E10-2003-187

A. Yu. [supov

SPHERE DAQ AND OFF-LINE SYSTEMS:
IMPLEMENTATION BASED ON THE gdpb SYSTEM

1 Introduction

Data acquisition system’s implementation for the SPHERE experiment [1] based
on the distributed portable data acquisition and processing system gdpb [2] as well
as on the configurable experimental data and CAMAC hardware representations [6]
now. This paper describes implementation of SPHERE DAQ and offline code, which
depends on hardware and data layouts and, therefore, need to be varied from RUN! to
RUN.

Through the following text the file and software package names are highlighted as
italic text, C language constructions and reproduced “as is” literals — as typewriter
text. Reference to manual page named “qwerty” in the 9th section printed as
gwerty (9), reference to section in this report — as 4.2.1. Subjects of substitution
by actual values are enclosed in the angle brackets: <run_name>. All mentioned
trademarks are properties of its respective owners.

2 SPHERE CAMAUC hardware subsystem

Online electronics of the SPHERE setup [1] based on a CAMAC hardware currently,
so hardware subsystem in terms used by the gdpb system [2] is a CAMAC subsystem
only.

2.1 RUN dependent CAMAC code

General idea about CAMAC configuration is formulated and RUN independent
code part is explained in [6]. Here we describe a RUN dependent part of such idea
implementation:

1. “geography” point of view to CAMAC hardware (so called global CAMAC de-

scription array).

2. “event” point of view to CAMAC hardware.

3. code for control over whole DAQ system, RUN dependent part.

A global CAMAC description array (item 1) and experimental data representation in
terms of CAMAC hardware modules (item 2) are implemented in the b<run_name>.*?
family of files (one .c C source and one .h C header per RUN).

b<run_name>.h defines a CAMAC hardware keys — symbolic names for CAMAC
crate.station combinations — in the enumerate form:
enum hw_keys { NoField, <other field names here>, <...> };

b<run_name>.c contains:

e The global CAMAC description array definition and initialization:

const struct crate crs[<crates_in_branch>] = { <...> };

!(in the wide meaning) — accelerator run.
2<run.name> anywhere through this report need to be substituted by name of an experimental RUN

(for example, “nov96”, “3jund7”, “jun9s”, etc.)

2 © Joint Institute for Nuclear
Research, 2003

where <crates_in_branch> need to be substituted by correct value, #define’d
in the hwconf.h header file.

e gr_<event_kind>() functions implementation.

#include <b<run_name>.h>
int gr_<event_kind>(FILE *stream, char *buf, int flag)

These routines destined to represent the binary experimental data layout in terms
of CAMAC crate.station combinations, from which their are read.

gr_<event_kind>() generates C code, which produce <event_kind> event, and
outputs it into stream. buf is a string, contains name for event storage in produced C
code. If flag == HW_READ (#define’d in the hwconf.h header file), this code really
deals with CAMAG, if flag == HW_GEN, this code only fills storage by (some) values.

The gr_<event_kind>() returns O on success, and positive wrong offset value
(in the sizeof (u_short) units) on failure.

RUN dependent DAQ control code (item 3) is implemented in <run_name>hard.h
files family (one per RUN), which #includes <run_name> <event_kind>.h,
<run_name>_camac_sc_reset.h, and <run_name>_camac_init.h files, generated by the
gen_gr(1) (see [6]). So, RUN dependent DAQ control code contains (in the current
implementation) the following CAMAC hardware macro definitions:

e CAMAC_INITIALIZE(int +*res) performs CAMAC initialization, and fills res

by 0 on success, > 0 on failure.

e CAMAC_FINISH(int #*res) performs CAMAC finish operations, and fills res

by 0 on success, > 0 on failure.

e CAMAC_CYC_BEG() deals with CAMAC and produces DATA_CYC_BEG event.

e CAMAC_DAT_0() deals with CAMAC and produces DATA_DAT_0 event.

e CAMAC_CYC_END() deals with CAMAC and produces DATA_CYC_END event.

e CAMAC_DAT_N(u_short h) produces DATA_DAT_<N> event of type type[h].

e CAMAC_CLEAN({) cleans CAMAC at errors in interrupt handler.

e CAMAC_SCALERS_RESET() performs non-blocked scalers reset.

2.2 SPHERE CAMAC interrupt handler implementation

User handler of CAMAC interrupts for SPHERE setup is implemented by:

e CAMAC configuration scheme, described in [6] (see also 2.1)

e KK009/KKO012 memory access macros (see [3]) for CAMAC handling,

e kernel context interface to packet handling (see [2]),

e kernel context interface to branch point (see [2]).

In the current implementation it named hand and loaded into kernel as follows:
kldload hand_mod.ko

For actual version of such handler source see camac_modules /handler /hand.c file
in the gdpb system [2] distribution tree.

handconf — configuration utility for hand CAMAC module of the SPHERE DAQ
system.

handconf [-v] [-d{<driver>|-}] <module>

handconf [-v] -t <module>
In the first synopsis form the handconf utility configures the specified module

<module> for work with driver “kk0” by default.
In the second synopsis form the handconf utility tests configuration of the specified
module <module> and writes it to standard error output.

The default behavior of handconf may be changed by following options:
-d<driver> Configure module for work with driver <driver> instead of default

“kk0”. -d- means use compiled—in default for <driver>. Default driver name
may be changed at handconf compile time.

-v Produce verbose output instead of short by default.
The handconf utility exits 0 on success, and > O on error.

handoper — control utility for hand CAMAC module of the SPHERE DAQ system.
handoper [-v] [-b<#>] start|stop|status|init|finish|quecl|cntcl

In the such synopsis form the handoper performs oper() call with sub—function
fun, defined by first supplied argument, on the CAMAC module (see also [3] for more
details) attached to the 0™ branch, and writes report about that action to the standard
error output. The handoper may be used, for example, for implementation of some
actions in the sv.conf(5) file (see also 4.4 and supervisor software module description
in [2]).

The default behavior of the handoper may be changed by following options:
-v Produce verbose output instead of short by default. With this option handoper also

uses oper () call with HANDGETSTAT fun (see also [3] for more details).

—b<#> Deal with module, attached to the # branch, instead of 0" by default.
The handoper exits 0 on success, and > 0 on error.

3 RUN dependent offline code

All code, dependent on experimental data contents and layout, and therefore tends
to be changed between different accelerator RUNs (denoted below as <run_name>) is
grouped together by so called offfine system, which provides set of libraries
lib<run_name> — one library per accelerator RUN.

Each lib<run_name> contains all <run_name> specific routines (sec 3.1) with cor-
responding RUN independent low level support (see bytemacros.h header file), and

relatively RUN independent high level routines:
e datafile(s) handling (see 3.2) on the packet(3)s interface (see [2]) base,

e routines for packet (event) types handling (see 3.3), etc.
3.1 Data contents description

#define <run_name>
#include <eRUN.h>

The eRUN.h contains #include’s of all exists e<run_name>.h files, each of
which contains description of the experimental data layout in the corresponding RUN

<run_name>.
The fRUN.h header file declares and the f<run_name>.c source file implements

routines, destined to convert from the binary experimental data to corresponding data
structures and vise versa.

#define <run_name>
#include <fRUN.h>
void b2s_<event_kind>(u_char *buf, char *data)
vold s2p_<event_kind>(char *data, pdata *pdat)
void s2b_<event_kind>(u_char +*buf, char *data)

b2s_<event_kind>() fills already allocated data_<event_kind> structure,
pointed by *data, from *buf, contains binary representation of event of kind
<event_kind>. So, b2s_<event_kind>() performs conversion from binary to struc-
ture experimental data representation, after which user can retrieve event fields by its
names instead of its offsets.

s2p_<event_kind>() directs ptr members of already allocated array of pdata
structures *pdat (see 3.2) into corresponding fields in the data_<event_kind> struc-
ture, pointed by *data. After that user can retrieve event fields by its index numbers
in the *pdat array instead of its names.

s2b_<event_kind>() fills already allocated buffer +buf from the
data_<event_kind> structure, pointed by *data. So, s2b_<event_kind>() per-
forms conversion from structure to binary experimental data representation. These
functions destined primarily for data makers (usually elements of hardware subsystem)
purposes.

3.2 High-level data reading

#define <run_name>
#include <eRUN.h>
#include <get_data.h>

int get_pack(FILE *finput, char **data, char **data_ptr,
int (#+usr_func)(char *, char *, int), int flag)
int get_burst(FILE *finput, char **data_buf, u_long *counters_buf)
#define get_data(in, dat, dat_p, usr_fn, flag) \
get_pack((in), (dat), (dat_p), (usr_fn), (flag))

get_pack and get_burst routines are destined to read a binary experimental data
in the packet (3) format of the qdpb system [2] and to present it as corresponding data
structures for more comfortable using.

get_pack() organize loop for read whole packet datafile(s). Data read from
stream, pointed by *finput, if it is not NULL, otherwise data read from branch point
by its user context interface (see [2]). The **data must contain pointers to data
structures data_<event_kind> (defined in the e<run_name>.h header file, see 3.1),
which will be filled by read data. The *+data_ptr may contain pointers to arrays of
pdata structures, defined in the pdata.h header file as follows®:

3String representations for possible variable types produced by simple doublequoting of presented
preprocessor variables “type *”.

typedef struct {

#define TVNAME_LEN 10
char tvar[TVNAME_LEN]; /* name for value */
u_char flag; /* variable handled if (flag) */
/* u_char flag may be: */
#define F_NULL 0 /* variable not handled at all */
#define F_HANDLE 1 /* variable will be handled */
u_char type; /* value type */
/* u_char type may be: */
#define type_UChar 1
#define type_UShort 2
#define type_ULong 4
#define type_Double 5
#define type_Float 6
#define type_Char 11
#define type_Short 12
#define type_Int 13
#define type_Long 14
#define type_String 20
void *ptr; /* pointer to value itself */

} pdata;
or array of NULL pointers, if you need not pdata interface. The array of pointers
to functions (**usr_func)() must contain pointers to user data handling proce-
dures (or NULL), which will (will not) be called at each occurrence of corresponding
event kind of experimental data. Up to NEVTYPES handlers for working with cach of
data_<event_kind> structure may exists. Handlers must be declared as
int <sm_name><kind>(char *ch, char *chl, int flag)*® and returns nonzero
at error. Pointer *ch must be used into handler as pointer to the corresponding data
structure, pointer *chl optionally may be used as pointer to array of structures pdata,
flag may control the handlers behavior (for example, it may indicate main or sec-
ondary data stream).

get_burst() gets whole burst from packet datafile, assuming, that first packet of
burst has DATA_CYC_BEG type (#define’d in the pack_rypes.h), last packet of burst has
DATA_CYC_END type, and second, ..., previous of last packets are of other DATA_DAT
types. Data read from stream, pointed by *finput, if it is not NULL, otherwise
data read from branch point by its user context interface (see [2}). The *+data_buf
must contain pointers to already allocated at least NEVTYPES arrays of data structures
data_<event_kind> (defined in the e<run_name>.h header file, see 3.1), which will
be filled by read data. The *counters_buf must contain pointer to already allocated
array, contains at least NEVTYPES members, for storing number of events of each types,
encountered during burst read. So, loop over bursts organization and “event handlers”

4<smname> need to be substituted by some C identifier name,
<kind> - by short name of event kind (for example, “dc07, “dd0”, “dcl”, etc.)

calling is a user responsibility, but (s)he has whole current burst (instead of current
event in the get_pack() scheme) available to analysis at each time moment.
Macro get_data() organize loop for read whole datafile(s) in the current format,
defined by GETPACK, and has interface the same as get_pack().
get_pack() and get_data() returns O on success, positive values if error occurred
in user handlers, and negative values if error occurred while data reading or in these
functions itself.
The get_burst() returns 1 on success, 0 if end—of—data occurred and < 0 if error.
The following error codes may be set in errno:
[EINVAL] Invalid argument(s) supplied to get_pack() or get_burst().
[ERANGE] Data, read by get_pack(), are damaged (invalid chess codes, etc.)
[EIO]) 1/O error occurred.
[EMSGSIZE] Unexpected type of event read by get_burst().

3.3 Packet (event) classification

#include <pack_types.h>

The pack_types.h header file must contains predefined packet types, classes, and
kinds (in order from more general to more particular). In the current implementation
value of u_short packet.header.type (see [2]), used for packet kind representa-
tion in packet header, divided into set of subranges as follows:

/* Predefined packet types */

#define DATA_PACK 0

#define DATA_RANGE 9999

/* Predefined packet classes in DATA_PACK type */
#define DATA_DAT DATA_PACK

#define DATA_DAT_RANGE 999

#define DATA_CYC (DATA_DAT+DATA_DAT_RANGE+1)

#define DATA_CYC_RANGE 999

/* Predefined packet kinds in DATA_DAT class */
#define DATA_DAT_0 DATA_DAT

#define DATA_DAT_1 (DATA_DAT+1)

/* Predefined packet kinds in DATA_CYC class */

#define DATA_CYC_BEG DATA_CYC

#define DATA_CYC_END (DATA_CYC+1)

offbystr (), offbyevtype(), evtypebyoff (), evtypebystr(), strbyevtype() -
routines intended to packet (event) types handling.

#define <run_name>

#include <pack_types.h>

u_short offbystr(char =*tok)

u_short offbyevtype(u_short ptype)

u_short evtypebyoff (u_short offset)

u_short evtypebystr(char *tok)
char *strbyevtype(u_short ptype, char =*dst)
offbystr() returns offset in <array>[NEVTYPES]® arrays, defined in the
e<run_name>.h header file (see 3.1), for packet type, represented by name *tok.
offbyevtype() returns offset in <array>[NEVTYPES] arrays for packet type,
represented by value ptype (packet.header.type).
evtypebyoff () returns packet type value for offset offset in <array>[NEVTYPES].
Macro evtypebystr () returns ptype for packet type, represented by name *tok.
Macro strbyevtype() fills string representation in the already allocated destina-
tion dst of at least PTYPE_STR_MAX (#define’d in the pack_types.h header file) size
for packet type, represented by value ptype, and returns pointer to filled string.
offbystr() returns (u_short)(-1) if type name submitted is unknown.
offbyevtype() returns (u_short)(-1) if type value submitted is unknown.
evtypebyoff() returns (u_short)(-1) if offset >= NEVIYPES.
evtypebystr() returns (u_short)(-1) if type name submitted is unknown or
offset >= NEVTYPES.
strbyevtype() returns NULL if type value submitted is unknown or
offset >= NEVTYPES.

4 SPHERE DAQ specific software modules

SPHERE DAQ system (in single host configuration) uses at least writer (1) work
module, bpget (1) service module, and (optionally) supervisor sv(1) control module
(see [2]) from generic software modules assortment provided by the qdpb system. Here
we discuss only SPHERE specific software modules.

4.1 Work module: statistic collector statman

The statistic collector stazman implemented as work module of packet stream ter-
minator type (in terms of the gdpb system [2]). It supports in the shared memory
region(s) some data objects (in particular histograms and counters), used by data pre-
senter module(s) (see 4.2.1, 4.2.2).
statman [-o] [-b<bpstat>] [-c{—|<runcffi1e>}] [-8{-|<cellcffile>}]

[-k{-|<knobjcffile>}] [-i{-|<cleancffile>}] [-p{-|<pidfile>}]

In the such synopsis form the statman reads packets from standard input, collects
information from each packet.data in accordance with default configuration files,
and stores it in the shared memory.

At startup statman reads configuration files in RUN.conf(5) (see [6)), cell.conf(5),
knobj.conf(5) and clean.conf(5) (see below and [6]) formats; initializes structures
pdat, cell, knvar, knfun, knobj (see 3.2, [6]), performs create loop over all ini-
tialized knobjs and generates PROG_BEG event. After that it reads packet stream from
standard input and for each obtained packet increments the global counter, correspond-
ing to type of this packet, and performs calculation loop over all initialized cells

S<array> need to be substituted by one of the max memb, len, type, chan max, k_shmid, k_semid
values

and fill/clean loop over all initialized knobjs. At packet stream EOF state obtain-

ing or SIGTERM signal catching statistic collector generates PROG_END event, so using

SIGKILL signal for statistic collector termination not recommended.

At PROG_BEGIN and PROG_END events also performed calculation loop over all
initialized cells and fill/clean loop over all initialized knobjs.

The default behavior of the starman may be changed by following options:

-0 Don’t remove shared memory at exit (useful for offline purposes).

-b<bpstat> ® Use branch point (see [2]} as input instead of standard input, and open
it at <bpstat> state. (Available only for systems, where branch point is imple-
mented).

-p<pidfile> At startup write own process identifier (PID) in <pidfile>. -p- means
use compiled—in default for <pidfile>.

-c<runcffile> Use <runcffile> as SPHERE experimental data configuration file
(see [6]). -c- means use compiled—in default for <runcffile> (constructed
from <run_name> by appending “.conf” extension).

-s<cellcffile> Use <cellcffile> as configuration file for universal data contain-
ers, cells (see [6]). —s— means use compiled—in default for <cellcffile> (con-
structed from <program_name>’ by prepending “c” and appending “.conf”).

-k<knobjcffile> Use <knobjcffile> as configuration file for universal presenter
objects, knobjs (see [6]). ~k- means use compiled-in default for <knobjcffile>
(constructed from <program_name> by prepending “p” and appending “.conf”).

-i<cleancffile> Use <cleancffile> as cleaning list for knobjs (see [6]). =-i-
means use compiled—in default for <cleancffile> (constructed from
<program_name> by prepending “i” and appending “.conf”).

The statman exits 0 on success, and > 0 on error.

The statman ignores SIGQUIT signal. The SIGHUP signal causes to reread con-
figuration files <runcffile>, <cellcffile>, and <knobjcffile> (with the same
names, as used at startup) which leads to whole statistics and cell results cleaning (so
this equivalent to startup initialization). The SIGINT signal causes to reread configu-
ration file <cellcffile> (with the same name, as used at startup) but without cell
results cleaning (so this can be used to change some cell “programs” without results
destroy). For user termination in accuracy manner SIGTERM signal must be used. The
SIGUSRI signal cleans whole collected statistics (include internal event counters), the
SIGUSR2 signal cleans it in accordance with contents of file <cleancffile>. Both
SIGUSR1 and SIGUSR2 are cleans results of all cells.

The starman’s configuration file in the knobj.conf(5) format (see [6]) can contains
only declarations of known objects with types, supported by statman. Such knobj types
currently are “hist”, “hist2” (maintains histogram array in the shared memory),

6<bpstat> need to be substituted by r for “run”, s for “stop”, and d for “discard”
"<programname> need to be substituted by name, under which statistic collector was compiled
(usually “statman™)

“cnt” (maintains counters array in the shared memory), “coord”, and “coord2”
(maintains coordinate “histogram” array in the shared memory).

For such known object’s declaration entries in the knobj.conf(5) format the first
(name), third (type), fifth (fill dependence), sixth (fill condition), and seventh (clean
dependence) fields has its standard in such format meanings.

Second (creator parameters), fourth (filler parameters), eighth (cleaner parameters)
and ninth (remover parameters) fields need to complain program interface, provided
by “hist”, “hist2”, “cnt”, “coord” and “coord2” known functions families.

For example, declaration of “hist” “hist2”, “cnt”, “coord” and “coord2” known

objects:
0bj0013 13;1025;type_ULong;create;shmid;semid hist \
tdc0;type_UShort;13;semid;type_ULong DATA_DAT_0 - \

NEVERMORE 1025;type_ULong;13;semid 13;shmid;semid
0bj0033 33;1025;1025;type_ULong;create;shmid;semid hist2 \

tdc0;tdcl;type_UShort;33;semid;type_ULong;1025 \
DATA_DAT_0 - NEVERMORE 1025;1025;type_ULong;33;semid \
33;shmid;semid
0bj0041 41;5;create;shmid;semid;type_ULong cnt \
41;3;semid;reset;type_ULong;cnt2l;cnt22;cnt23 DATA_CYC_END - \
NEVERMORE 41;5;semid;type_ULong 41;shmid;semid
0b3j0008 8:;16;type_ULong;create;shmid;semid coord \
hr0;type_UShort;8;semid;16;add;type_ULong DATA_DAT_0 - \
NEVERMORE 16;type_ULong;8;semid 8;shmid;semid
0b3j0028 28;16;16;type_ULong;create;shmid;semid coord2 \
hr0;hrl;type_UShort;28;semid;16;16;add;type_ULong \
DATA_DAT_0 - NEVERMORE 16:16;type_ULong;28;semid \
28:shmid; semid
To simplify writing of such configuration files the gen_prescfg (1) utility is proposed
(see 4.3).
For example, following prototype entries leads to generation of the known object
declarations presented above:
hist 13 1 -1 1025 ULong create shmid semid tdc),0N UShort DAT_0 - N
hist2 33 1 -1 1025 1025 ULong create shmid semid tdc%0.ln adc3.2n \
UShort DAT_0 - N
ent 41 1 -1 3 create shmid semid ULong reset cnt21N CYC_END - N
coord 8 1 -1 16 ULong create shmid semid hr%ON UShort add DAT_ 0 - N
coord2 8 5 -1 16 16 ULong create shmid semid hr%0.2n HR%1.2n \
UShort add DAT_0 - N

4.2 SPHERE DAQ control modules

In the current implementation of the SPHERE DAQ the following control modules
(in terms of the gdpb system [2]) are provided:

e the histograms data presenter histview (1),

e the counters data presenter catview (1),

10

4.2.1 Histograms data presenter

The histograms data presenter histview is a graphical statistic representation utility
for the SPHERE DAQ system. It reads data objects, supported by statistic collector
(see 4.1), and builds for it some human readable graphical representation.
histview [-k{-|<knobjconffile>}] [-p{-|<pidfile>}] [-t<sleeptime>]

In the such synopsis form the histview reads statistic, collected in the shared
memory by statman (1), interprets it in accordance with default configuration file in
the knobj.conf(5) (see below) format, and produces graphics representation of such
statistic (in the current implementation — using ROOT [4] facilities).

The default behavior of the histview may be changed by following options:
-p<pidfile> At startup write own process identifier (PID) in <pidfile>. -p- means

use compiled—in default for <pidfile>.

-k<knobjconffile> Use <knobjconffile> as configuration file for universal pre-
senter objects, knobjs (see [6]). -k- means use compiled—in default for
<knobjconffile> (constructed from <program_name> by prepending “‘p” and
appending “.conf”).

-t<sleeptime> Use <sleeptime> (in seconds) as time interval between two dumps,
instead of use compiled—in default 5 seconds.

The histview exits O on success, and > 0 on error.

The histview ignores SIGINT and SIGQUIT signals. The SIGHUP signal causes to
reread configuration file (with the same name, as used at startup). For user termination
in accuracy manner the SIGTERM signal must be used. The SIGUSRL signal stops
statistic reading and representing, the SIGUSR2 continues one.

The histview’s configuration file in the knobj.conf (5) format (see [6]) can contains
only declarations of known objects with types, supported by histview. Such knobj
types currently are “TH1” and “TH2” (ROOT (4] based 1-D and 2-D histograming and
graphic presentation of histogram array taked from shared memory).

For such known object’s declaration entries in the krobj.conf(5) format the first
(name), third (type), fifth (fill dependence), sixth (fill condition), and seventh (clean
dependence) fields has its standard in such format meanings.

Second (creator parameters), fourth (filler parameters), eighth (cleaner parameters)
and ninth (remover parameters) fields need to complain program interface, provided
by “TH1” and “TH2” known functions families.

For example, declaration of “TH1” and “TH2” known objects:
0bj0009 hrl;HR1;16;0;16;THIF;9;shmid;semid;shmem;canvas;9 \

TH1 type_ULong;16;0;16;THlF;9;semid;shmem;canvas;9\

DATA_DAT_0 - NEVERMORE THIF;canvas;9 THIF;canvas;9
0bj0013 tdc0;TDC0;1025;0;1025;THIF;13;shmid;semid; shmem;canvas;13 \

TH1 type_ULong;1025;0;1025;TH1F;13; semid; shmem;canvas;13 \

DATA_DAT_ 0 - NEVERMORE TH1F;canvas;13 TH1F;canvas;13
0bj0029 hx_hy;HX_HY;16;0;16;16;0;16;TH2F;29;shmid;semid;shmem;canvas;29 \

TH2 type_UShort;16;0;16;16;0;16;TH2F;29;semid;shmem;canvas;29;16;LEGO \

DATA_DAT_0 - NEVERMORE TH2F;canvas;29 TH2F;canvas;29

11

The gen _prescfg (1) (see 4.3) generates known object declarations, presented above,
from the following prototype entries:

TH1 9 1 hr%lN HRYIN 16 0 16 THIF -1 shmid semid shmem
canvas -1 ULong DAT_ 0 - N

TH1 13 1 tdc%ON TDC%ON 1025 0 1025 THIF -1 shmid semid shmem
canvas -1 ULong DAT_0 - N

TH2 29 1 hx_hy HX_HY 16 0 16 16 0 16 TH2F -1
shmid semid shmem canvas -1 ULong DAT_0 - N 16 LEGO

4.2.2 Counters data presenter

The counters data presenter cntview is a textual statistic representation utility for
the SPHERE DAQ system. It reads data objects, supported by statistic collector (see
4.1), and builds for it some human readable textual representation.
cntview [-k{-|<knobjconffile>}] [-p{-|<pidfile>}] [-t<sleeptime>]

In the such synopsis form, the cntview reads statistic, collected in the shared
memory by statman (1), interprets it in accordance with default configuration file in
the knobj.conf(5) (see below) format, and dumps (writes in ASCII representation)
such statistic to standard error output.

The default behavior of the catview may be changed by following options:
-p<pidfile> At startup write own process identifier (PID) in <pidfile>. -p- means

use compiled—in default for <pidfile>.

-k<knobjconffile> Use <knobjconffile> as configuration file for universal pre-
senter objects, knobjs (see [6]). ~k- means use compiled—in default for
<knobjconffile> (constructed from <program_name> by prepending “p” and
appending “.conf”).

-t<sleeptime> Use <sleeptime> (in seconds) as time interval between two dumps,
instead of use compiled—in default 5 seconds.

The cntview exits 0 on success, and > 0 on error.

The cntview ignores SIGQUIT signal. The SIGHUP signal causes to reread configu-
ration file (with the same name, as used at startup). The SIGUSR1 signal stops statistic
reading and representing, the SIGUSR2 continues one. The SIGINT signal outputs
statistic on printer with compiled-in name by Ipr(1) facility. For user termination in
accuracy manner the SIGTERM signal must be used.

The cntview’s configuration file in the knobj.conf(5) format (see [6]) can contains
only declarations of known objects with types, supported by cntview. Such knobj type
currently is “dent” (textual presentation of counters array taked from shared memory).

For the known object “dcnt” declaration entry in the knobj.conf(5) format the first
(name), third (type), fifth (fill dependence), sixth (fill condition), and seventh (clean
dependence) fields has its standard in such format meanings.

Second (creator parameters), fourth (filler parameters), eighth (cleaner parameters)
and ninth (remover parameters) fields need to complain program interface, provided
by “dent” known functions family.

For example, full declaration for one known object of type “dcnt™

12

0bj0041l 41;shmid;semid dent \
41;3;semid;type_ULong;nht,type_String;4;cnt2l:cnt22:cnt23 \
DATA_DAT_0 - NEVERMORE
The gen_prescfg (1) (see 4.3) generates known object declarations, presented above,

from the following prototype entry:

dent 41 1 -1 shmid semid 3 ULong nht 4 cnt%21N DAT_0 - N

4.3 Known object’s configuration generator

The known object’s configuration generator gen_prescfg produces files in the known
objects configuration format knobj.conf(5) (see [6]), used by some SPHERE DAQ util-
ities (see 4.1, 4.2.1, 4.2.2), from files in the so called known objects prototype format
knobj.proto (5).
gen_prescfg [knobjprotofile [knobjconffile]]

In the such synopsis form the gen.prescfg reads prototype file knobjprotofile
(or standard input if name omitted), and writes to configuration file knobjconffile
(or standard output if name omitted).

The gen_prescfg exits on success, and > 0 on error.

The known objects prototype file consists of zero or more lines, delimited by new-
line symbols. Lines may be a:

e comment lines,

e preserved comment lines,

e cmpty lines, and

e data lines,
where newline may be escaped by backslash for line continuation. Comment lines
(lines with “#” in the first position) and empty lines are ignored. Preserved comment
lines (lines with “#” and “!” in the first and second positions) are reproduced to the
output untouched.

Other lines must be data lines. Data lines, concatenated with all its continuations,
contains one or more fields, separated by space(s) or tab(s) and not contains it. Number
of such fields depends on first field contents, which is a known function family name
(fmfunc here, the same as third field (type) in the knobj.conf (5) format, see [6]). The
following fmfuncs are supported currently: “hist”, “hist2”, “coord”, “coord2”,
“cnt” (for the statman (1) utility), “TH1", “TH2" (for the histview (1)), and “dcnt”
(for the cntview (1)).

For bname and btitle fields %N, %p and %P conversions in the printf(3) style are
supported, for £illend field - %p only.

%<numl>.<num2>N replaced by number, starting from <numl> and incremented
once per <num2> names generated.

%p replaced by polarization mode symbolic representation, namely “p” for plus
polarization mode, “m” for minus polarization mode, “z” for mode without polarization
(so called zero), “b” for bad (unknown for some reasons) polarization mode — cyclically
in such order.

13

%<numl>.<num2>P replaced by number, starting from <numl> and followed by
polarization mode symbolic representation as for p. Number incremented once per
four names generated (for example: cntOp, cntOm, cnt0z, cntOb, cntlp and so one).
<num2> is ignored.

If bname value contains the “#” as first symbol, all generated known object entries
will be commented out in the output file.

Other fields are specific for fmfuncs mentioned above.

4.4 Control over SPHERE DAQ

For control over SPHERE DAQ a supervisor control module (see [2]) with Graph-
ics User Interface (GUI), which was designed to be self-explanatory, can be used.
Supervisor uses sv.conf(5) configuration file, which is a makefile in the current gdpb’s
implementation.

Because of a some “manual control” is useful from time to time, users can
make (1) ing sv.conf's targets directly without sv’s mediation. Target and variable
names are selected to be self—explanatory (for details see an actual sv.conf file).

At least following targets are defined in the sv.conf:

load - load and configure CAMAC and branch peint kernel modules, load bpget
service module and connect it (into BPRUN state) to branch point directly.

unload — unload bpget service module, unload CAMAC and branch point kernel
modules (counterpart for load target).

loadw — load writer with requests of mandatory parameters and mentions about
optional ones, and connect it (into BPSTOP state) to branch point directly.

unloadw — unload writer (counterpart for loadw target).

loads — load statman and connect it (into BPSTOP state) to branch point directly.

unloads — unload statman (counterpart for loads target).

loadc - load cntview in own xterm window.

unloadc — unload cntview (counterpart for Loadc target).

loadh - load histview in own xterm window.

unloadh — unload histview (counterpart for loadh target).

start_all - change state of all branch point connections to BPRUN.

stop_all — change state of all branch point connections to BPSTOP (counterpart
for start_all target).

init — initialize read—out CAMAC modules. (Also is a part of the load . As
standalone used after read—out crates power cycle.)

finish — deinitialize read—-out CAMAC modules (counterpart for init target).

continue - start CAMAC interrupts handling.

pause — stop CAMAC interrupts handling (counterpart for continue target).

cleanall - clean whole statman’s statistic, collected in a shared memory.

clean - clean statman’s statistic in accordance with configuration file
/scratch/qqq3 feic /istatman<RUN>.conf.

pauseh — pause histview data visualization (counterpart for conth target).

pausec — pause cntview data visualization (counterpart for contc target).

14

conth — continue histview data visualization.

contc — continue cntview data visualization.

status — view status of DAQ system parts.

seelog — start viewing of DAQ system messages, logged by syslogd (8).
confs — reinitialize statman after change of it’s configuration file(s).

5 SPHERE DAQ system in work

5.1 Testing on the single—crate stand

Here we describe some SPHERE DAQ system tests, performed at autumn 1999.
Hardware configuration was as follows:

e computer with CPU AMD K6 200 MHz, RAM 64 Mb;

e PKO009 interface card + KK009 CAMAC crate controller [5};

e one CAMAC crate with one sample of each CAMAC hardware modules, planned

to use in real experiments.

First of all some speed tests using two versions of speedtest CAMAC kernel module
— implemented on kerne] context subroutines of the CAMAC facility camac (4) (see
also [3]) and on kernel interface to KK009/KK012 memory (see [3]) — were performed.
The function hand () - interrupt handler itself — was contain: in the first case — 1 “select
crate” command (internal for KKOxx crate controller), 10 CAMAC read commands,
and 1 drop LAM command; in the second case — 10 CAMAC read commands and 1
drop LAM command, each with “select crate” and some other costs of CAMAC facility
working. CAMAC interrupts was generated with 20 kHz frequency. CAMAC driver
kk (4) was in the fast interrupt mode. Interrupt reaction time (including “select crate”
command performing) and time for a one single—cycle CAMAC command performing
were measured by oscilloscope directly on ISA bus (using ISA slot contacts). Results
are summarized in the following Table:

computer base frequency x CPU multiplier 75 %3 66 x 3
PCI frequency 75/2 66/2
ISA frequency 9.4 MHz 8.35 MHz
camac (9) speedtest implementation
Interrupt reaction 3.0-3.8 mks 3.4-4.5 mks
Single—cycle CAMAC command 4.4 mks 5.0 mks
kk (9) speedtest implementation
Interrupt reaction 2.8-3.8 mks 3.0-4.1 mks
Single—cycle CAMAC command 2.0 mks 2.3 mks

Note, that up to 30 kHz system not seen very loaded — interactive working was
comfortable enough.

For whole SPHERE DAQ system testing the 2zz99 RUN was configured, trigger
emulation was designed, and hand CAMAC interrupt handler (see 2.2) was written.
Working software configuration consists of:

e running supervisor, by which was:

e loaded branch point and hand kernel modules,

e one branch point output stream consumed by writer (1), and

15

e one branch point output stream consumed by stafman (1), which maintains 66
“native” and 3 cell calculated histograms and 24 counters (normal bandwidth for
SPHERE experimental data) in a shared memory;

e 5 “native” and 3 cell calculated histograms was visualized by histview (1) with
5 second interval, and

e 24 counters was printed on screen by cntview (1) with the same interval.

Triggers was initiated by generator with 2 kHz frequency (=~ 1000 triggers per

“accelerator burst” is our expected optimum for real experiments). System works
non-stop more than 5 hours (mainly without writing to disk due to limited space)
successfully, and interactions between base elements was correct.

5.2 Using on the SPHERE experiment
The SPHERE DAQ system was tested under real work conditions during four ac-
celerator RUNs at 2002 and one at 2003. First of it was March’2002 RUN of Dubna
Nuclotron. Hardware configuration of SPHERE setup for this RUN was as follows:
e computer with CPU AMD K6-II1 400 MHz, RAM 128 Mb;
e single CAMAC branch organization: PK009 interface card + three KK009 CA-
MAC crate controllers [5];
e read-out electronics (mainly) consists of 28 ADC channels, 28 TDC channels,
10 hodoscopic register channels (all are 16-bit values) and 28 scaler channels
(32-bit values); corresponding CAMAC modules are situated in three crates.
Three event types was collected and corresponding three packet types was pro-
duced: DATA_CYC_BEG - accelerator burst begin, DATA_DAT_0 — trigger of type 0, and
DATA_CYC_BEG — accelerator burst end, with corresponding packet body lengthes of
6, 174, and 86 bytes (packet header length is fixed and equals to 40 bytes, see [2]
for packet format details). Because of initially such binary format was prepared for
June’2001 RUN of Synchrophasotron, it named “jun01”. Working software configu-
ration consists of:
e loaded branch point and hand kernel modules,
e one branch point output stream consumed by bpget (1) (permanent client),
e one branch point output stream consumed by writer (1) (during runs with datafiles
writing), and
e one branch point output stream consumed by statman (1) (during approximately
whole time), which maintains 66 “native” and 3 cell calculated histograms, 28
“pative” and 4 statman (I1)’s internal counters in a shared memory;
e 25 “native” histograms was visualized by histview (1) (ROOT [4] implementa-
tion) with 5 second interval, and
e 28 “native” and 3 statman(1)’s internal counters was printed on screen by
cntview (1) with the same interval.

The SPHERE DAQ system works stably and reliably during approximately 60
hours (40 hours continuously). Approximately 240 Mbytes of datafiles was written.
So a DAQ changes history can be summarized as following:

Worki Data
.) orking |
ilantary for Hardware Software time, Zflire d
hour | Npytes
statman [histview | cntview
| March’2002 |
jun01 28 ACD ch.,,
DATA.CYCBEG | 28 TCD ch., | (o oo hist., 28
6 bytes, 10 hod. reg. 3 cell calc. hist. 25 “native”
DATA DAT.0 ch., e ’ “native” t ~ 60 =~ 240
28 “native” cnt., native cnt.,
174 bytes, 24 scal. ch. , hist 3 internal
4 internal cnt. 1st. nterna
DATACYCEND | (3 readout ent.
86 bytes crates)
| June’200]
66 “native” hist., 28
' 6 cell calc. hist, | 71 native
jun01 The same 28 “native” cnt., “native” | cnt., ~ 94 ~ 800
4 internal ent. hist. 3 internal
cnt.
[November'2002]
:2::16 ter 66 “native” hist.,
p‘q‘l _ 6 cell cale. hist.,
upgrade: 16 cond. fill 28
CpU hist., 71 “native”
jun01l AMD K7- 28 “native” cnt., “native” cnt., ~ 170 = 536
550 MHz 153 cell calc. cnt., | hist 153 cell
;’fM some cell calc. cale. cnt.
256 Mb fill. cond.
| December 2002
dec02 68 ACD ch., e s
DATA.CYC.BEG | 68 TCD ch,, |)41 "native” hist. 24
2 cell calc. hist.,
6 bytes, 5 hod. reg. 24 “native” cnt., ~ 50 | “native”
DATA DAT_0 Ch., 80 cell calc. ent,, “native” cnt., ~ 30 ~ 600
308 bytes, 20 scal. ch. 80 cell calc. fill hist. 80 cell
DATA CYCEND | (3 readout ’ cale. ent
cond. . .
86 bytes crates)

17

June’2003

dec0?2 The same 24 “native” cnt.,

150 “native” (1D
and 2D) hist.,

4 cell calc. hist.,
varied as | varied as

100 cell calc. ent., needed needed
170 cell calc. fill.
cond.

=~ 80 = 6800

6

Software dependencies and portability

All notes about software dependencies and portability, issued for the gdpb system
[2], are applicable for its subset, the SPHERE DAQ system. Ones for SPHERE offline
system presented in details in [6].

Acknowledgements

Author have a pleasure to thank to S.G.Reznikov for numerous fruitful discussions,
essential help in testing on stand, and some code contribution; and to A.G.Litvinenko
for March’2002 RUN trigger design and essential help in testing on SPHERE setup
during March’2002 RUN.

Investigations was supported in partial by the RFBR grant N 02-02-16024.

References

1]

S.V.Afanasiev et al. Measurement of the tensor analyzing power A,, in
inclusive breakup of 9 GeV/c deuterons on carbon at large transverse
momenta of protons. Physics Letters B 434, 1998, p.21.

Gritsaj K.I., Isupov A.Yu. A trial of distributed portable data acquisition
and processing system implementation: the gdpb — Data Processing with
Branchpoints. Communication of JINR E10-2001-116, Dubna, 2001.

Gritsaj K.I. Private communications.

Brun R., Buncic N., Fine V., Rademakers F. ROOT. Overview. CodeCERN,
1996.

Churin 1., Georgiev A. Microprocessing and Microprogramming, 23 (1988),
p-153.

[supov A.Yu. Configurable data and CAMAC hardware representations for
implementation of the SPHERE DAQ and offline systems. Communication of
JINR E10-2001-199, Dubna, 2001.

Received on October 6, 2003.

Heymos A. 10. E10-2003-187
Peanuzauus c6opa u o6paborku naHHbIX ycraHOoBKH COEPA
Ha OCHOBE CHUCTeMBbI gdpb

OmnHUCchIBAETCA APXUTEKTYpa cHcTeMbl cbopa naHHbIx yeraHoBkH CPEPA (JIBD
OHSIH), noCTpOEHHOH Ha OCHOBE CUCTeMB! 0OpabOTKH AaHHBIX C TOYKAMH BETBJIE-
Hus (qdpb) W KOHOMUTYpUDPYEMBIX HPENCTABICHUH 3KCNIEPUMEHTAIbHBIX NaHHBIX
u annapatypsl KAMAK. PaccMaTpuBaercsi peaiusalids NPOrpaMMHOrO Koja CH-
cTeM cOopa U 06pabOTKH AaHHBIX, 3aBUCHMOTO OT KOH(MIypalMH allaparyphl
M XapakTepa BKCIEPUMEHTATBbHBIX JaHHBIX ycTaHoBKM CMEPA. Takxe onmucaHbl
cneuugUyecKme U AaHHOH peaTH3allH MPOrpaMMHbIE MOIYJIH.

PaGora BuimoniHeHa B Jlaboparopun BbICOKMX 3Heprui uM. B. M. Bekcnepa
1 A. M. Banauna OUSH.

Coobuienne O6beAMHEHHOTO HHCTHTYTA sfiepHBIX HcenenoBaHui. dy6ua, 2003

Isupov A. Yu. E10-2003-187
SPHERE DAQ and Off-Line Systems:
Implementation Based on the gdpb System

Design of the on-line data acquisition (DAQ) system for the SPHERE setup
(LHE, JINR) is described. SPHERE DAQ is based on the gdpb (Data Processing
with Branchpoints) system and configurable experimental data and CAMAC hard-
ware representations. Implementation of the DAQ and off-line program code, de-
pending on the SPHERE setup’s hardware layout and experimental data contents,
is explained as well as software modules specific for such implementation.

The investigation has been performed at the Veksler—Baldin Laboratory
of High Energies, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna, 2003

Maker T. E. Iloneko

Iloamucano B nevyats 24.10.2003.
®opmar 60 X 90/16. bymara odcetHas. [leuars opceTHast.
VYen. ned. 1. 1,25, Yu.-u3a. 1. 1,78, Tupaxk 290 ak3. 3aka3 Ne 54149,

Hsparensckuit otaen OObeAHHEHHOTO HHCTHTYTA AAEPHBIX HCCIENOBAHHH
141980, r. Iy6ua, Mockosckas 0611, yi1. XKoaxo-Kiopy, 6.
E-mail: publish@pds.jinr.ru
www.jinr.ru/publish/

