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1. Asymptotics of the Gell-Mann-Low (GML) function 3(g) as g — oo,
which defines the behaviour of the effective coupling at small distances
is of considerable interest in quantum field theory (QFT) [1, 2]. The
available information is based on perturbation theory (PT) in the coupling
constant g and is given by the asymptotic series

B(g) ~ j;ﬁn(—g)", (1)

where we know the first few terms calculated from Feynman diagrams
and also the higher order asymptotics 8, as n — oo which can be chosen
as

Bn = T(n+ 1/2)a"nbc, (2)
where the constants a, b and ¢ can be found with the help of the steepest
descent method [3].

Though the available information is strictly speaking insufficient for re-
construction of the function §(g), originally there were hopes that match-
ing the asymptotical coefficients 3, with the exact first ones 3, will allow
one to reconstruct the function with reasonable accuracy in a wide range
of the coupling g and even in the strong coupling regime, i.e. g — oc.

Such attempts have been undertaken by several authors with the help
of various methods of summation of divergent series, however all of them
have shown that the realization of this programme is only possible in
some limited interval of g and not for g — oo (see, e.g. Refs. [4]-[§]
and references therein.). As far as we know, this conclusion is commonly
accepted in the literature.

In a series of recent papers by Suslov [9]-[13] there is an attempt to
revise these results. These papers are based on the interpolation of PT
coefficients 3, for the intermediate values of n: ” A reasonable formulation
of the problem corresponds to approximately setting all f3,, after which
B(g) can be reconstructed with certain precision. Thus, a necessary stage
in solving the problem consists in interpolating the coefficient function,
which naturally implies that the function is analytical” (see [9], p.11).
Then the interpolation procedure is optimized with respect to parameters
thus, according to [9], defining the asymptotics of the desired function as
g — 0o. As a result of the application of this procedure in Refs. [9]-[12]
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the asymptotics of the GML function in several models of QFT, including
the scalar model ¢‘(14), QED and QCD was found. This allowed the author
to declare the absence of a ”zero charge” in the ¢‘(14) theory and in QED
that contradicts the conclusions based on summation of the asymptotic
series made by the other authors [6}-[8].

As it has already been mentioned in [14], the method used in Refs. [9]-
[12] is not well-justified to make any definite conclusions. Moreover, we
think that it is reasonable to talk about the reconstruction of the function
B(g) starting with its asymptotic series (assuming its analytical proper-
ties) only in some extended, compared to the usual PT, range of the cou-
pling g but not as g — oo. The corresponding arguments were given in
our paper [14]. The new paper by Suslov [12] dedicated to the asymptotics
of the GML function in QCD induces us to turn back to this question!.

2. The characteristic feature of QCD is that PT series (1) is sign
non-alternating and hence is not Borel summable, the latter being the
basis of practically all the approaches to the summation of asymptotic
series. To avoid this difficulty, the author of [12] makes the substitution
g — —g in (1) and uses the assumption that the asymptotics of 8(g)
for ¢ — oo coincide. There is no need to tell that this assumption
in not justified. Moreover, physically it is clear that upon changing the
sign of the coupling the system undergoes a complete change: it becomes
unstable and simply decays. This circumstance is responsible for the
fact that the point g = 0 is essentially singular in the complex g-plane
and, therefore, the PT series is asymptotic [16]. As is well known, the
sign non-alternating series in QCD reflects the degeneracy of the vacuum
and hence the contributions proportional to the exponent of the inverse
coupling which are not reproducible by PT. At the same time, they are not
necessarily suppressed for the strong coupling. That is why, the approach
based on.the change of the sign of the coupling, consideration of the sign
alternating series and subsequent transition to the sign non-alternating
series, seems absolutely unjustified and in general incorrect.

To illustrate this point we consider the following example. Let the two
functions f1(g) and fa(g) be given by

e ang" +e 9> bg"
filg) ~ an _gzn
e’ +e

1The main results of this paper are presented in Ref.[15]
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e an(—g)" + & S bu(—g)"

e 9 +ef

fa(9) ; (4)
where the series are asymptotic: a, ~ I'(n + a), b, ~ I'(n+b). Then the
functions fi(g) and f2(g) at g — 0 have the same asymptotic series but
with the change of the sign of the coupling

fi(g) ~ X fag"  falg) ~ X fal=9)",

where f, >~ a, + b, for n > 1. Nevertheless, as ¢ — oo they may have
completely independent behaviour

Alg) ~ X ang” ~ g%  falg) ~ Xba(—9)" ~ &°. (5)

Remind that fa(g) # fi(—g), as it may seem, since the function fi(—g)
may not even exist and the analytical continuation from the positive semi-
axis usually leads to an imaginary part [16] which is absent in fa(g).

The number of such examples can be easily increased. The asymptotics
of an analytical function at infinity is not as a rule an analytical function
and possess discontinuities (Stocks phenomenon), which is well known in
the theory of special functions. One can mention also the quasiclassi-
cal wave functions changing their form when going from the classically
allowed into the under-barrier region, and in the complex plane while
crossing the Stocks line [17].

Thus, the assumption that the two functions have the same behaviour
at infinity even if they have the same asymptotic series up to the sign of
the coupling is not obvious and needs additional arguments, which are
absent in Ref. [12].

However, even after such an assumption, the author’s approach to the
sign alternating series gives, from our point of view, rather ambiguous
results (see Fig.1 in [12]): the presence of a large number of minima of x?
looks like an artefact of the given procedure with a small number of the
original terms of PT. Note that the working interval 20 < n < 40 for the
interpolation of the coefficient function lies in the region where the exact
coefficients are unknown and the asymptotics may not be established.
The estimate of the coefficient of the leading asymptotics By ~ 10° with
the accuracy of several orders (practically it changes within the interval
from 1 to 10, see Fig.2b in [12]) also indicates that the asymptotics is
unreliable.



3. One can give other arguments against the asymptotics advocated
in [12]. Indeed, let us consider the function given by the asymptotic series

@~ L h=0), fi~Tn+d) s noo.  (6)

Let us assume? that it is Borel summable and apply the Borel transfor-
mation

1) = [Tda e 3 gy = [PdoeBge),  (7)

0 n=0 n! 0 ’

where the function B(z), given by the convergent series, is called the

Borel transform of f(g).
Without loss of generality let us assume that the Borel transform B(z)
has a power law behaviour B(z) ~ z* as £ — oo. Then, depending on the

value of the exponent «, we get the following behaviour of the function
f(g) as g — oc:

MNa+1g* a>-1,
f(g) ~ logg/ga a=-1, (8)
Cy g-lv a< -1,

where ¢; = f§° dzB(z) < oo. The last equality is easy to get by making
the substitution z = t/g in the integral (7) and tending g to infinity.

At first sight, it seems that the function f(g) cannot decrease faster
than 1/g. However, this is not so. In the case when the first N moments
of the Borel transform are equal to zero®:

¢ = /Ooo dz ' 'B(z) =0, i=1,..,N, 9)

one has

F@) ~enve1 gD g 0 (10)

if 0 < |en41] < 00. Otherwise (i.e. when cy1 = 00) the exponent of the
asymptotics of f(g) is within —N u —(N + 1) or f(g) ~Ing/gV*1.
Hence, to get a decrease of the order of g~!3 (see Ref. [12]), one needs
12 first moments of B(z) to vanish. Bearing in mind that today we know
only four terms of the PT series (1), this statement seems unjustified.

2This is quite natural since without it the PT series in quantum mechanics and field

theory are not well defined. This assumption is also used in Refs. [9]-[12].
3This also means that the Borel transform must oscillate and have N zeros in the
interval 0 < z < .



The same property of the function can be seen in the modified Borel
transformation used, in particular in [12]:

/ dz e P! Z T ——(—gz)" = /000 dz e 2P~ By(gz),
(11)

for § > 1. The asymptotics of the Borel transform in this case depends on
the value of 8. Thus, if one chooses 5 = b from (6), one gets By(z) ~ ¢1/z
and

(n+[3)

f(g) ~cal(b—1)g™}, if ¢ #0.
Otherwise, performing the substitution z — z/g in the integral (11) we
get4

1 ;o _z _ 1 ;o _
flg) = p/o dz e"*927 1 By(z)  ~ 57/0 dz 2771 Bs(z). (12)

g— oo

Allowing here the parameter 3 to take the values 8 =1,2,..., N, one can
see that to get the asymptotics f(g) ~ 1/g" it is necessary that the lower
moments vanish:

/O°° dr 27 By(z) =0, k<j<N; k=1,2,..,N. (13)

Altogether, this gives N(N + 1)/2 conditions (for more details see Ap-
pendix). Note that these conditions are imposed not on a single function,
but on N different (but dependent) functions By(z), ..., Bn(z).

Thus, a fast decrease of the GML function 8(g) ~ g~ is in principle
possible; however, it requires a large number of conditions (N or N2/2 for
(9) and (13), respectively) to be imposed on the Borel transform. Clearly,
the only known 4-5 coefficients 3, cannot guarantee the fulfillment of these
conditions. On the other hand, as it follows from the above analysis, the
asymptotics increasing or decreasing slower than 1/g happens to be much
less limiting.

4. Let us make a few remarks concerning the comment [13] to our
paper [14]. They are related to the zero-dimensional model ¢,

. 1, o0 I'(2k+1/2
1o)== [ dé eap{-3¢" - %454} ~ EO(“g)kr(kEr 1)r(1//2))6k
(14)

*We assume here that the integral converges, that imposes an upper bound on 8.
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It is stated [13] that taking into account just one (!) coefficient of PT
series, one can get, with the help of the method advocated in [9], the
exponent of J(g) o< g* with 10% accuracy: —0.271 < o < —0.218 (the
exact value is & = —1/4). Further, it is said that ”this result disproves
the main statement of Ref. [14] of the necessity of large number of PT
coefficients”. However, this example is rather specific for the following
reasons:

a) already the first PT coefficients quickly tend to their asymptotic
values (see the column D = 0 in Table 1) that is true for neither
quantum mechanics (the column D = 1), nor field theory (see, e.g.
Refs. [7],[14] and D = 3,4 in the Table 1);

b) if one takes into account 50 PT coefficients instead of one, the result
is almost the same [9]: & = —0.235£0.025, Therefore, the allowance
made for a large number of coeflicients - the only new information
about the function - does not improve the accuracy of evaluation
of the exponent ¢, which indicates weak convergence of the method
proposed in [9];

¢) the model (14) does not have the property that is characteristic of the
field theory, namely, the dependence of the ratio 3,/83, on the renor-
malization scheme (MOM or MS, see Table 1), which also suggests
that the calculated coefficients 3, are far from their asymptotics as
n — 00.

Thus, the zero-dimensional model (14) is too simplified to make any defi-
nite conclusions about the number of coeflicients needed to reproduce the
GML function beyond the boundaries of PT.

5. It should be noted that the situation in the Yang-Mills theory
is even more ambiguous than in the scalar field theory. Here there are
4 known coefficients of the GML function [18] which grow very fast in
absolute value:

2

Bo=—11, B3 = —102, By = ——825—7 = 1428.5,
149753

Bs = — | —5— +3564(3)| ~ ~29243



D=0 | 1 3 [4(MOM) | 4(373)
1.0317 | 2.005 | 0.019 | 0.0978 | 0.0075
1.0210 | 1.897 | 0.085 | 0.659 | 0.0505
1.0157 | 1.718 | 0.166 | 1.072 | 0.097
1.0126 | 1.562 | 0.252 | 1.554 | 0.128
1.0104 | 1.443 | 0.322 - 0.139
1.0090 | 1.354 | 0.379 - =

10 [1.0063 |1.203| - - -

20 | 1.00311.078
30 | 1.0021 | 1.049
50 |1.00131.028
75 |1.0008 |1.018
a 2/3 | 3 |01477| 1 1
b 12 | 0 4 4 4

N OO W NE

Table 1: The ratios pn = B,/B, for the model ¢fp. The case D = 0
corresponds to the integral (14), D = 1 - to the ground state energy of
the anharmonic oscillator [26], D = 3 and 4 - to the GML function in
a scalar field theory. In the last case, the values of p, are given in two
different renormalization schemes (MOM and M S). The last two lines of
the table contain the values of the parameters of the asymptotic formula

(2).
and the asymptotics as n — oo [19, 13] is®
By ~ ¢ T(n +35/2). (15)

Since in this case the coefficient c is unknown, to illustrate the convergence
we show in Table 2 the ratios o, = pp+1/pn, wWhere p, = /5’,,/ B, for the
model (14), the anharmonic oscillator, ¢‘(‘4) theory and the Yang-Mills
theory. As follows from the asymptotic expression

= C1 Ca
the ratio o, (which does not depend on ¢) behaves as
- ._2 —_ -
_ C1 i+ — 2Cs 4
on—1+m—7—+0(1/n ). (17)

As in [12], we consider the case N, = 3, Ny = 0, or pure gluodynamics without
quarks.



n D=0 |D=1[D=4MOM|D =4 (MS) | YM (M5S)
2 0.9896 |0.9450 |  6.738 6.733 177.089
3 0.9948 | 0.9063 |  1.627 1.921 24.935
4 0.9969 |0.9090 |  1.450 1.320 7.810
5 0.9978 |0.9235 - 1.086 -
10 | 0.99943 | 0.9769 - - -

50 | 0.99998 | 0.9994 - - -

75 | 0.99999 | 0.9998 - - -

Table 2: The ratios o, = pn+1/pn for the model d)‘(*D) and for the Yang-Mills
theory with N, =3 u Ny =0.

This means that if the asymptotics of 3, is established, all o, as n — oo
have to approach unity and faster than p, = 1 — & /n + .... Indeed, it
takes place for the zero-dimensional model (14) for which

T(n+1/2)T(n+ 1) 1 1 5

T T+ 1/O0(n+3/4)vn 1+ 16 T 5122 ~ 8102w T

(n+1/2)yn(n+1) _ _L+L+...,

T nr1/a)(n+3/4) 0 16n?

as well as for the anharmonic oscillator (see Table 2). However, in scalar
field theory the approach of ¢, to unity just begins, and in the Yang-Mills
theory the known values of ¢, are still far from unity.
In this case, the parameters of asymptotics (2) are a = 1, b = 17. For
n <& b there is an essential dependence on the form of presentation of the
asymptotic coeflicients. For instance,
I(n+b+1/2) b2 3t —4b3+b

§ = =] ———F ...
" T(n+1/2)nb Yot T e T

(18)

In particular, for b = 17 one gets d; ~ 2 - 101,83 ~ 10° u 65 ~ 6 - 108.
It is obvious that the asymptotics of B, is not yet established and the
1/n-corrections, which are the basis of the algorithm proposed in [9]-[12],
strongly depend on the form of this asymptotics. ;

6. For comparison we show in Fig.1 the ratios p, = Bn/ B, and Bn /By
where

B =nln"%, B,=T(n+9/2)c, (19)



in the case of the scalar ¢‘(14) theory in MOM scheme. The curves for
n > 5 correspond to the first power correction in eq.(16) taken in the
following form:

(@ po=Q+a/n) () p=1-a/n (20)

One can see that the asymptotic coefficients 3, and Bn for n < 10 are far
from each other and do not approach the 1/ n-corrections, though the first

parametrization 3, looks more preferable than Bn For parametrization

Py 6} 4

5

Figure 1: The ratios p, = B,/ (solid lines) and En /Bn (dashed lines) for
the scalar qﬁ?‘t) theory. The curves a and b correspond to the first power
corrections, see eq.(20).

of a general type
B~ T(n+d+ 1/2)nb_d(1+%+%+...), (21)
and the power corrections are related by

1 1 1
c1(d) = ¢1(0) — 5012, ca(d) = c2(0) — §d2c1(0) +ﬁd(d+ 1D(3d?+d-1), ...
(22)
Note that ¢;(d) < ¢;(0) for any d. For d =0, 1/2 and b, respectively,

one gets the parametrizations f,, 8, and Bn widely used in a summation
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procedures. They are equivalent at n — oo, but may considerably differ
for small n. For example, in the case of the ¢‘(‘4) theory, according to [8],
é; = —4.7 that gives: ¢; = —4.6 and ¢ =—12.6.

It is instructive to compare the results of reconstruction of the GML
function by different methods. In Refs.[4, 5], the so-called ”improved PT”
was used. In this case the reconstruction is made by the formula

8(6) = Blo) + X (5a = B)(=0)" (23)

where the sum B(g) = £, Bn(——g)" with the asymptotic coeficients 3, is
calculated analytically. With allowance made for three coefficients B3, 33
and 4 known at that time this permitted one to find the GML function
B(g) for 0 < g < 1.

In paper [6], the additional coefficient 35 calculated in [20], was taken
into account and summation of PT series was performed with the help of
the modified Borel transformation

flo) = 7 St Ble) (24)
Be) ~ X ot (~a)t, (25)

k=2

which corresponds to the parametrization Bn. To the convergent series
(25) the conformal mapping was then applied which performed the ana-
lytical continuation beyond the radius of convergence. This allowed one to
reconstruct the GML function with 10% accuracy for g < 40 (see Fig.2).

At last, in [8] besides the four known coefficients the first 1/n-correction
was included and the Sommerfeld-Watson transformation was used. As
a result, the GML function was reconstructed in extended region up to
g ~ 50. What is essential, in the overlapping region all these methods
give compatible results and being extrapolated lead to the asymptotic
B(g) o< g* with the exponent o = 1.9 £ 0.1 which is close to the one-loop
behaviour (in contradiction with [9]).

7. That is why we keep our opinion [14] as to unreliability of the
statements about the asymptotics of the GML function as g — oo in
the field theory made in [9]-[12]. As it was shown in [14], to get reliable
reconstruction of the GML function in the strong coupling regime (g > 1,
but not as g — 00), it is necessary to get a large number of PT terms
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Figure 22 The B function for the scalar field theory with L;,; =
—1672/4! g¢* reconstructed with the help of the Borel transformation
with conformal mapping. The solid curves correspond to 1,2,3 and 4
loop contributions, respectively [6]. The dashed line is the result of the
Sommerfeld-Watson summation procedure in 4 loops [8].

which have already approached their asymptotic values. The situation
is more complicated if the function has intermediate asymptotics [14] or
if the asymptotics contains log g. In these cases, the asymptotic regime
may be essentially delayed. A good example is given by the problem of a
hydrogen atom in a strong electric [14, 21] or magnetic field [22].

In conclusion it should be noted, that while for the sign alternating
series the Borel summation and similar methods give quite reliable re-
sults (see, e.g. the calculation of the critical exponents of the second
order phase transitions [23, 24, 8]), for the sign non-alternating series
such a method is absent at the moment. The reason is that the sign
non-alternating series indicates the degeneracy of the ground state and
the presence of the contributions not reproducible in perturbation the-
ory. To reconstruct the function, here one needs additional information
which is absent in perturbative field theory. An instructive example is
the degenerate anharmonic oscillator considered in [25].
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We would not like that the readers of the papers [9]-[12] got an impres-
sion that the problem of asymptotics of the GML function in quantum
field theory as g — oo can find its solution with the help of any algorithm
based on the first few terms of PT without additional information beyond
PT which is absent at the present time.

Appendix A

We give here the derivation of egs.(9) and (13). Assume that the func-
tion f(g) defined by divergent PT series decreases faster than 1/¢" at in-
finity. Substituting 8 = 1 in (12) and expanding the exponent exp(—z/g)

up to g~ W+ one gets:
© 1 z z? (=1)N-1gN-1 N
de{-—-—=+—=—..+ —— ). (Al
[l = ot =t oy e B@ = o™ (A

This equality can be valid as g — oo only if the first N moments of the
Borel transform B(z) vanish

/ dzB(z / dz zB(z) = ... = /Ooo dz zV'B(z) = 0, (A.2)

which coincides with eq.(9). This assumes that B(z) decreases at infinity
faster than ™V and oscillates in the interval 0 < z < oo.

For the modified Borel transform (11) proceeding in the same way for
B=23,..,Nwegetforany f=k <N

(—1)N-k gN-k

/ dz { FAt T ot Y IBi(z) = o(g7V). (A3)
This means that
/ dz ¥ By(z / dz 2FBy(z) = ... = /Ooo de 2V 1By(z) = 0, (A.4)
and the last equation takes the form

/000 dz ¥ 'By(z) = 0. (A.5)

Altogether this gives N(N + 1)/2 conditions (13) needed to get the be-
haviour of f(g) = o(g~") as g = oo. This conditions are imposed at N
functions Bi(z), 1 < k < N. Notice that the higher moments may not
exist since the integral [§° dz z#~1Bg(z) for f > N is usually divergent.
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Let us illustrate the above discussion by a concrete example. Consider
the function
av N
flo) = gxla"fa vl N<v<N+1, (A
where
x T'(n + v

and I'(e, z) is the mcomplete I-function. For g — oo it has an expansion

2 (—g)" =g e T(1 - 1, 1/9), (A7)

- _ — -y (_1)k -k
g7'T(1-v,1/g)=T(1-v)g —i—X_:——-—( ik )g . (A.8)

Hence, in eq.(A.6) one gets for non-integer v
dN N-v F(N+1—V) —v
dg_N(g )——'fr(l__y)“g , N=1,23,..,

while for integer v

N—V)

{0, 1<v <N,

_1
(—1)N((Z—N)y g v>N.

This means that fy(g) ~ g~ as g — 00, i.e. decreases faster than gV

Thus, this simple trick allows one to construct a function that is described

by an asymptotic series and has arbitrary power low decrease at infinity.
In conclusion we check that the conditions (9) are really satisfied in

this case. The Borel transform corresponding to (A.6) is

© T'(n+v)(n+ N)!

B®) = 2 =10 (i

It can be written also as

B(z) = N! (1 +2) ™" FA(v,-N; 1 1+x) ~ g z o0 (A10)

Hence the integral (9) is convergent if ¢ < N and divergent otherwise.
The conditions (9) mean that

Jz’N = /000 dz a:i_l 2F1(1/,N+ 1; 1;—(11) (All)
= [lat 71—t R, - N ) =0, t=g/(1+7)

a7

(-z)" = N! 2Fi(vy, N+ 1;1;—z). (A.9)
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for i = 1,2,...,N and v > N. One can check the validity of (A.11)
by explicit substitution for small N. Thus, for N = 1 one has: i =
1, oFi(v,-1;1;t) = 1 — ut,

Jui= /01 dt (1—-1t)"2(1-wvt)=0, forv>1,
while 1
Joyg=—————#0.
1= w2 "
Here i = 2 > N = 1. The same is true for the higher values of N.
One can also make sure that the Borel transform (A.10) is an oscillating

function having N zeros on the positive real axis. For illustration in Fig.3
we show its behaviour in the cases N =4,y =5and N =6,v =7.

B(t/NY(1-t)

1.2]
1,24
1,01
1,04
081
0,84
06] 061
041 04+
0,24 0.2 /\
o0 /\ 00 P
o2 \/ 02 N
04 0,41
00 02 04 06 08 t110 00 02 04 06 08 t1:o
N=4, v=5 N=6, v=7

Figure 3: The normalized Borel transform B(t)/N!/(1-t)*", t = z/(1+z)
defined by eq.(A.10) for the cases N =4,v=5and N =6,v =T7.
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Kaszaxos [1. Y., Tlonos B. C. E2-2003-95
06 acumnrotuke ¢pyHkuun 'ei-Manna-Jloy
B KBaHTOBOM TEOPUH IOJIS

O6cyxnaeTcs 3a1a4a 0 BOCCTaHOBIEeHHHN (yHKuuH ['enn-ManHa-JIoy B KBaH-
TOBOH TCOPHH MO 1O €€ aCHMIITOTHYECKOMY pslly, IIEpBble WICHBI KOTOPOTO BbI-
YMC/IeHbl O TeOpHUH BO3MylleHHH. M XOTd MaTeMaTH4ecKH ONHO3HAYHO 3TO
HE OCYIIECTBMMO, MIPH Pa3yMHBIX [PEANONOXKEHUIX 06 MCKOMON (yHKIUM OKas3bl-
BAETCS BO3MOXHBIM BOCCTAHOBHTD €€ B HEKOTOPOM KOHEUHOM MHTEpBaIE 3HAYEHHH
KOHCTAHTHI CBA3H g, OMHAKO HOMBITKH ONPEAEIIMTD NOBeAcHHE DYHKIKU IIPU § — o
SBIAIOTCA, Ha HAll B3MMIAA, HeOOOCHOBaHHBIMH. TlosTy4eHbl yCIIOBHS, NPH BBIIOMHE-
HHM KOTOPbIX CyMMa pacxopswerocs pspa TB Moxer 6ricTpo yOuiBarh Ha 6ecko-
HEYHOCTH.

PaGora BeinonHena B Jlabopatopuu Teoperuyeckoit ¢usuku um. H. H. Boro-
mo6osa OMSIH. '

Tpenpuat O6beAMHEHHOTO MHCTHTYTa AAePHBIX Hccnenosanui. Nybna, 2003

Kazakov D. 1., Popov V. S. E2-2003-95
On the Asymptotics of the Gell-Mann-Low Function
in Quantum Field Theory

The problem of reconstructing the Gell-Mann—Low function in quantum field
theory starting with its asymptotic series with the first terms calculated by pertur-
bation theory is discussed. And though in a strict mathematical sense this is not
unambiguously realizable, under reasonable assumptions about the function it ap-
pears to be possible to reconstruct it in some finite interval of g. However, any at-
tempts to find its asymptotics as g — = from our point of view are not justified. We
also present the conditions under which the sum of the asymptotic series may de-
crease at infinity.

The investigation has been performed at the Bogoliubov Laboratory of Theo-
retical Physics, JINR.
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