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1 Introduction

In modern high energy physics the Lobachevsky velocity space is widely used for particle
scattering processes investigations. In spite of that the physical nature of Lobachevsky
parallel lines (LPL) is still absent. As the existence of LPL is based on the Euclidean
V postulate denial, then a physical foundation for its violation is also absent. At the
present time LPL have a geometrical interpretation only either as infinite lines on a
pseudospherical surface, or as hordes on an euclidean circle [1].

An exposing a physical nature of LPL and withdrawing the first obvious consequences
from established to LPL corresponding processes are results of further developing of main
ideas in [2] and presented in this paper.

It is reasonable to sketch some general remarks on our approach. Let us consider
light propagation on the base of the Huygens principle and on the light beams indepen-
dence law. So, light phenomena of diffraction and interference are omitted. Also, let us
accept the constant light velocity principle. Let us imply that anyone is familiar with
Lobachevsky geometry (1, 3].

There is a special remark for Huygens principle: a time moment of emitting a secondary
light sphere (halfsphere) from any point, reached by a light front, can be taken as the
initial (zero) moment of time counting for that point.

Let us use the same plane light fronts as used to explain the light reflection and
refraction phenomena.

2 The physical nature of Lobachevsky parallel lines

Let us have two inertia systems K and K, and one (K,) is moving relatively the other
with some velocity V. Both systems may be associated somehow with corresponding
particles. As usual, all space axises of the both systems are parallel and the motion goes
along X-axis of the K. Let us assume that when the origins O and O, of both systems



coincide, then a plane light front (side beam directed from down to up in some plane. for
instance in XY’} hits the point O under a parallel angle to the X-axis (see Fig.la):

cos 8y, = cos Il{p/k) = th(p/k) = V/c =, (k=c¢) (1)

and a light sphere (halfsphere to the falling front) starts to spread out from the O (here 3
is a velocity V in units of ¢, p/k is a rapidity in units of & = ¢, II(p/k) = 6L is a parallel
angle, k is Lobachevsky constant, ¢ is a light velocity). The second equality 8 = th(p/c) in
{1) is known from the Beltarami model [1] and used in physics to define particle rapidity:

ple=1/2In((1+B)/(1 = B)). (2)
The first equality in (1) can be rewritten in the form:
6, =TI(p/k) = 2arctge™*'°, (3)

known as Lobachevsky function. It is seen from (1) that for any rapidity (or/and for any
velocity) there is a definite angle §;. For negative argument of the Lobachevsky function
the parallel angle is m—8y, [1]. So, this case corresponds to cos (1 — ) = —cosf, = —V/c
the same velocity, but in the opposite direction.

Let us have an event (z = Vt,¢) in the K. Then the side beam hits a given z-point
in the moment of time ¢z (see Fig.1a):

ctp =z cosfy = Vicosfry = ct cos” 0z, (4)

i.e., later than origin O, and a new light sphere starts to spread out from a given w-point.
By a given moment of time ¢ a new sphere spreads up to the distance (or radius) ct,:

cty=ct —ctp =ct —zcosfy = ct —zV/c, ty=1t—zV/c, (5)
and for z = Vi:
cty = ct — ctcos? By, = ctsin? By, = ct(1 — V?/c?). (6)

where ct is the light sphere radius from origin O, so that ct, < ct. It is obvious that the
origin O, of the K, displaces along X on the distances V.

Let us choose from these two spheres two light rays: one is ¢t from O under the angle
6;, to the X-axis in some plane, the other is ct, from O, (from the given z) perpendicular
to the X-axis in the same plane (see Fig.1a). These three segments ct.Vt and ct, form
some kind of a rectangular triangle. But sides ¢t and ct, have no common (intersection)
point for any moment of time ¢, so they are parallel in any chosen euclidean plane. As
a rapidity for c is an infinity (see (2)), then this retired triangle transforms into LPL. or
more precisely, into parallel lines in one side on the Lobachevsky plane in the velocity
space (see Fig.1b).

Thus, the LPL in a velocity space corresponds to the light rays ct and ct, emitted from
different points and different times and synchronized by Huygens principle with particle
motion Vt. The physical reason of intersection point absence is the time delay ¢ (see
(4)). This time is obviously a physical foundation for V postulate denial.

To find out light rays corresponding to LPL in another side, one should use analogous
consideration with a side beam directed to another side (from up to down) in the samec



plane (see Fig.2a and Fig.2b). To find out light rays corresponding to the LPL for negative
argument of Lobachevsky function (for V' < 0 in the both sides), one should use side beams
directed oppositely X-axis, i.e. from the right to the left (the previous ones for V > 0
were directed from the left to the right), see Fig.2¢c and Fig.2d. The full picture in the
euclidean plane corresponding to the LPL on a plane in the velocity space is presented in
Fig.3.

Thus, a moving system (V > 0 or V' < 0) is associated with a definite side light beams.
For a rest system V = 0 and the rest system is associated with a straight beams as in
this case 8;, = 7 /2 (see (1) and Fig.2). The physical nature of Lobachevsky parallel lines
reveals a new way to solve the main difficulty in relativity - the problem to define the
moments of time for different space points.

3 =z, t - coordinate transformation and light ether
conception

Let us continue the previous consideration of two inertia systems K and K, (V > 0). Let
us assume that a straight beam hits X-axis in the same moment of time when a side beam
hits a point where the both origins coincide. Then all z-points (including O) are "fired”
simultaneously due to the straight beam and this moment of time is usually taken as the
initial one for the K system. Relatively the side beam the initial moment of time for any
z-point is shifted by the delay time ¢F (see (4)). The time ¢, in a given z-point (in K) by
a given moment of time t (in K) is defined by (5). Thus, due to synchronization K and
K, systems any = point has two times: ¢ and ¢,. As the velocity of K, is known then ¢,
depends only on a chosen event.

Let us measure time moment ¢ in the rest frame through the distance of light ray ct
emitted from the point O under the parallel angle to X-axis in some plane. Then for any
event (z,t) the delay time ctr is just a projection of the given z on the chosen light ray
ct (see Fig.1-Fig.4). It is obvious, that the K, origin displacement V't = cteosfy is just a
projection of light ray ct on the X-axis. So, a given = by a given time ¢ has a value z,
relative to the origin O,:

z,=x—Vt=z—ctcosf. {7)

For any event (z = Vt,t) a relative coordinate is z, = 0. It means that time ¢, (see (5)

and (6)) is a proper time of K, - the time "measured” by means of the "moving watch™.
An observer in K sees light sphere with radius ¢t and in the same time  a moving observer
sees another light sphere with radius ct,. Thus, for any event (z,¢) in K the corresponding
coordinates for K, one can find as simple shifts (see (5) and (7)). To find out the values
of shifts, one should produce the mentioned above symmetrical projections.

Let us use the established symmetry to find out Lorentz coordinates z’ and t' for a
moving system. To get them, one should find the crossing point O’ of two perpendiculars
producing the mentioned projections (see Fig.4). Then the length of the side from O up
to the z corresponds to z':

¢’ = (z —cteosdr)/sinby = (z — Vi)/\/1-V?2/c?, z, =2 sinfy, (8)
and the length of the side from O’ up to the ¢t corresponds to ct’:

ot = (et — zcos )/ sin by = (ct — xV/c)/y/1 - V?/c2, ct,=ct'sinfr. (9)



It is seen from (8) and (9) that primed and shifted coordinates are related as corresponding
projections. But the point O’ which is always accepted as the origin of the moving system
does not coincide in space with O,. It is also seen that ’-coordinate is not parallel to
the X-axis. So, it seems obvious that primed values can’t be accepted as coordinates of
a moving system.

Now, let us see the length of a side between the given points x and ct {dashed line in
Fig.4). It can be obviously written through the primed and unprimed values:

12 = *t? + 2% — 2ctwcos O = *t? + 2% + 2ct'z’ cos b, (10)

or as a sum of two terms, either as: {2 = s? + sZ {for that one should add +z® to the left
part of (10) and £z to the right part of it), or as: I? = —s? + s3 (for that one should
add +¢%? to the left part of (10) and +c?** to the right part of it). where:

8= — gt = A7 — 2 = (P - 2l), q=1/sinfy = 1/4/1—V?/c2.
s = 2z(z—ctcosfp) = 2z’ (¢’ £t cos b)), 52 = 2ct(ct—w cosf) = 2ct'(ct' £z’ cosb).
(12)
Term s? is known as an invariant interval. It is seen that it is only a part of full length
I? and, that this part is a result of cancelling of two equal values either 52, or s in the
possible expressions for {2. Terms s and s may differ by sign: (+) corresponds to the
case when the point O’ is inside and (-) when it is outside of the angle #;. For an event
(z = Vi,t) both terms are equal to zero (as 2’ = z, = 0) and 52 = [*. Just for this case
the Lorentz coordinate transformation are usually proved in manuals (for instance. see
).

By using second formulas in (8-9) one can find from (12):
z = (2, + ctycos §1)/sin? O, = (z, + Vi,) /(1 = V?/?). (13)

ct = (t, + z,cosbr)/sin? 0y = (ct, + Vi, /c)/(1 - VZE/cty, (14)

just the back transformation from the moving system to the rest one. To be sure of that,
one have to solve a system of {5) and (7) relatively z and ct. To make a geometrical
meaning of the last formulas more clear, it is uscful to insert the factor 1/sinfy into
brackets (then terms in brackets are lengths of perpendiculars corresponding the above
mentioned projection symmetry).

As seen from (5),(7) and (13-14) that the straight and back transformations are dif-
ferent: back formulas could not be taken by changing V on —V. It means that one knows
either that system moves, or it is in the rest. As it was shown, changing V on —V one
should also choose an appropriate side light beam direction for a moving system. So. if K,
moves in the backward to X direction (V' < 0) one should change the sign in (5) and (7)
and also in nominators of the back formulas (13-14). Thus, choosing the corresponding (to
the known velocities) straight and side light beams, any two systems may be considered
in a such way that one of them can be taken as a moving system and the other one as in
the rest or vise versa.

The possible way to realize these opportunities is to make assumption that in the
surrounded world there are a lot of light streams of any directions, something is like
ether, but not in the rest - it is a moving light ether.



4 vy, z - coordinate transformation and invariants

Let us have an event (z,y,z = 0,t) in K system and the side light beam falls onto X-axis
in XY -plane as shown in Fig.5, i.e., it falls from down to up and hits first of all the plane
point {z,y) and then a point (z,y = 0) on the X-axis (if y-coordinate has an opposite
sign, then one can choose another side beam falling from up to down). A secondary light
sphere spreads out from the first point up to the X-axis (up to a point (z,y = 0)) for a
time y/c. The side beam’s ray hits this point in a moment of time y sinfr/c (since the
moment of time when secondary sphere starts to spread out from the first point}). So.
there is the light way difference:

cAt = Ay =y —ysinfyg. (15)

To compensate this difference and for an y-coordinate (in a moving system) to be in the
same time as z,, the origin of the K, should be shifted along the Y-axis by value Ay
defined by (15). Then an y-coordinate in K, system is:

Yy, =y — Ay =ysinfy =yy/1 — V2/c2 (16)

For another transverse coordinate z, one can get:

zy=2— Az =zsinf = 24/1 - V2%/c? (17)

the same way. The back transformation is obvious:

y =ys/sinfy =y, //1 —-V?/c?, z=z,/sinfp = z,/\/1 — V?/c2. (18)
For the noninvariant interval (see(11)) by using the last formulas one can get:
M-zt -y’ — 2 =P wl -yl - 2. (19)

As seen from Fig.4 the point O’ looks as a center of projectivity and the X-axis with
the chosen light ray ct may be considered as a projective lines [3]. Let us consider = and
¢t values as corresponding projective coordinates. The projectivity (or a projective trans-
formation) establishes some definite correspondence, in particular, between the points of
two projective lines. The main invariant for projectivity is a complex fraction of any four
elements of some two multitudes, in particular, of any four corresponding points for any
two projective lines [3]:

g3 — L1 T4 —T1 Ct3 — Ctl Ct4 - Ctl

(21,22, T3,%4) = : = : = (t1, 22,13, 84) . (20)
g — L3 To — T4 cty —cty  cly — cty

According to the main projective geometry theorem the projectivity is known if any three
corresponding elements are known. It means that, in this case for any given z one can
find the corresponding ¢ from (20) and vise versa. Let us see two simple cases.

1. There are three known events: z; = 0, £, = 0, 2o = Vi, &y =1, z4 = 00, ¢4 = o0.

Then the (20) becomes [3]:

T3— Ty t3— 1

(21,23, 23,00) = = (t1,t2,t3, 0) (21)

Ty— T3 lx—1t3

5



and for any z3 (or £3) one can find corresponding ¢3 (or z3):
t3:$3t2/z2=w3/V, .’E3:Vt3. (22)

Obviously, this result corresponds to the projection of the X-axis onto the ct ray (and
vise versa) by the beam of lines with the center at infinity - just as a straight light beam
used for K system.

2. There are the three known events: z; = 0, ¢; = 0, &2 = z, t, = zcosbr/c, 4 = 0o,
t4 = co. The same way one can get:

t3 = z3cosbr/c, z3 = ctz/cosfr. (23)

This result corresponds to the side projections with the center at infinity and with the
direction turned by /2 as it was used for K, system.

Comparing (5),(7) and (22-23), one can note that the coordinate transformation from
the K-system to the K, is just the difference between the given values of ¢ and ct and
the corresponding results of the considered projectivities. So, the projectivity allows one
to find the shift values. Other cases require further investigations.

Let us rewrite (20) as it follows:

T; — Tg

(21, T2, 23, T4) _ [_3:%1 X @ _ _
c(ti — tk) ’

(ot 2e2e) _Pu Pu_y o g,
(t1,t2,t3,t4) Pas Baa

(24)
and for each event (z;,t;) in (24) let us substitute the corresponding values expressed
through coordinates of a moving system (see (13) and (14)). Then one can find:

ﬂ31.ﬂ41_ﬁ§1.&_1 ’—ﬁik+V/C (25)

Bas  Paa  Prs Bha * T BaV/e

that for any four corresponding (in the meaning of projectivity) events the complex frac-
tion of their relative velocities is equal to unmity either for the K, or K, systems. The
second formula in (25) is known as the relativistic velocity summation law and it follows
in a usual way from (13) and (14).

Thus, instead of a noninvariant interval (19) there is a well known (main in the pro-
jective geometry) invariant (20) and (25).

5 Relativistic effects and wave character of the initial
moment of time propagation

Let us have two events (z;,#;) and z,,%,) in K system and corresponding to them two
events {z,1.t,1) and (z42,%52) in K, system. Then, according to a new transformation
(V > 0), one gets:

Az, = Az — Atcosfr, cAt, = cAt — Azcoshy, (26)
for shifted and for unshifted coordinates:

Az = (Az, + At,cos8y)/sin’0r,, cAt = (cAt, + Az,cos8r)/sin’6y,, (27)



where Az, = 24 — 51, At, = ty — t,, and Az = zy — 21, At = t5 — t;. Let us also
remind the relation between the primed and shifted values {see (8-9)):

Az’ = Az,/sin 6, cAt' = cAt,/sin §. (28)

If Az is a length of some stick in the rest system, then for the length in a moving system
it is used to take (by definition) the difference of its coordinates Az, by the same moment
of time At, = 0. Then, one finds from the first formula of (27} (and using (28) for the
primed values):

Az =y Az, = vAz'. (29)

So. {see Fig.6a) due to a new transformation, the length of a stick becomes shorter even
in comparison with the primed value. But, it is seen from the second formula of {26) that
the definition’s requirement At, = 0 leads to the fact:

cAt = Az cosfp, {(30)

that At # 0. It means that the moving system has two identical moments of times
t,1 = ts in the two different space points V¢, and Vi, corresponding to the ¢; and ¢, in
K system (see Fig.6a). So, due to the used length definition the measurements of two
coordinates are produced from the two (shifted) coordinate frames.

It is possible to show that the simultaneity’s requirement At, = 0 for the moving
system expresses in reality a wave character of an initial moment of time propagation
along X-axis due to the hits of the corresponding side light beam. Indeed, the wave
propagation is characterized by the fact that some function (depending on z and ¢) has
the same value in some two space points by two moments of time. Let us use time ¢,
{see(7)) as an argument of this function:

t—zV/cd = (t+ At) — (z 4+ Az)V/F = cAt = Az cosfp = cAtr. (31)

ie.. if At, = 0, then At = Atp, where Atr is the time delay difference for the given
points z; and z, hitted by the side light beam (see (4) and Fig.6a}. One gets from here:

Az/Atp = c/cos b, = |V = ¢/ =vp > e, (32)

where vp is a velocity of initial moment of time propagation along X-axis. For V = 0
it equals to the infinity. It means that the side beam becomes the straight one and hits
all points of X immediately in the same moment of time. In this case one comes to the
Newton time “ — — it is the same everywhere.

It is clear from the first equation of (26) that the stick’s length is the same for the
both systems: Az, = Az, if one takes two events (z1,t) and (z,,¢) in the rest system at
At = 0. In this case the corresponding coordinates z,; and z,, in a moving system are
measured in different moments of time ¢,; and ¢,,. It is possible to choose t,; = —t,5 and
find ¢t = {z; + Az/2)cos ;. This moment of time corresponds to the projection of the
stick’s center onto the ct ray (see dashed line on Fig.6a).

Now, let us have two events in a moving system in the same place Az, = 0 and they
differ by an interval of time At, = t,3 —t,. In K system the time interval corresponding
to them is seen from the second formula of (27) (see Fig.6b):

3

At = ¥ At, = YA . (33)



One notes that the new transformation makes an interval of time again rather shorter for
a moving system. But one can see from the first formula of (26) that if Az, = 0. then
Az = cAtcosf, = VAt ie. Az # 0in K system. It means that a moving system has
two identical coordinates z,; = 2,3 in two different space points Vt; and Vi, (in K). Due
to the requirement Az, = 0, measurements of two moments of time are produced from
two coordinate frames shifted in space.

1t is clear from the second equation of (26) that an interval of time for the both system
is the same: At, = At, if one takes two events (z,t;) and (z,t;) in the rest system at
Az = 0, i.e. in the same space point of K. In this case the two corresponding moments
of time #,; and t,» in a moving system are measured from two points z,; and z,. It is
possible to choose z,1 = —z, and find & = V(¢ + At/2) = c(t; + At/2)cosfy. This
z-coordinate corresponds to the projection of a middle of the given interval of time (cAt)
onto the X-axis (see dashed line on Fig.6b).

Thus, the nature of relativistic effects is not in changing the space or time current
scales for a moving system, but it is in changing of the reference points for the space and
time coordinates. The time delay tr = zV/c? like the origin displacement Vi should be
considered as a usual coordinate shift. Changing the way of measuring the space or time
interval lengths, one can find the same values for them in the rest and moving frames.
So, one may conclude that light beams oriented according to Lobachevsky function are
fruitful tools to solve the present difficulties of relativity in a natural way.

6 Lorentz energy-momentum transformation and wave
equation

Lorentz particle energy-momentum transformation is valid in this consideration as it is
just a consequence of the relativistic velocity summation law or of the aditivity law for
particle rapidity:

p'=p—po, p=p+po, (34)
where g is a particle rapidity in the moving system and p - in the rest one, p, is the
rapidity for the velocity B, = V/c of a moving system (all rapidities in units of ¢ = 1). So
that, 3' = thp' and 8 = thp are the corresponding particle velocity in the moving and in
rest systems. Hyperbolic tangent of (34) leads to the relativistic summation law:

thp — thp, thp' + thp,

0P — Wipo thy = —f T >1Po
1 — thpthp'’ p (33)

thy' = = .
p 1+ thp'thp,

The requirement for the particle velocity to be transformed according to this law is sat-
isfied by an usual definition of the particle energy and momentum through its velocity:
8 = thp = (mshp)/(mchp) = P/E, where m is a particle mass, P = mshp is a momentum
and E = mchp is a particle energy. One can get a Lorentz transformation by substitut-
ing these definitions for both systems into (35). Thus, the Lorentz energy-momentum
transformation is a straight consequence of the relativistic velocity (rapidity) summation
law.

Let us come back to the requirement At, = 0 (see (32)). Due to the side beam hit some
excitation in a form of the light halfsphere arises in some point z and in some moment
of time t (in K-system) and then the time counting starts from zero for this point. An



identical halfsphere will be exited in a distance z + Az by a time ¢ + A¢, and the time
counting starts again from zero for that point. So, the initial moment of time counting
(initiated by the side front hits) propagates as a wave with the velocity vr (see (33)) along
X-axis. It is known [5], that a differentials wave equation is defined by the structure of an
argument of the excitation function ¢ = ¥(=z,t). As an argument of the light excitation
function % has a form of the time ¢,: ¥ (z,t) = ¥(¢ = zV/c?), then this wave propagation
(along X) should have an equation in the form:

2 2
lz Y = 1% ) (36)
c? gtz (% 922
At 8 = 1 {or vp = c) it coincides with the known wave equation for light and ¢ =
¥(t £ z/c). When 8 = 0 (or vp = 00, i.e. when the side front becomes as the straight
one) the excitation function v does not depend on z, and the initial moment of time
counting is the same for any z-point: ¢ = (t).

7 Conclusion

o A complete correspondence has been established between Lobachevsky parallel lines
in the velocity space and the processes of particle and light beams propagation in the
ordinary space, synchronized by Huygens principle.

e The time delay in the emission of two light rays has been found as the physical reason
for their intersection point absence and for the V postulate denial.

o New contents of the simultaneity conception, common time and proper time have been
formulated.

o New inertia system coordinate transformations (as shifts) have been obtained.

e It has been shown, that relativistic effects happen due to the coordinate and time
reference point shifts. Changing the way of measuring the space or time interval lengths.
one can find the way when these values are the same in the rest and moving systems.

o Tt has been shown, that Lorentz energy-momentum transformation is a stright conse-
quence of the relativistic velocity summation law.

e It has also been shown that Lobachevsky function is a tool to express the constant light
velocity principle.

o The four elements complex fraction invariant and a possible wave equation have been
proposed.

The author expresses his gratitude to A.P. Cheplakov and O.V. Rogachevsky for useful
discussions and to S.V. Tchubakova for the help in prepearing the English version of the

paper.



Fig.1: a) synhronization of light rays (ct and ct,) propagations and the K,-motion
Vt by the Huygens principle due to the side light beam; b) Lobachevsky parallel lines
in the velocity space plane corresponding to synchronic motions of ct, ct, and Vit (in the

euclidean plane}.

10



c)V <0 d)

Fig.2: a) two side light beams (for V > 0) give arrising a two pairs of light rays ct and
et, for both sides of the plane (up and down), synchronic with a K,-motion V't; b)parallel
lines in both sides on Lobachevsky plane, corresponding to synhronic motions in a): ¢)
and d) are the same one as in a) and b), but for V < 0.
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Fig.3 A summary diagram to illustrate of Huygens’s synchronization of corresponding
light rays and two motions (V >0 and V < 0) in K-system.
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a) b)

Fig.4: a) an illustration for the inertia system z and ¢ coordinate transformation
(including Lorentz transformation); b} a velocity space diagram corresponding to z and ¢
shifts (by the moment of time ¢ a given & coordinate is assumed as z-position of a particle,

moving with a velocity v = z/t in K-system).
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Fig.5: a) an illustration to arising of Ay-shift due to the light way difference: b} the
velocity space diagram corresponding to a) (see note in Fig.4b).
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Fig.6 Illustrations of reductions: a) for a length - two simultaneous events (z,;.t,) and
{z42.1,) in a moving system; b) for the time interval - two events (z,,t,1) and (x,.¢,) in
the same place in a moving system.



i

2

References

Chernikov N.A. - Lobachevsky geometry and relativistic mechanics, in Particles and Nucleus, 1973.
v.4, part.3, p.733;

Fadeev N.G. - The inertia system coordinate transformation based on the Lobachevsky function, in
Proceedings of the Int. Conf. on "New Trends in High-Energy Physics”, Yalta (Crimea}, September
22-29, 2001, Kiev-2001, p.282;

Efimov N.V. The highest geometry, M.: Science, 1978, p.90,107,304,343,393;
Landau L.D. and Lifshitz E.M. Theory of field, M: Fizmatgiz, 1962, p.20;

Landsberg G.S. - Optics, M.: Gostekhizdat, 1952, p.26;

Received on September 25, 2003.



Danees H. T E2-2003-181
OU3HYECKHI CMBICI NMapauIe/bHbIX JlobaueBckoro
U HOBbIE IIpeoOpa30oBaHUs KOOPAHHAT HHEPUHAIBHBIX CHCTEM

OO6HapyX€EHO, YTO [IPOLECCH PaClIPOCTPAHEHHUs MTYYKOB YaCTHIL H I1y4KOB CBe-
Ta, CHHXPOHM30BAaHHBIX Ha OCHOBe NpHHIMIA [oiireHca, SBAIOTCA PUIMICCKOU
OCHOBOH [UIsl OTPULIAHHMS TITOTO [I0CTYNATa U IS ONpele/eHua IapajviensHsix Jlo-
$a4eBCKOro B MPOCTPAHCTBE CKOpocTei. PU3HYECKHI CMBICT naparuiensHbiX Jloba-
4EBCKOIO OTKPHIBAET HOBBIH MOAXOJ K PELIEHHI0 OCHOBHOH TPYIHOCTH TEOPHH OT-
HOCHTE/IbHOCTH — 3a[ayM Ofpele/iCHHs BpEMEHH B Pa3IMYHBIX TOUKAaX NPOCTPaH-
CTBA.

[pencrapieHs! MepBble O4EBUIHBIC CICACTBHS U3 YCTAHOBIEHHOIO PH3HYECKO-
IO COOTBETCTBHMsI, BKJIKOYAs IMOHATHS OTHOBPEMEHHOCTH, COOCTBEHHOIO BPEMEHH,
npeo6pa3oBaHHe KOOPAMHAT MHEPLHUATBHBIX CHCTEM, MHBAPHAHTHBIC BEJMUMHEL,
PEISTUBUCTCKOE CIOXEHHE CKOPOCTEH M PEITHBHCTCKHE 3(heKTsl.

Pabota BrinosiHeHa B JlaGoparopuu dusuku yactuu OHSH.

[IpenpunT OGbeNMHEHHOrO HHCTHTYTa AAePHBIX Hccnenopanui. lybua, 2003

Fadeev N. G. E2-2003-181
Physical Nature of Lobachevsky Parallel Lines
and a New Inertia System Coordinate Transformation

Processes of the particle and light beams propagation synchronized by Huy-
gens principle have been found as the physical nature for the fifth postulate denial
and for the Lobachevsky parallel lines definition in the velocity space. The physi-
cal nature of Lobachevsky parallel lines reveals a new way to solve the main diffi-
culty in relativity — the problem to define the moments of time for different space
points.

The first obvious consequences from the established physical correspondence,
including simultaneity, proper time, inertia system coordinate transformation, in-
variant values, relativistic velocity summation law and relativistic effects, are pre-
sented in this paper.

The investigation has been performed at the Laboratory of Particle Physics,
JINR.
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