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1 Introduction

Boson—fermion realizations of a given set of operators via Bose-Fermion cre-
ation and annihilation operators are among the main tools of solving various
quantum problems. The origin is linked with the Schwinger [1], Dyson [2]
and Holstein-Primakoff [3] realizations which are different boson realizations
of the algebra sl(2).

Generalizations of the Dyson realization to the Lie algebra sl(n) were
derived in [4]. In our paper [5] we formulated the method starting from
the Verma modules for obtaining boson realizations and in [6] we obtained
explicitly a braid class of realizations which generalized the results from (7, 8].

Later the idea was extended to the Lie superalgebra, and the Dyson type
boson—fermion realizations were explicitly given in [9], generalizing the results
to s1(2/1) ([10],[11]).

Today these boson—fermion realizations become a standard technique in
quantum many-body physics and we can also find several other applications
in all fields of quantum physics.

Quantum groups and quantum supergroups or g—deformed Lie algebras
and superalgebras imply some specific deformations of the classical Lie al-
gebras and superalgebras. From a mathematical point of view, those are
noncommutative associative Hopf algebras and superalgebras. The structure
and representation theory of quantum groups were extensively developed
by Jimbo [12] and Drinfeld [13]. The first ”quantum” version of Holstein-
Primakoff was worked out for Uy(sl(2)) [14] and then for U,((sl(3)) [15]. The
Schwinger type realization was written in [16] and [17]. These realizations
found immediate applications [18-23].

In our papers [24, 25, 26] we studied the Dyson realizations of the series
algebras Uy(sl(2)), Uy(gl(n)), Ug(By), Ug(Cr) and Uy(Dy). There is some
special case [25] for which the realization of the subalgebra U,(gl(n — 1)) in
the recurrence is trivial. Such special realizations of the quantum algebra
U,(sl(n)) of Dyson type were studied in [27].

The aim of the present paper is to show that there is a possibility of
generalizing our method [5] for deriving the boson—fermion realization, too.
This will be exemplified by the quantum superalgebra U,(gl(2/1)). This
superalgebra can be applied to physical problems such as strongly correlated
electron systems [28, 29, 30]. We explicitly see the recurrence with respect to
U,(gl(1/1)) and consequently we will show that again it is a generalization

of the result from [31].



Some preliminary results concerning the general case Uy (gl(m/n)) have 7
already been obtained and prepared for publication.

2 Preliminaries

In this article, we will use the definition of a quantum superalgebra U, (gl(2/1))
which can be found in [31].

Let ¢ be an independent variable, A = C [¢,97"] and C(g) be a division
field of A. The superalgebra U,(gl(2/1)) is the associative superalgebra over
C(q) generated by even generators K;, K7',i=1,2,3, Epz, Em and odd
generators Es;, E3p which satisfy the following relations:

KK = KK KK =1
i Jj J i aakek N
KEj, = ¢ %+ By K;

[Ei2, Es) = [Ea1, Eaa) = 0

K K;' - KK,

[E12,E21] = 1
K. I({l— qK“K“’ (1)
{Eps, Bgp} = ———2—3
q—q
E%a = Egz =0

E1Er3 — qE13E12 =0
EnEs — qEyEn =0
where
Ey3 = E1nFo3 — ¢ ' ExsEna
Es3 = —EnEs + ¢ 'EnEn
The Hopf structure of this superalgebra is defined by the following operations:

1. Coproduct A

AN(E) =E1n® KiK;'+1® E;, A(Exn)=Ex® K;K3;+1® Eg3
A(En)=En®1l+ K{'K,® En A(E3)=E»®l+ K;'K;7' ® Esp



2. Counit ¢
e(l)=¢(K;) =1

€(B12) = €(Eys) = e(En) = e(E32) =0
3. Antipode S

S(Elz) = —-ElzKl_lKg S(Ezg) - —E12K2_1K3_1
S(Ey) = —K1K5'Exn S(FEs2) = —K3K3E3,

We do not use these operations for construction of the realization.

The method of construction used is the same as in the case of the Lie
algebras (5] or quantum algebra [26] and is based on using the induced rep-
resentation. The difference from quantum algebra is that together with ¢
deformed boson operators [16], [17] we also use fermion operators.

The algebra H of the g—deformed boson operators is the associative alge-
bra over the field C(g) generated by the elements of a*, a™ = a, ¢* and ¢~ 7,
satisfying the commutation relations

*et=q"¢" =1, ¢*atq™® = qa™, ¢°aq
aat — ¢ lata = ¢, aat —qata=q%,

The algebra H has faithful representation on vector space with basic elements
{|n), where n =0, 1, ...} of the form

¢In) =¢"|n), aln)=|n+1), aln)=|[nl]ln-1), 3)
" —q"
-1 *

Because of odd generators Ey3 and E3; we construct realization by means
of the algebra H for even elements, and by fermion elements b* and b for odd
ones. These fermion elements commute with the elements of H and together
fulfil the relations

where [n] =

bb=btbt =0, bbt+btb=1. (4)

As in the case of the Lie algebras or quantum groups, our realizations con-
tain elements of quantum sub-superalgebra of U,(gl(2/1)), namely, quantum



superalgebra Uy(gl(1/1)). The element z of this subalgebra commutes with
the elements from #, and for the fermion elements b* the relation

bt = (—1)%8%pt g, (5)

holds.
Realization of the quantum superalgebra U,(gl(2/1)) is called the homo-

morphism p of the Uy(gl(2/1)) to associative superalgebra W generated by
H, b* and U,(gl(1/1)).

3 Construction of the realization of U,(gl(2/1))

First, for construction of the realization we find the induced representation
of U,(gl(2/1)). As subalgebra Ao of U,(gl(2/1)) we choose a quantum su-
peralgebra generated by Ea3, Ea1, Esg, K; and K;', i = 1,2, 3. Let ¢ be
a representation of 4y on vector space V. Let A\ be the left regular rep-
resentation on U,(gl(2/1)) ® V, i.e. for z,y € Uy(gl(2/1)) and v € V the
representation A is defined by

M2)(y®v) =zy®v. (6)
Let Z be subspace of U,(gl(2/1)) ® V generated by the relations
TYy®v =18 p(y)v,

for all z € Uy(gl(2/1)), y € Ap and v € V. It is easy to see that the subspace
7 is A-invariant. Therefore, (6) gives the representation on the factor-space
W = [Uy(gl(2/1)) ® V]/T.

Let ENEM = |N,M). Due to the Poincaré-Birkhoff-Witt theorem the
space W of the induced representation is generated by the elements | N, M)®v
where N=0,1,2,..., M=0,1landveV.

To obtain the explicit form of the induced representation, we give some
relations. They can be proved by mathematical induction from relations (1).
Lemma 1. For any n =0, 1, 2, ... the following formulae hold:

EpEl, =q "ELE;3
EnEY = q"E%Ey — q[n)Els ' Eis
EpEly = (—q)"E}Exs

1k

1-(- -n n—
EsEl = (=1)"E}Esp + ——(2— ¢ "EpEN K Ky



EnE}, = ETEy — = [ (1 T By Y¢" 'K\ Kt — ¢ " KT K)

1-(-1)"

E21Eil3 == E{LaEzl + —(—) E?;1E23K1—1K2
En By = EfyEs + qn_Z["]E?zlele_lEaz

K\K; — K{'K;!

—(=1)
E31E13=( 1)"E E31+ (2 ) q—l‘Eﬁ;1

a—q
1-(=1)" ,_ K:Ks — K3 Kj!
EsyEfy = (—1)"E3,Esy + (,2 ) Bt =2 z _qfl

We omit the details of the calculations and write the result for the action
of the induced representation on the basis elements |N, M) ® v.
Theorem 1. The formulae

EIQIN,M>®’U=|N+1,M>®’U
E13|N,M>®'U~_—q—N1|N,M+1)®’U
Ex|N,M)®v=—q[N}IN-1,M +1)®@v+ (-1)Mg"+*M|N, M) ® ¢(Ea)v
KIIN,M>®’U:qN+M[N,M>®(p(K1)U
KN, M) ® v =g "N, M) ® p(Kz)v
K3|N, M) ®@ v = ¢ M|N, M) ® ¢(K3)v
M
Eyu|NMY®@v= }—iglq‘MU\’-%— 1,M - 1) ® (K K3)v+

+(=1)M|N, M) ® o(Es)v
[ ]qN+M 1
E21|N, M) Ru=
[N]q—N——M—H
q—-q!

1—-(-1)M
PCT N 0 1) 0 (BT Koo + |V, 1) © (o

1—(=1)M
Eu|N,M)®v = —(2)— ¢ N]|IN, M — 1) ® p(K, K3)v+

+(—1)MgN+M=2IN] N — 1, M) ® p(K K5 Es)v+
1-(-1M o
2 q—q ! IN,M -1) ® (‘P(KlKa—Kl K7 )v+

+H(=DY|N, M) ® ¢(Es1)v

IN =1, M) ® o(K1 K5 o+

+ IN — 1, M) ® o(K{ ' Kp)v+

-+



give the induced representation of the quantum superalgebra U,(gl(2/1)).

We construct the realization of quantum superalgebra U,(gl(2/1)) from
the induced representation given in Theorem 1 as follows:
We chose the representation ¢, for which @(FEq;)v = 0, ¢(Es1)v = 0, o(K1)v =
¢*v and substitute

gtV — ¢t [N]IN-1,M) > a IN+1,M) - a*
_(_1\M

¥ o ottty SZEVIN My s MM 1)

@(En)v — 0 ©(Es1)v— 0 o(Ki v — ¢

(K5 — k3! (K)o — k3

(—1)M<p(E23)v — €23 (—1)MQD(E32)’U —> €32

(the last two relations reflect the fact that es3 and ess are fermions).

By this substitution we obtain the realization of the quantum superalge-
bra U, (gl(2/1)).
Theorem 2. The mapping p : Uy(gl(2/1)) = W defined by the formulae

p(Er) = a*

p(Er3) = q~b"

p(Ea3) = —qab* + ¢*(bb* + gb*b)ess

p(K1) = gM+o(bb™ + gb+b)

p(K2) = ¢ k2

p(K) = (bb* + g b+ b)ks

o(Es2) = g a*bkaks + ez

o(B) = aq . (q,\1+z L(bb* + gbTb)k;! _q—)\l—:c+1(bb+ +q"1b+b)k2)
’\‘b€23k2

p(E31) = atabg™+* k3 + agM = 2(bb* + gbtb)k; ey + q_lbq

is the realization of the quantum superalgebra U,(gl(2/1)).
This theorem can be proved by a direct calculation.



4 Conclusion

In this paper we gave the method of construction of the g-boson—fermion
realization of quantum superalgebras and applied it to the quantum super-
algebra U,y(gl(2/1)). One of the advantages of this method, in comparison
with [31], is that we automatically obtain a realization and we do not need
to verify the generating relation. The reason is that the representation of
g-bosons and fermions on the vector space W with basis |V, M) is faithful.

The other advantage we see in the fact that our realization is expressed
by means of polynomials of g—deformed bosons and fermions. On the other
hand, we can easily obtain the Dyson realization of quantum superalgebra.
For this purpose, it is sufficient to choose a realization of the generators of
the algebra H in the form
- [V +1]

T N+1
where {4, A*] =1 and N = AT A. It is easy to verify that the realization of
U,(gl(2/1)) from Theorem 2 with realization (7) of the algebra H and with
a trivial realization of subalgebra U,(gl(1/1)) leads, after homomorphism of
U,(gl(2/1)), to the realization given in [31]. In this case, the realization is of
course expressed by means of a series in operators AT and A. Therefore, we
prefer our form of realizations.

Finally, our realizations contain, in contrast with those in [31], quantum
sub-superalgebras. Various forms of realizations of this sub-superalgebra give
various realizations of the quantum superalgebra. In the studied case, this
sub-superalgebra is U,(gl(1/1)), and, therefore, is very simple. We can choose
a realization of this superalgebra as

plezs) = pless) =0, plk2) = p(ks") =2 and p(k;") = p(ks) = g7
In this case, we obtain a realization with one g—deformed boson pair, one
fermion pair and two parameters. However, by means of our method we
construct other realization of U,(gl(1/1)), namely, realization of the form

plezs) = b3

p(kz) = ¢* (b3 + gb3bs)

pks) = g™ (b3 + 763 bs)

q)‘”}‘?‘ — q—z\z—)\s
1 b2 = [)\2 + )\3][)2
q—4q

at = At, A, ¢=4q", (7)

,0(632) =



where b, and b are the fermion elements. If we use this realization of the
quantum superalgebra in the realization of Uy(gl(2/1)) given in Theorem 2,
we obtain realization with one g-deformed boson pair, two fermion pairs and
three parameters, which corresponds to the case of the Lie and quantum
algebras.

As it is evident from [25, 26], this method of construction of realization
is very successful for quantum groups. Therefore, we believe that it will be
very useful for construction of realizations of quantum supergroups, too.

Partial support from grant 201/01/0130 of the Czech Grant Agency and from
Votruba-Blokchincev programme are gratefully acknowledged.
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Bypauk 4., Haparun O. E5-2003-133
g-6030H-()epMHOHHBIE pPeaTH3aLHH
KBaHTOBOH cymepanre6pst U, (g1(2/1))

IMoxa3aHo, 4TO MOCTPOEHHE peann3aluil Wit anre6p ¥ KBaHTOBBIX anrebp Mo-
XeT 6bITh TaKXe 06001eHO Ha KBaHTOBbIe cynepaire6pel. Mi3yueH npuMep KBaHTO-
Boii cymepanrebpst U, (g1(2/1)) u nanb 6030H-(pepMUOHHBIC peaTH3alli W14 Of-
HOM Hapel g-G030HHBIX OMEPATOPOB U ABYX Iap G)E€PMHOHOB.

Pa6ora BrimonHeHna B JlaGoparopuu teoperHyeckoil ¢usuku uM. H. H. boro-
mo6osa OWSIH.

Mpenpunt O6benMHEHHONO HHCTHTYTA SAEPHEIX HecenoBanmi. dybua, 2003

Burdik C., Navratil O. E5-2003-133
The g Boson-Fermion Realizations
of the Quantum Superalgebra U, (gl(2/1))

We show that our construction of realizations for algebras and quantum alge-
bras can be generalized to quantum superalgebras, too. We study an example
of quantum superalgebra U, (gl(2/1)) and give the boson fermion realization
with respect to one pair of g-boson operators and 2 pairs of fermions.

The investigation has been performed at the Bogoliubov Laboratory of Theo-
retical Physics, JINR.
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