. U(3) x U(3) LAGRANGIAN FOR QUARKONIA

We start from an effective U(3) x U(3) quark Lagrangian of the following form
(see [5-7)):

L = Lgee+ Lngy + Lin, (1)
Lfree = ‘7(28 - mO)q (2)



Do = 5 3 S8 + bl 0
Lin = —K {detlg(1 +)q] + detlg(1 ~ )} @

where L. is the free quark Lagrangian with ¢ and ¢ being u, d, or s quark fields;
m? is a current quark mass matrix with diagonal elements: m%, m3, m? (m® ~ m§g).
The term Lyj;, contains nonlocal four-quark vertices of the Nambu—Jona-Lasinio
type which have the current-to-current form. The quark currents are defined in
accordance with [5-7,12,13]:

»jg(P),n(x) = /d4$1d4$2¢7(271)F§(P),n($;171,152)(1(332)7 (5)

where the subscript S is for scalar and P for the pseudoscalar currents. The term
Ly is the six-quark 't Hooft interaction which is supposed to be local, so no form
factor is introduced in Lyy.

For n > 1, currents (5) are nonlocal due to form factors Fgp,,. This way
of introducing nonlocality allows to consider radially excited meson states which
is impossible in the standard local NJL model. In general, the number of radial
excitations NV is infinite, but we restrict our-selves with N = 2, leaving only the
ground and first radially excited states, because extending this model by involving
more heavier particles is not valid for this class of models.

Let us define the form factors in the momentum space.

FSpyn (@571, 22) =

- i i
+(P — K)(a — 22) ) Fie) n(K|P), ©)

where P is the total momentum of a meson and k is the relative momentum of
quarks inside the meson. As it was mentioned in the Introduction, here we follow
papers [5-7,12,13], where the form factors F§(py (k| P) are chosen in the momentum
space as follows:

F§u(k|P) = Tacafn(k1),  Fpo(kIP) = ivsmacafy(ky), (7)
and the functions f2, (n =1,2) are
fik) =1, fi(k) =1+ da|k.|* (8)
These depend on the transverse relative momentum of the quarks:

Pk
P2

ki=k— P. 9)
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In the rest frame of a meson P = (M,0), the vector k; equals (0,k), thereby
the form factors can be considered as functions of 3-dimensional momentum. Fur-
ther calculations will be carried out in this particular frame. The matrices 7, are
expressed via the Gell-Mann )\, matrices as follows:

Ta=X (a=1,..,7), 75=(V2X + As)/V3,
79 = (—Xo + V2e) /V3. (10)

Here )\ = \/2/_3 1, with 1 being the unit matrix.

Each form factor function contains a slope parameter d, which is fixed by special
conditions given in sect. 4 (see eq. (55) below). The arbitrary parameter c, can be
absorbed by the four-quark interaction constat G. As a result, we obtain arbitrary
constants G, = c2@, where only four constants G, G,, Gg, and Gy are free because
the following relations take place:

GZ G3’ G4 - G5 G6 (11)

Thus, the term Lyyi, (see (3)) can be rewritten for the ground and first radially
excited states in the following form:

Do, = § LA08)+ G )+ 3 Gl + G (1)

where )

J8(P)2 = Cal§(p)2- (13)
As it follows from our further calculations (see sect. 4), we have only 3 different
form factor functions:

fE=1+dX? f5=1+dk? [f=1+d.k> 14
2 2 2

The values o constants d,, ds, and d,s are given in sect. 5. As a consequence
of such a definition of the form factor functions, all arbitrariness connected with
introducing form factors reveals itself only in mass definitions (see (63)), while the
interaction of excited mesons is free of arbitrary parameters.

Instead of Lagrangian (1), it is convenient to use its equivalent form containing
only four-quark vertices whose interaction constants take account of the 't Hooft
interaction. Using the method described in [5-7,9,18-20], we obtain

L =q(id —m)q +
g ()a +) ;a

1 . .
3 [ 38,58, + G Jp1lp 1] +
a,b=1

1

2

+5 2 G, [180380 + d0its) (15)

a=1



where

GY =G5 =G = G + 4Kkm I\ 1),

G® —o® = Gg) =G =G+ 4Km,JN1),

Gss =GF 4Kms~70,1[1]7 Gg) =G,

GE =Gl = £4v2Km, T 1),

G =0 (a#b ab=1,.,7),

GH =W =P =cH =0 (a=1,...,7), (16)

and m° is a diagonal matrix composed of modified current quark masses:

my = md— 32KmymsJ;, o[l]jo W1, (17)
m = m— 82KmiIN 1, (18)

introduced here to avoid double counting of the 't Hooft interaction in gap equations
(see [9,20]). Here m, and mj are constituent quark masses, and I{*(m,) stands for
a regularized integral over the momentum space. It is convenient to define all
integrals that will appear further in the paper via the functional J:

4 f(k) (A% - k?)
\Zn[f] (271’ /d k2)l(m2 k‘2)n (19)

where f is a product of form factor functions, and N, = 3 is the number of colors.
Since the integral is divergent for some values of | and n, it is regularized by a
3-dimensional cutoff A.

After bosonization of Lagrangian (15) we obtain:

£(5,¢) = Lo(5,$) — iTr 1n{if} 04

+ Z ZTaga u Oa n + 1’75\/_¢’a n } (20)

n=1a=1
where
Lg(0,9) =
=—%a§ 9100, (G )) gblabl—gazz Gaan (G )) gordu.1 =
Z ga2 a,2+¢121,2) (21)

As it follows from our further calculations of quark loop diagrams, the vacuum
expectation values (VEV) of the fields 631 and &9, are not equal to zero, while



(Ga1) =0, (a=1,...,7). This is connected with the existence of tadpole diagrams
(Fig. 1(a)) for the ground meson states. Therefore, it is necessary to introduce new
fields oy, with zero VEV (0gy), = (09,n), =0, using the following relations:

g8,108,1"— W?, = 08,1081 — My,
=0
_ m
99,1091 + 7—‘;‘ = 09,1091 + 7% (22)

VEV taken from (22) give gap equations connecting current and constituent quark
masses (see (53) and (54) in sect. 4). This is a consequence of spontaneous breaking
of chiral symmetry (SBCS). As a result, we obtain [9,18]:

E(O', ¢) = LG(07 ¢) -
2 9
—i Trin {Zé—m+z ZTaga,n(Ua,n+ i75\/7¢a,n)f7?} =

n=1a=1

= Lkin(ay ¢) + L(;(O', ¢) + LlOOp(O-a ¢) (23)
The term Lg(o, ¢) is

LG (Ga (b) =

1
= ) Z(ga,laa,l—ﬂﬁﬁﬂ) (G( )) (gb1<7b1—ub+u,,)
a,b=1

9z
Y Z 9a,1Pa,1 (G( )) 9b,1Pp,1 — 21 5(‘;-1 02,2 + ¢i,2)- (24)
ab 1 a

Here we introduced, for convenience, the constants y, and i defined as follows:
Ba =0, (a=1,...,7), ug = my, pg = —mg/v/2 and @ =0, (a=1,...,7),
fig =Ty, fi§ = —m3/V/2.

The term Lyin(0, ¢) contains the kinetic terms and, in the momentum space,
has the following form:

P2 2 9
Lkm ” ¢ 7 Z Z(aa’nrg’njga’j + ¢aynrg,nj¢a,j)v (25)
n,j=1a=1
where
Fg(P)‘ll = Fg(P),zz =1,
Fg(P),12 = Fg(P),Ql = ')/g(P)’ (26)
Tl s3] _
i euean
o - —_Jiaval _
BT VA T 50150 (a=4,5,6,7), (27)
Tl (a=9)

VIS I3 5]
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Ve =VZ. (28)

The term Liop(0, ¢) is a sum of one-loop (see Fig.1) quark contributions”, from
which the kinetic term was subtracted:

Lioop(0,8) = Liaa(0) + L (0,8) + LE) (0, 6) + L (0, 6), (29)

where the superscript in brackets stands for the degree of fields. Thus, Ll(;,))p

(Fig. 1(a)) contains the terms linear in the field o; Ll(z())p (Fig. 1(b)), the quadratic

2)
ones, and so on. For example”,

L)y (0,8) = 8mugs 1 Ti[Uos, — 4v2mege T Lo 1, (30)

3
Ll(s())p(07 ¢) =4 93,1‘711,\0[1](‘72,1 + Z(bi,l) +
a=1

7
+2 Z 92,1(711,\0[1] + -70/}1[1])(02,1 + Z¢§,1) +

a=4

+4Q§,1‘711}0[1](‘7§,1 + Z¢§,1) +
+4g§71\70’}1[1](o§,1 + Z¢§,1) +

3
+4 Z gi,zjffo[fé‘fé’](ai,z + ¢3,2) +

a=1

7
+2)° 92,2(«71/,\0[1[511(;] + jol,\1[f§f§])(‘73,2 + ¢¢2L,2) +

a=4
+4982,2~711,\0[f28f28] (03,2 + ¢§,2) +
+49§,2\70/,\1 (13 £3] (03,2 + ¢52),2) -
2 3
-2 [mﬁ 3 040,08 ;i00,5 +
ig=1 a=1
My +mg\2 &
(—%) Z O'a,i[‘g,ijo'a,j +

a=4

2 8 2 9
+my08,l's 08, + msas,irs,ijUQ,j]- (31)

The total expressions for Ll(g())p and L,(ggp are too lengthy, therefore, we do not show
them here. Instead we will extract parts from them when they are needed (see e.g.
Appendix A).

" Here we keep only the terms of an order of fields not higher than 4 (corresponding diagrams
are shown in Fig. 1).

2)Here, the expressions (32) and (33) for Yukawa coupling constants were used.



The Yukawa coupling constants g,; describing the interaction of quarks and
mesons appear as a result of renormalization of meson fields (see [5-7,12,13,21] for
details):

gor = [4TN7Y, (6=1,2,3,8),
93,1 = [4t71}}1[1]]—17 (a = 4) 57 6: 7)a
93,1 = [430/,\2[1]]_1~ : (32)

9021,2 = [4\72[,\0[1‘;l ;]]—17 (a: 1’2’37 8),

92,2 = [4\711,\1 [f;sf;s]]-—l’ (a' = 47 57 67 7)3

o2 = [4Teuf5 1517 (33)
For the pseudoscalar meson fields, - A,-transitions lead to the factor Z, describing

an additional renormalization of pseudoscalar meson fields, with M4, being the
mass of the axial-vector meson (see [13,21]):

~1
7z = - =~ 1.46.
(1 an) 1.46 (34)

For the radially excited pseudoscalar states a similar renormalization also takes
place, but in this case the renormalization factor turns out to be approximately
equal to unit, so it is omitted in our calculations (see [13]).

3. INTRODUCING THE DILATON

According to the prescription described in [9,10], we introduce the dilaton field
into Lagrangian (23) as follows: the dimensional model parameters G, A, m,, and K
are replaced by the following rule: G — G(x./x)% A = A(x/Xc), Ma = Ma(X/Xc)s
K — K(xc/x)® where x is the dilaton field with VEV x,. We also define the
field x’ as the difference x' = x ~ X, that has zero VEV. Below the effective meson
Lagrangian is expanded in terms of x’ when calculating the mass terms and vertices
describing the interaction of mesons.

The current quark masses break scale invariance and, therefore, should not be
multiplied by the dilaton field. The modified current quark masses m2 are also not
multiplied by the dilaton field. Finally, we come to the Lagrangian:

Z(O’, ¢7 X) = Lkin(Uy ¢) + Z’G (07 ¢7 X) + Eloop(g’ ¢a X) +
+L(x) + ALan(0, ¢, x)- (35)

The term Ly, (0, ¢) remains unchanged, as it is already scale-invariant.



Here, the term Lg(o, ¢, X) is

[_/G(aa ¢v X) =
__1(x\'e X o 20) ()
=3 () 2 oo at) 0
X (91;,105,1 - libxl +ﬂg> -
A
——< ) Z 9a1¢a1(G( )) 9b1P,1 —
2 \Xe) 52
- (X i o2 (02, + ¢2,) (36)
Ye ~ zGa a, a,

Expanding (36) in a power series of x, we can extract a term that is of order x*. It
can be absorbed by the term in the pure dilaton potential (see (39) below) which
has the same degree of x. This does not bring essential changes, because such
terms are scale-invariant and therefore do not contribute to the divergence of the
dilatation current (see (59) below). This would lead only to a redefinition of the
constants xo and B of the potential (39).

The term Eloop(a, ¢, x) after introducing dilaton fields takes the form:

c

2
Eloop(au é, X) Ll(;c)m(a) (;) + Ll(g())p( ¢) (%) "

loop(g d)) l(:())p(a’ ¢) (37)
Here £(x) is the pure dilaton Lagrangian
P2

L0) = 5x" = V() (38)

with the potential

vo-m () () -]

that has a minimum at x = Xo, and the parameter B represents the vacuum energy
when there are no quarks. The kinetic term is given in the momentum space, P
being the momentum of the dilaton.
Note that Lagrangian (23) implicitly contains the term L,, that is induced by
gluon anomalies:
Lan(5,¢) = —hyd? + h,52, (40)

where ¢y and 55 ({(09), # 0) are pseudoscalar and scalar meson isosinglets, re-

spectively; and hg, h, are constants; ¢o = 1/2/3¢s1 — 1/1/3¢91, Go = 1/2/35s1 —
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\/1_/35'9,1, where ¢g; and g1 ((0s1), # 0) consist of u-quarks; and ¢g;, 59,
((Go,1)o # 0), of s-quarks. In our model, the 't Hooft interaction is responsible
for the appearance of these terms. '

The term L,, breaks scale invariance. However, when the procedure of the scale
invariance restoration is applied to Lagrangian (23), the term L,, also becomes
scale-invariant. To avoid this, one should subtract this part in the scale-invariant
form and add it in a scale-breaking (SB) form. This is achieved by including the
term AL,y:

2
ALun(0, %) = —Lan (5, 9) (;}) L0, 6, ). (41)

Let us define the scale-breaking term L$B. The coefficients h, and hg in (40)
can be determined by comparing them with the terms in (24) that describe the
singlet-octet mixinga). We obtain

3 -1
- __° (+)
hy = =5 ﬁgg,lgg,lz(a ) (42)
3 -1 '
_ (=)
hey = 2\/598,199,1 (G )89 . (43)

If these terms were to be made scale-invariant, one should insert (x/x.)? into them
(see last term in (41)). However, as the gluon anomalies break scale invariance, we

introduce the dilaton field into these terms in a more complicated way. The inverse
-1 -1

matrix elements (G(+)) and (G(‘))

ab - ab

)

A
(G(+>)‘1 _ _—4V2em K, 1‘0[1]2, (44)
¥Rl - (68)
A
(G(*))_l _ 4V K[ (45)

89 (=) (- -2’
GR6E - (GR)
are determined by two different interactions. The numerators are fully defined by
the 't Hooft interaction that leads to anomalous terms (40) breaking scale invari-
ance, therefore, we do not introduce here dilaton fields. The denominators are
determined by the constant G describing the NJL four-quark interaction, and the
dilaton field is inserted into it, according to the prescription given above. Finally,
Xe

we come to the following form of LSB:
K\t
X 46
(%) @
Vom, . omy o V2m  mP

0= —F7——+ 5 47
\/598,1 ( )

2
L (0,¢,x) = [—hw% + hy (00 ~RX 4 Fé’)

, = — 4 —5
\/609,1 0 \/§gs,1 \/699,1

“The singlet-octet mixing is fully determined by the ’t Hooft interaction.
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From it, we immediately obtain the term AL,,:

2
ALan(aa ¢a X) = {hdﬂ% - ha (00 - FO%' + F(?)

c

() [ ()]
4. EQUATIONS

One of the principal requirements for an effective meson Lagrangian with a
glueball is that the terms linear in ¢ and x' should be absent in the effective
Lagrangian. This leads to the equations:

6L oL B 5_51 B
0031 ¢fg - 0091 ¢fg - dox ¢fg
X=Xe X=Xec X=Xe
6L oL
brsal o Oosal 05 0
X=Xc X=Xe

Gap equations follow from them. For the ground states of quarkonia (o,,;) and the
dilaton field ', we obtain:

(ma =) (6), = =2 (60) — syl = 0, (50
(ms — M) (G<—>);9 — V2(mg — m0) (G(‘));S —8mJM[1) = 0,  (51)
2\’ 1 . i
o (1) () 3 (), 0o
2hs
-—;(FO—FO) = 0. (52

Using (17) and (18), one can rewrite equations (50) and (51) in the well-known
form [20] (see Fig. 2):

my = my — 8GmyJ[1] — 32Kmymy T [11T54 1], (53)
mg = mg—8GmeJg4 (1] — 32K (myJiH[1])% (54)

For the excited states (o,,2), we require that the corresponding gap equations
have the trivial solution, (g,,2), = 0. This is one of the possible particular solutions
of equations (49). An advantage of such a solution is that in this case the quark
condensates and constituent quark masses remain unchanged after introducing ra-
dially excited states. This solution surely exists if the tadpole diagram (Fig. 1(a))
for the excited scalar is equal to zero (see [7,12]). This leads to the condition:

Jll,\o[f;] = »7()1,\1[f251 =0. (55)
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In addition to these conditions, we impose the third one:
Tfoll + dusk®] + T4 [1 + dusk?®] = 0, (56)

which fixes the constant dys. The calculation of the second variation of the effective
potential will ensure us that the solution that we have chosen give the minimum
of the potential.

In addition to the gap equations, an Ward identity for the divergence of dilation
current, coming from QCD should be taken into account. The identity reads:

(0u8") =Cg — Y md(qq),, (57)
g=u,d,s
where 11N, N, 2
f a
Co = ( 24 12>< (G””) >o’ (58)

and NV is the number of flavours, <°‘(G“ )2 > and (gq), are the gluon and quark
condensates with a being the QCD constant of strong interaction.

Let us now consider VEV of the divergence of the dilatation current S* [9,15]
calculated from the potential of Lagrangian (35):

22 oV 1% v
9uS*) = anmy - Tt Pan + x5 —4V
< g > [;;(U Oa,n ¢ a¢an> XaX :|

RSN EP Y
IRgIRll
o ox

)

4
=4B (X_) — 2k, (Fo — F(?)2 - Y m{qq), - (59)
Xo q=u,d,s
Here V =V (x) + V(0, ¢, x), and V (0, ¢, x) is the potential part of Lagrangian
L(o,¢,x) (see (35)) that does not contain the pure dilaton potential (39). In the
expression given in (59), the following relation of the quark condensates to integrals
JP[1] and J[1] was used:

AT 1) = ~ (auy = — (@), 4m T (1] = — (55),, (60)

and that these integrals are connected with constants Gfl;) through gap equations,
as it will be shown below (see (50) and (51)). Comparing (59) with the QCD
expression (57), one can see that the term 3" 7mJ(gg) on the right-hand side of (57)
is canceled by the corresponding contribution from current quark masses on the
right-hand side of (59). Equating the right-hand sides of (59) and (57),

Cg — Z mg (q9), =

g=u,d,s
4
X 2 5 0
— 4B (_> —2h, (Fo— )= X 2 (da), (61)
X0 q=u,d,s
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we obtain the correspondence

Cs =4B( ) 3 (- 42) (6)) (o ) -

a,b=8
~2h, (Fo — Fo) , (62)

where u =0 (a=1,...7), u3 = m?, and pd = —m?/v/2. This equation relates
the gluon condensate, whose value is taken from other sources (see, e.g., [22]), to
the model parameter B. The next step is to investigate gap equations.

To determine the masses of quarkonia and of the glueball, let us consider the
part of Lagrangian (35) which is quadratic in fields o and ¥’ together with kinetic
terms and which is denoted by L®:

1 2 3 ‘
LO(0,6,) = 5 3 [SO(P? = 4m2)oanTh 005 +
n,j=1"a=1

+ 32 (P = (1 + m4)*) 00T g0 +
a=4

+(P? - 4m?)og, anmag,ﬁ-(Pz - 4m§)ag,an,njag,j] -

9 1

8,

[ G( ) 8_ - 8']1/,\0[1]] 03,1 -
9 9,1 [ G( ) 9_ - 8\70/,\1[1]] 03,1 -
g 2 [1/G8 —-8J1 0[f2 fz]]

[

9% 9,2 1/Gy — 84 1[f2f2]] J92
Mg2x’2
2

1
T2
L
2
1
T2
1
T2

-1
—98,199,1 (G( ))89 08,109,1 — +

-0
+> &(G(—))gblgb,lgb,lxl +
a,b=8

4h,(Fy — F9
+'—(X:—\/§‘0—) (09,1 - 0'8,1\/5) X' (63)

where

1
= (4C + Z (G( )) (2@p — ) +

C a,b=8

9 —1

+ 3 4 (69O) 7 (o — ) — 4h, F2 + 4h,(Fg)2) (64)
a,b=8

is the glueball mass before taking account of mixing effects. Here, the gap equations
and equation (62) are taken into account.
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From this Lagrangian, after diagonalization, we obtain the masses of five scalar
isoscalar meson states: oy, oyr, om, o1y, and oy and a matrix of mixing coefficients
b that connects the nondiagonalized fields o1, 091,082,099, X" With the physical
ones oy, o1, 0111, OTV, OV -

08,1 bogior bogon bog ot Dog oy bog,10v 01
09,1 btrg,ltrl b09,1011 b0'9,1 o1 bﬂe.lﬂlv bas,l oy on
082 |= bcrs,ztrl bda,zan btfs,ztfm bvs,zdlv bﬂs,zdv aut |- (65)
09,2 bogpor bogson boosom Vogpory  Doosov o
X bX’UI byoy bx'dm byory  byay ov

The values of matrix elements are given in Table 1.

For the isovector states we introduce physical states: the ground aq and radially
excited Go. The corresponding mixing coefficients are represented as elements of a
matrix connecting the physical fields ao, Go with the fields agy, agy before mixing:

Qo1 — baolao baoldo Qg 66
< Qoo ) ( baogao baozdo d() ' ( )

Their values are bgy,q, = 0.918, byg,a, = 0.138, bgg 40 = 0.761, bgy,a, = —1.18. The
mixing of strange scalar meson states is described as follows:

K3, bis, k5 bry ks K3
The values of matrix elements are: bK61K5 = 0.866, bK52K5 = 0.232, bKalf(é‘ f 0.750,
bKSz ky = —1.12. Here, the physical states are K§ and its radial excitation K. The

states Kg, and Kj, correspond to the nondiagonalized Lagrangian.

After the diagonalization, we obtain the kinetic and mass terms of the effective
Lagrangian in a diagonal form. Expressions for the quadratic terms in the case of
isovector and strange mesons are given in [5-7].

5. MODEL PARAMETERS AND NUMERICAL ESTIMATES

The basic parameters of our model are G, A, m,, and mg. They are fixed by the
pion weak decay constant Fy = 93 MeV, the p meson decay constant g, =~ 6.14, and
the masses of pion and kaon [21,23,24]. To fix A and m,, the Goldberger-Treiman
relation g,Fyv/Z = m, and the equation g, = V6gy are used. The parameter G
is determined by the pion mass; and ms, by the kaon mass. Their values do not
change both after the radially excited states [5-7,12,13] and the dilaton fields are
introduced [9, 10]:

my = 280 MeV, mg = 417 MeV, A =1.03 GeV,
G = 3.202 GeV 2. (68)
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To have a correct description of 5 and 7', one should fix the 't Hooft interaction
constant by the masses of n and 7. The lower bound for the lightest scalar isoscalar
meson mass is also taken into account here. As a result, for the model masses we
obtain: M, ~ 500 MeV, M,, ~ 870 MeV, and for K:

K =4.4GeV~®, (69)

After introducing the radially excited states, there appear new parameters: the
slope parameters d, and the arbitrary parameters c,. The constants d, are not
arbitrary and are fixed by conditions (55) and (56):

dy=—177GeV~?, dy=—1.72GeV~2 dy = —1.75 GeV 2. (70)

The parameters c, are absorbed by the four quark interaction constants G, and
influence only masses of mesons. They are fixed from experiment by masses of
excited pseudoscalar meson states. As a result, we obtain:

G, =4.45GeV% G, =5.12 GeV ™2,
Gy = 4.64 GeV™2, Gy = 5.09 GeV 2, (71)

Due to the chiral symmetry of Lagrangian (3), the same values of the form factor
parameters are used both for the scalar and pseudoscalar mesons, which allows us
to predict masses of excited scalar states” . _

After the dilaton is introduced, new three parameters xo, X., and B appear.
To fix the new parameters, one should use equations (62), (52), and the physical
glueball mass. As a result, we obtain for x, and B:

Xo = xcexp{ L ; i (G( )) (3up — 1g) + +2h, (FO*F(?)Z}/
=8

2

/4[c - )(G< )) (s —0)+ 2hy (FO—F(?)QJ}, (72)

a,

4
2
= 30 - (E) ) +2m (- 1)) (2) .
a,b=8 c

We adjust the parameter x., so that the mass of the scalar meson state oy
would be close to 1500 MeV (x, = 219 MeV)s). For the constants x, and B we
have: xo = 203 MeV, B = 0.007 GeV*. We found that, if the state fo(1710) is
supposed to be the glueball, the result turns out to be in worse agreement with

“ The excited meson K" is an exception. Insofar as the experimental status of the excited K'
meson is unclear, we use the experimental value of the mass of K (1430) to determine G, and
predict the mass of K.

*To reach more close agreement with experimental data in the description of strong decays of
o1y, we chose the model value of M, = 1550 MeV (mass + half-width)
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experiment (see Conclusion). The masses of scalar mesons calculated in our model
together with their experimental values are given in Table 2.

6. STRONG DECAYS OF SCALAR ISOSCALAR MESONS

Once all parameters are fixed, we can estimate the decay widths for the main
modes of strong decays of scalar mesons: o, — 77, KK, nm, nm', and 47 (20,021 —
4r), where [ = I, 11,111, IV, and V; decays of excited isovectors: @ — nm, Gg — N,
a9 — K K; and of strange mesons: K.

Note that, in the energy region under consideration (up to 1.7 GeV), we work
on the brim of the validity of exploiting the chiral symmetry and scale invariance
that were used to construct our effective Lagrangian. Thus, our results should be
considered rather as qualitative.

Let us start with the decay of a scalar isoscalar meson into a pair of pions. The
corresponding amplitude has the form:

Aal—)'mr = Ag)—wm + Ag)—)mr* (74)
where the first part comes from contact terms of Lagrangian (35) that describe
the decay of the glueball into pions. These terms come from Lg(o,®,x) and
(X/Xc)2L1(02<))p(Ua #) (see (36) and (37)). They turn into the pion mass term if y = x.
Expanding around x = x. in terms of x’ and choosing the term linear in ¥', we
obtain, after the mixing effects are taken into account, the following:

My
A((I?—}'Inr = X bx'o’n (75)

c

where M; is the pion mass, and by, is a mixing coefficient (see (65) and Table
1). The second contribution A((,f)_,,m describes the decay of the quarkonium part of
o, and is determined by triangle quark loop diagrams (see Figs. 1(c) and 3). For
details of their calculation see Appendix A. As a result, we obtain the following

widths for decays of scalar isoscalar mesons into two pions:

Tyynn & 600 MeV,
r

ousmr A 36 MeV(20 MeV),

Q

Q

Loorn &~ 680 MeV/(480 MeV),
Lyvoar = 100 MeV,
Tyosen ~ 0.3 MeV. (76)

To calculate decay widths, we used the model masses of scalar mesons. For the
state oy hereafter we give in brackets the values obtained for its experimental
mass. Concerning the state oy, the values in brackets correspond to calculations
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performed for the lowest experimental limit for its mass (1200 MeV). Note that
in the last two cases the widths-are noticeably smaller than those derived for the
model masses.

Decays of scalar isoscalar mesons into kaons are described by the amplitude:

Agokk = ASLKK + A:(fzz)—>KKa (77)

where A((,t)_, xk originates from the same source as A%, and is determined by the

o]
kaon mass:

Az(rlx)——>KK = _—;(_Kbx’am (78)

c

while the other part AP again comes from quark loop diagrams (see Appendix
o= KK 8
A). The decay widths thereby are”

Lonokx =~ 260 MeV(125 MeV),
Lovoxx = 28MeV,
250 MeV. (79)

Q

FU\/—)KK

The state o1 cannot decay into kaons, as it is below the threshold.

The amplitude describing decays of scalar isoscalar mesons into nn has a more
complicated form, because it contains a contribution from AL,,. The singlet-octet
mixing between pseudoscalar isoscalar states should also be taken into account
here. Using the expression for the fields ¢g; and ¢g; through the physical ones 7
and 7':

¢8,1 = b¢s,1n77 + b¢s,1fl'77l +..., (80)
P91 = b¢9,1n77 + b¢9,117'77’ +... (81)

where ... stand for the excited n and 1’ that we do not need here and therefore
omit them. The mixing coefficients for the scalar pseudoscalar meson states were
calculated in [5-7]. In the current calculation their values changed little because
the parameter K has changed, thus, by, ,, = 0.777, by ., = —0.359, by, ,, = 0.546,
bge,y = 0.701. Thus, we obtain for the amplitude:

Ao’l"'”"/ = A¢(7]l-)_”l77 + A‘(72!)_”777 + Ag?—)ﬂﬂ (82)
Here the contact term A, has the form:
M2
Al = =—byio,. (83)
Xe

 The decay of o11 into kaons occurs almost at the threshold, therefore, we cannot give a reliable
estimate for this process.
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The second term Agz —>nn comes from a quark loop calculation (see Appendix A),
and the third term Aal L,y originates from AL,, (see (48)):

2h 2
Ag)—mn =2 (\/_b¢s 1 b¢9,1n) : (84)

As result, we obtain the following decay widths:

Loom =~ 62MeV(26 MeV),
Poomm = 4MeV,
Loysm =~ 23 MeV. (85)

The state oy can also decay into nn'. The corresponding amplitude is

2 3
AUI—”W Asrl)—n'm' + Afn)—m'q (86)
The contact term A'(ﬂ)_,,m, is absent here. The term At(rz)—mn' comes from quark loop
diagrams, as usual, and the last term has the form:
®) 4h¢ NG NG}
Aal—mn ( b¢8 1 b¢9 177) ( b¢s 1 b¢9 1 ) (87)

The decay width is approximately equal to 100 MeV.

The scalar meson states oy, o1y, and oy can decay into four pions. This decay
can occur via intermediate scalar mesons. Similar calculations for f;(1500) were
done in our previous works [9,10]. Insofar as our calculations are qualitative, we
consider here, instead of the direct processes that involve o-resonances, simpler
decays: into 201 and o127 as final states. Our investigation have shown that the
result thus obtained can be a good estimate for the decay into 4.

Let us consider decays into 207. Its amplitude can be divided into two parts:

AUI—'WIUI = Agl—mml + Ag)—mw] (88)
To calculate the first term Af,?_mlal, one should first take, from the effective meson
Lagrangian, the terms that contains only scalar meson fields in the third degree
before taking account of mixing effects. The corresponding vertices have the form:

arx’® + asX 081 + asX'og, + asX' 04 9, (89)

where the coefficients ay are given in Appendix A (see (A. 120) (A.123)). These
vertices come from Lq, £(x), and AL,, (see egs. (36), (39)), and (48)). We ne-
glected here the terms with oy ; fields which represent quarkonia made of s-quarks,
because we are interested in decays into pions that do not contain s-quarks.
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Up to this moment, the contribution Af,ll)_,am was considered. As to the term
Affx)_mm in (88) connected with quark loops, its calculation is given in Appendix.

As a result, we obtain the following decay widths:

Tyimso; & 40 MeV,
Tymsoe; & 200 MeV,
Toyiorer & 1MeV. (90)

Four pions in the final state can be produced also through the process with one
or-resonance (0; — 012 — 4m). To estimate this process, we calculate the decay
into 027 as a final state. The amplitude again can be divided into two parts:

1 2
Aa;—m]27r = Az(n)—-)al21r + At(T[)—)U]27l" (91)

The first term has the form:

M? 8my .
AE}'];)—)UIQW = _Vbxlal bX'UI + *)—(—bxraljé}o[fal fﬂfw]
8my, o
+X—bX'UI\72/,\0[f01f7rf’lr]v (92)

where f, are “physical” form factor functions defined in Appendix A. The pure
quark contribution is calculated as described in Appendix A. The result is

A(azzz—mﬂw = _4s721}0[faxfax.fvrf7r]' (93)

The corresponding decay widths are negligibly small

Lomoor = 1MeV,
Lovooar = 2MeV,
Lyysoor ~ 0.6 MeV. (94)

Comparing the obtained results with experimental data (see Table 3), one can
see that the decays oy — mm and oy — 77 are in satisfactory agreement with
experiment. For the states oy, o1y, and ov, we have reliable values only for their
total widths measured experimentally. Our results allow us to obtain just the order
of magnitude for the decay widths, exceeding the experimental values by a factor
of 2.0 + 3.0.

Concerning partial decay modes, the state f5(1500) decays mostly into 47 and
2m. According to the experimental data analysis given in [25], the ratio [y /Toyr =
1.34. We obtain I'yr/T'sx ~ 2, which is in qualitative agreement with [25]. The
decays into 47 and 27 are suppressed for the state fo(1710). Its main decay mode
is into kaons. This agrees with the analysis of experimental data given in [25] and
corroborates our assumption that f,(1500) is rather a glueball.

20



The amplitudes describing decays of excited state ao into nm, n'r, and KK are
calculated through triangle quark loop diagrams and look as follows:

Asoonm = 16my(Tsofao fy F) = Pr - BT fao Fy F)), (95)
A&o—m'vr = 16mu(\-72/,\0[fd0f1;1'f1r] -h 'P21.73/,\0[f_&of1[7l/f7r])> (96)
Asgs ki = 8mu(CouTsofao fi Fic] + Cus T [ fao Fic i) —

—Py - Py8m T3 [ fao Fic fx), (97)

where the constants C are defined in Appendix (see (A.118)). The momenta P
and P, are those of the secondary particles. Their product is expressed via masses
of mesons (see (A.102) in Appendix) As a result we obtain:

Tsyosyr = 250 MeV,
F@O'-“)W'W = 36 MeV,
Tk = 160 MeV. (98)

The total width is thereby 446 MeV.
The decay amplitude of Kj(1430) into K has the form:

ARS—)KW = Smsjll,\l[fkgflu(fﬂ] —8mgP; - P2*72/,\1[ff(3f1u(f7r]' (99)

The decay width is

r =200 MeV. (100)

Ki—Kn

There is also possibility of the state KO to decay into K37 via the processes
K* — Kinm — K3m, K — K{o1 — K3m and K* — Kmoy — K3w. A rough
estimate of the correspondlng decay widths shows that it can add ~50 MeV to the
total width of K 5

7. CONCLUSION AND DISCUSSION

In papers [9,10] we suggested a chiral quark model with the scalar glueball.
However, in these papers, “only ground states of scalar quarkonia were considered.
To describe the whole spectrum of scalar meson in the mass interval from 0.4 to
1.7 GeV, one needs to introduce radially excited meson states. This has already
been done, however without the glueball, in papers [5-7]. The radially excited
quarkonia were described by means of form factors. Each of these form factors
was a polynomial in the momentum space and had two parameters: the external
o and the slope parameter d,. In general, the external parameters ¢, can always
be absorbed by the four-quark interaction constant G, giving rise to four different
interaction constants G,, connected with excited meson states. The constants
determine only masses of excited mesons and do not affect their interaction of
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mesons. Only the slope parameters d, influence decay amplitudes. And they are
fixed by conditions (55) and (56) and are not arbitrary.

In papers [5-7], we have shown for the first time that 18 scalar meson states
with masses lying between 0.4 GeV and 1.7 GeV can be considered as two nonets
of scalar quarkonia. In the present work, we introduced a glueball into the La-
grangian investigated in [5-7] and described mixing of five scalar isoscalar meson
states: o1, on, omr, o1y, and oy with the masses: 400, 1070, 1320, 1550, and 1670
MeV, respectively. We showed that fy(1500) is rather a glueball. This conclusion
has followed the analysis of strong decays of the meson state f;(1500). Indeed,
according to our calculations, the state fy(1500) decays mostly into 47 and 27, the
decay into 47 being more probable. This is in agreement with experiment [8,25].
Meanwhile, the decays of f;(1710) into 47 and 27 are suppressed as compared with
those into kaons and 7 mesons (see [8,25]). On the other hand, if the model pa-
rameters were fixed from the supposition that f,(1710) was the glueball, the main
decay mode of fy(1710) would be 47 (T'y; =150 MeV), the remaining partial widths
would be too small: I'z; =3 MeV, I'kg =5 MeV, T, =2 MeV, T, =2 MeV. For
the state f(1500) in this case, the main decay would be into kaons (I'xx = 250
MeV), the other modes would give: I'r,=10 MeV, I, = 34 MeV, I'y, =90 MeV.
This crucially disagrees with experiment [25].

Note that, after the glueball is introduced into the effective meson Lagrangian,
the mass of o7 noticeably decreased as compared with the result from [5-7]. This
is a consequence of the noticeable mixing between the glueball and the ground and
radially excited @u (dd) quarkonia, f5(400 — 1200) and fo(1370). The obtained
mass and decay width of oy are in satisfactory agreement with recent experimental
data [8,26,27]. On the other hand, the §s quarkonia mix with the glueball at a
small proportion (see Table 1). Therefore, after introducing the glueball (see [5-7]),
the masses of oy; and oy change less than the mass of o;. However, here we obtain
better agreement with experiment for the mass of oy than in [5-7]. For oyy, we
obtain that the state contains 67% of the glueball, which is in agreement with [2].
After this analysis, we identify the five scalar isoscalar states o1, o1, o, o1y, and
ov with physically observed meson states in the following sequence: f,(400—1200),
f0(980), fo(1370), f5(1500), fo(1710) (see Table 2). We also have excited isovectors:
do with the mass 1530 MeV and strange scalar meson K7 with the mass 1430 MeV,
respectively.

The chiral symmetry has played a crucial role in calculations. It allowed us to
predict masses of scalar mesons, using masses of pseudoscalars.

Let us remind that our model is based on the U(3) x U(3) chiral symmetry
and scale invariance of an effective meson Lagrangian. Both symmetries are very
approximate for the energies under consideration. Therefore, our results are rather
qualitative. As a result,  the obtained decay width agrees with experiment only
in the order of magnitude. Nevertheless, we hope that the model gives, on the
whole, a correct description of scalar meson properties.
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A. CALCULATION OF THE QUARK LOOP CONTRIBUTION INTO THE
STRONG DECAY AMPLITUDES

In the calculation of the quark loop contributions to decay amplitudes, we follow
our papers [5-7], where the external momentum dependence of decay amplitudes
was taken into account.

It is convenient to take account of the mixing effects before integration. To
demonstrate how to do this, let us first calculate the decay of the state o7 into
pions. As one can see, elght diagrams (Fig. 3) contribute to this process. The
expression for the amplitude is as follows (see (8) for the definition of form factor
functions):

Ac(rzx)—mr = 8mu[gs,1b05 101 (g7 1bemrs72Ao[1]
+291101 2\/_b1r1rrb7rz7n72 o[fz] + 91 2b7rz7r*72/}0[f;f;]) +
+98,2b05 01 (g1 1Zb7r17r-72,0[f2u] +
+291101 2\/_b1r17rb1r27r\72l}0[f;f2u] +
+91 2b7r27r~72A0[f2uf2uf;]) -
_Pl P2 (gS lbas 101(91 1Zb7r11r'-73A0[1] +
+291191 2\/_b7r17r 1r27n73 O[fzu] + 9 2b7r27r‘y3/,\0[f;f;]) +
+08,2D04 301 (97 1Zb$r17r\73,0[ 2]+
+291,191 Zﬁbmw szjal}o[fzu 2] +
+9% b5, Tl 13 15 151)], (A.101)

The product of the momenta of secondary particles can be expressed through
masses of mesons:

1
P -Py= 5(M2 — M? — M2), (A.102)

where M is the mass of the decaying meson, and M; and Mz are the masses
of secondary particles (M = M,,, My = M, = M, in this case). Let us continue
(A.101) and calculate the sum before integration. The resulting expression becomes
short: o o

A¢(7'2[)—-)7r7r = SmU(j;}o[faxfﬂfW] - Pl : P2»731,\0[f01f7rf7r])7 (A-103)

" Two of them are identical, which leads to the symmetry factor of 2.
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where f, are form factor functions for the physical meson states, defined as follows:
fa‘l = gS,Ibds,lﬂx + 98,21)08,201 f2u’ (A104)

.fﬂ' = gl,lbmwﬁ + 91,2b7r21rf;- ' (A105)

The coefficients b,,, appear because of the mixing between the ground and excited
pion states. Their values are: by, ~ 0.997, by, ~ 0.007. Concerning the decays
into the other pairs of pseudoscalars, the calculation of the corresponding contri-
bution is carried out in the same manner. We will discriminate these form factor
functions by the superscripts v and s, respectively. Below we give the physical
form factors that were used in the calculation:

F2 = g8:1b0g 100 + 98,2(1 + duk®)byg 100 (
fg, = 99100010, + 99.2(1 + dsk®)bog 0, (
Fr = 91brinVZ + 912(1 + duk®)bryr, (
fx = 9a1bi, kVZ + gap(1 + dysk?)bg, i, (
fao = 91,1800,0 + 91,2(1 + duk®)bagya0, (A.110)
ng = !]4,151(51;‘(5 +ga2(1 + dusk2)bK32f(ap (
F2 = g8 1bge.nVZ + gs2(1 + duk?)bsg o0, (
(
(

ff‘ll’ = g&lbfﬁs,m’\/z +gs2(1+ dukz)btbs,zn’a A113)
FE = 99100010V Z + go2(1 + dsk®)bsy 4, A.114)
f;/ = gg,1b¢9’1nl\/2 + 9912(1 + dskz)bmymr. (A.115)

Let us write the quark-loop contribution to the vertices of the effective meson
Lagrangian in terms of physical meson states. Only the vertices describing the
processes, which we are interested in, are given below. For [ =L ILIILIV, V, we
have

AP o2rt 4 7070) + AP ol (KY K+ KOK®) +

+A@, o + AL, o (A.116)

AR, = 8mu (T Faf] = Pr - PIRNFE Fu i),
Ag)_,KK=8mu(Couz/}0[ fo Fi P+ Cus TN o Frc i) —
—8v2mg(Cos Tol f5, i i) + Cau TN Fx FK]) —

-P 'P2(8msj2/,\l[ o fr fx] — 8\/§mu«711,\2[f§,foK])a
AR) o = 8mu T Fo Fo Fa) — 8V2me T35 5, o FEl -
—Py - Py(8ma Tl fo i F3] — 8V2me T35 (5, FiFED),
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AG) = 16mu T [ fia i F]—16V2mo I 5, Fafo) —
—P1 - Py(16ma Ty fon Fo Fy) — 16V2ms Tis 1 Fs, o o)),

(A.117)
where
Cuw = 2 , Cus= mS(mu - mS) )
my + My my(my + ms)
2 u —
Co= -2 g = Mulms=m) (A.118)
My + ms ms(my + ms)

Now we consider the decays of a scalar isoscalar meson into a pair of o7. To
calculate the quark loop contribution to the corresponding decay amplitudes, one
should follow the method described above for the pseudoscalar mesons. The quark
loop contribution can be represented as a set of diagrams that results in a sum of
integrals which then can be converted into a single integral over the physical form
factors for scalar isoscalar mesons. Thus, one obtains:

AR i ~ 8T o o ] (A.119)

for I =III, IV, V. In conclusion, we display the coefficients a;, that determine contact
terms (89):

10 o
a = - o3 [ 3 Cg + Z (__y’a,(G )abltu‘b +
Xe a,b=8
70 (GOY g0 (=)
+i (G ) A+ ua(G )2 (i — ) +
+ho(16F2 — 18F,FO + 4(FY) )], (A.120)
V2h, 0)
“ = - 3(14F°_10F - X—ngsl (c- >)8 i, (A.121)
4h, 1 e
as = o —;(93,1((67‘ Nas — 8T1 (1)) +4m?), (A.122)
1 _
a4y = X_ (9&25,2 (1/G8 - 8~72/,\0[f;f2u]) + 4"”3) . (A.123)
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O o

(a) (b) (c) (d)

Figure 1  The set of diagrams contributing to the effective meson La-
grangian. Tadpoles (a) determine to gap equations, polarization
diagrams (b) give kinetic and mass terms, triangle diagrams (c)
and boxes (d) describe the interaction of mesons.

X =
I
X s
+

G )

(b)

Figure 2  The set of diagrams defining gap equations. In the case (b) the six-
quark interaction is taken into account in the matrix of constants
G, In order to avoid the double counting of the contribution of
't Hooft interaction, the current quark masses m° is replaced by
the modified masses m°.
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Figure 3 = The set of diagrams describing the decay of a scalar meson into a
pair of pions. The vertices where a form factor occurs are marked
by f. In this set of diagram, the quark-meson vertices correspond
to meson fields before taking into account mixing effects.

Table 1. Elements of the matrix b, descfibing mixing in the scalar isoscalar
sector. The singlet-octet and quarkonia-glueball mixing effects are
taken into account.

g1 on ol av av
08,1 0.973 0.137 0.393 0.548 0.048
ogo | —0.064 0.204 —-0.978 -—0.647 —0.047
09,1 | —0.225 0.876 0.160 0.011 0.628
09,2 0.025 0.146 0.136 —0.082 —-1.09
x| —0.266 0.095 —0.495 0.813 -0.116

Table 2. The model and experimental masses of scalar isoscalar meson
states.
Theor. Exp. (8]
or | 400 | 408 [26], 387 [27]
o | 1070 980+10
om | 1320 1200-1500
orv | 1550 150010
oy | 1670 171245
ap | 1530 1474419
Kj | 1430 142946
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Bonkos M.K., IOquyes B.JI. E2-2001-43
IlepBble paguanbHble BO30YXIEHUS CKAIIPHOTO ME30HHOTO HOHETa M II060I

B HenokansHoM U (3)x U (3) KMpalIbHON KBapKOBOH MOJENHM C JIOKAIbHBIM B3aUMOAEH-
ctBueM T XodTa OnucaHbl IepBble pagvalbHble BO30YXHIEHHS CKaJipHBIX ME30HOB.
JUts onucaHus pagHabHO-BO30YXIEHHBIX COCTOSHUI MCIIOJIb30BaHbI IIPOCTHIE JIOPEHI-KOBa-
puaHTHBIE (hOpMbaKTOPH! NOTMHOMHATIEHOTO BHAIa B UMITYJIbCHOM MpocTpaHcTBe. Braronaps
KHPaJIbHOH CUMMETPUH (PopMGaKTOpPhI UL CKAIPHBIX COCTOSHHIA COBNAanaioT ¢ gopmak-
TOpaMH IS TICEBIOCKAPOB. B pesynbrare, HCIIONB3ys dKCIIEPUMEHTAIbHBIE 3HAYEHHST MaccC
NCEBNOCKAIIPHBIX ME30HOB, MbI IIpeACKa3blBaeM CIEKTDP MacC OCHOBHBIX U pafualib-
HO-BO30YXIEHHbIX CKIIPHBIX ME30HHBIX COCTOSHMH. CKasApHblii 10001 BBeIeH B d¢dek-
THBHBIA ME30HHBIN JIArPaHXHUAH TP ITOMOILY JWIATOHHOH Mozenu. IlokaszaHo, yto 19 cka-
JIPHBIX cocTosHMi ¢ Maccamu oT 0,4 1o 1,7 I'sB MoryT GbITh HHTEpPIPETUPOBAHBI KaK ABA
CKJIIPHBIX HOHETA U INTI00071. BhIYHCIIeHb! INMPHHDI CHIBHBIX PacIaloB CKIPHBIX ME30OHOB.
ITokazaHno, yto cocrosHue f( (1500) aBnsercs Hanbonee BEpOATHBIM KaHIMIATOM Ha CKaJIAp-
HBIH DTI060IT.

Pa6Gora BbmmonHena B JlaGopatopuu Tteopernueckoit ¢usuku um. H.H.Boromo6osa
OMSIH.

IMpenpunt OOGBEIMHEHHOrO HHCTHTYTA SHEPHBIX HccnenoBanuid. dy6Ha, 2001

Volkov M.K., Yudichev V.L. E2-2001-43
First Radial Excitations of Scalar Meson Nonet and the Glueball

In a nonlocal U (3)xU (3) chiral quark model with the local ’t Hooft interaction, the first
radial excitations of scalar mesons are described. Simple Lorentz-covariant form factors,
having a polynomial form in the momentum space, are used for the description of radially
excited states. Due to the chiral symmetry, the form factors for scalar states coincide
with those for pseudoscalars. As a result, using the experimental values for the masses
of pseudoscalar mesons, we predict the mass spectrum of the ground and radially excited
scalar meson states. The scalar glueball is introduced into the effective meson Lagrangian
by means of the dilaton model. It is shown that 19 scalar states with masses from 0.4
to 1.7 GeV can be interpreted as two scalar nonets and a glueball. Strong decay widths
of scalar mesons are calculated. The state f( (1500) is shown to be the most probable candi-
date for the scalar glueball.

The investigation has been performed at the Bogoliubov Laboratory of Theoretical
Physics, JINR.
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