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1. Introduction

There is an opinion that present-day theoretical physics needs (almost)
all mathematics, and the progress of modern mathematics is stimulated by
fundamental problems of theoretical physics.

In this paper, I would like to show a mechanism of solving of the cosmo-
logical constant problem {1] based on the adelic structure of the quantum field
(string) theory models [3]. Some speculations on the fine structure constant
and the prime numbers are given.

2. Cosmological constant problem

The cosmological constant problem is one of the most serious paradoxes in
modern particle physics and cosmology [1]. Some astronomical observations
indicate that the cosmological constant is many orders of magnitude smaller
than estimated in modern theoretical elementary particles physics.

2.1 In his attempt (1917), [2] to apply the general relativity to the whole
universe, A. Einstein invented a new term involving a free parameter X, the
cosmological constant (CC),

1
R — 59;41/ = Agu — 87GT . (1)

With this modification he finds a static solution for the universe filled with
dust of zero pressure and mass density
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The geometry of the universe was that of a sphere S3 with proper circum-
ference 27nr, where

r= A2 (3)
so the mass of the universe was

M =27%3p = %G_l)\_lﬂ
~ r(7h. (4)

Any contributions to the energy density of the vacuum acts just like CC.
By Lorentz invariance, in the vacuum,
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or the total vacuum energy density
_ Aess
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The experimental upper bound on A.;; or pyv is provided by measurements of

cosmological redshifts as a function of distance. From the present expansion
rate of the universes [4]
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py =< p >+ (7)

h=0.7+0.07 (8)

we have
Hi'=(1+2) x 10"%e, |Aesfl < HZ, |pv] < 107%¥g/em? ~ 1077 GeVt. (9)

2.2 The quantum oscillator with hamiltonian

1 1
H:5P2+§w212, (10)
has the energy spectrum
E, =hw(n+1/2), (11)

with the lowest. vacuum, value £y = fiw. Normal modes of a quantum field of
mass m are oscillators with frequencies w(k) = v/k? + m?. Summing the zero-
point energies of all normal modes of the field up to a wave number cut-off
A >> m yields a vacuum energy density

A .
<p>=0/%%\/m: 16;2. (12)
If we take A = (87G)~/2, then
<p>x270771GT? = 2 x 107 GeV . (13)
We saw that
| <p> +#[ <107 GeV >~ (1077 V) (14)

so the two terms must cancel to better than 100 decimal places! If we take
Agep, < p >~ 107%GeV*, the two terms must cancel better to than 40 dec-
imal places. Since the cosmological upper bound on < p.;s > is vastly less



than any value expected from particle theory. theorists assumed that (for some
unknown reason) this quantity is zero.

3. Supersymmetric mechanism of solution to the CC problem

A minimal realization of the algebra of supersymmetry

{QvQ-i-} =H,
{Qv Q} = {Q+7Q+} =0, (15)

is given by a point particle in one dimension, [5]

Q =a(—iP+ W),
QY =a*(iP + W), (16)

where P = —if/0z, the superpotential W (x) is any function of x, and spinor
operators a and at obey the anticommuting relations
a* = (a*) = 0. (17)

There is a following representation of operators «, a™ and o by the Pauli
spin matrices

o] — iO’g
a = ———,
2,
+ (23} 1079
a = —‘——2 N
o = 03 (18)

From formulae (15) and (16) then we have
H=P 4+ W+ oW,. (19)

The simplest nontrivial case of the superpotential W = wx corresponds to
the supersimmetric oscillator with Hamiltonian

H = Hp + Hr, Hp = P? + W%, Hp =wo, (20)

wave function
¥ = Ppyr, (21)

and spectrum

Hppn = w(2n + 1)¥p,,
Hppy =wipy, Hpp_o = —wip_. (22)



The ground state energies of the bosonic and fermionic parts are
Ego=w., Erog=—w,. (23)
so the vacuum energy of the supersymmetric oscillator is
< O0|H|0 >= Ey = Ego+ Ero =0, |0 >= ¥gov¥ro. (24)

3.1 Let us see on this toy - solution of the CC problem from the quantum
statistical viewpoint. The statistical sum of the supersymmetric oscillator is

Z(8)=ZpZr, (25)
where
Zg =Y. e PBmn — o=hw | =AW(Hl) 4

ZF — Ze—ﬁEpn — eﬁw + 6—13‘11.
n

(26)
In the low temperature limit,
Z(B) =140y 51, 3=T7", (27)
so CC
A~ iInZ = 0. (28)
3.2 In the case of the adelic solution to the CC problem we will have,
28)=1] 2, = Z12225Zs....
Zy = ZBZ,’ZIZF+Z22325...(?!) (29)

4. p - adic fractal calculus and adelic solution of the cosmological
constant problem

Every (good) school boy/girl knows what is

dn
dzn’ (30)
but what is its following extension
da
=7, ) :
e ., a € R (31)



Let us consider the integer derivatives of the monomials

dﬂ
d—x—n:cm = mm-1)..(m—(n—=1))2™™", n<m,
. F(m+ 1) m-n
T T(m4+1- n)I ' (32)

L.Euler {1707 - 1783) invented the following definition of the fractal derivatives:

e 5 L(B+1) -

o’ TTB+1-a) (33)
J.Liuville (1809-1882) takes exponentials as a base functions,
da
ﬁe” = a%e"”. (34)
J.H. Holmgren {1863) invented the following integral transformation
/ |z — "7 f (1) (35)
It is easy to show that
-a.m F(m+ 1) m+o m4o
DiEa™ = fmetza O )
D'—O‘e(ll‘ — a—a(ear _ eac)’ (36)

€,

so ¢ = 0, when m + o > 0, in Holmgren’s definition of the fractal calculus,
corresponds to the Euler’s definition, and ¢ = —oo, when @ > 0, corresponds
to the Liuville’s definition.

Note also the following slight modification of the ¢ = 0 case [6]

Dozl = 100

Bl g A e D)
= Fray Bl @) = I

dx o+ Lx)
flat) = s f(0) = tE o). () = [de (3D)

j2I” /|1 — 4o f(at)dt

4.1 As an example, let us consider Weierstrass C.T.W. (1815 - 1897) fractal
function

=Y e <1 ab> 1 (38)

n>0



For fractals we have no integer derivatives,

FO(t) =13 (ab)re®tHeon) = o0, (39)

but the fractal derivative,

f(a _ laz aba n 1(b t+tpﬂ (40)

when ab* = a’ < 1, is another fractal [6].
4.2 Definition of the p-adic norm. | |, for raitional numbers r € Q is

frly=p7 7 #0;
0], = 0. (41)

where k = ord,(r) is defined from the following representation of the r
r= :I:pkm, (42)
n

integers m and n do not contain as factor p.
p-adic analog of the fractal calculus (35) ,

D;of = / e — ;7 (0, (43)

where f(z) is a complex function of the p-adic variable x, with p-adic gamma-
function

1 — po— 1
/dt[t|" ! #, (44)

was considered by V.S. Vladimirov [7].
Note also the following slight modification of (43),

Il"

Do f = ot

e /|1 — 1o f(at)dt. (45)
Q

P

4.3 Let us consider the following action

1
- 5/@@@)1)5;@, v=1,235,.. (46)

In the momentum representation

S = T/dué(—u)‘uﬁ‘i(u). (47)



where

0(z2) = [ dux,(uz)(u),
Qv
D™xo(uz) = [ul;“xo(uz). (48)
The statistical sum of the corresponding quantum theory is

-4 foD~2

Z, = /drbe = det™2D" = ([T ful,)~*/2. (49)

Note that, by fractal calculus and vector generalization of the model (46),
string amplitudes were obtained in [3].

4.4 Adels a € A are constructed by real a; € @y and p-adic a, € @,
numbers (see e.g. [9])

a = (ay,as,a3,as5, ..., Gp, ...), (50)

with restriction that a, € Z, = {z € @p. |z|, < 1} for all but a finite set F of
primes p.
A is a ring with respect to the componentwise addition and multiplication.
A prinsipal adel is a sequence r = (r,7,...,7,...), © € Q-Tational number.
Norm on adels is defined as

a| = [T layl,. (51)

p21

Note that the norm on principal adels is trivial.
In the adelic generalization of the model (46},

O(z) = H O,(z,), dz= H dz,, D = Z D;‘p, (52)

p21 p21 p21

where by D2 we denote fractal derivative (37), @1 is real and | |, is real norm.
If

[ daslea,) =1, (53)

then

SO

Z=T1% =TIl lul)™? = QI I luk)** =1, A~InZ =0, (55

p>1 p2l U u p>l1

ifue@. 3



5. Some observations on zeta function, prime numbers and fine
structure constant

Extended particles: nuclei, hadrons, strings,... are characterized by expo-
nential state density

p(E) ~ e’HE, (56)

Gas of the extended particles described by statistical sum
Z=3 " Zp A, (57)

is well defined for 8 > By or T < Ty = 1/f8y - Hagedorn temperature (see
e.g. [8]).

5.1 The following representations of zeta-function [10]

1
=Y =Y e =1 (58)
— P>
n>1 n# n>1 o2 1 —p# p>2
where F, = Inn. are defined for Re3 > 1.
In physical terms, zeta-function is almost a statistical sum of ideal gas of
quantum bosonic oscillators with frequencies w = Inp. The following modifi-
cation of the partial zeta-functions,

pP/2 1
L—p=8 = phl2—p=b/2’

corresponds exactly to the quantum bosonic oscillators.

Zeta-function has a pole at 3 = 1, "trivial” zeros at 3 = —2n,n > 1
and, according to Riemann’s hypothesis, nontrivial (complex) zeros on the
imaginary line 8 = 1/2 +1A,.

5.2 In a sense the following reciprocal zeta-function looks more interesting
(less reducible):

(59)

Zps = p ?G(8) =

1 ,
69 = = =TI =) = s A4 - BR). (60)

p n>1

pl) =1, un)=(=1), (61)

if the factorized form of n, n = p;p,...px contains only different prime factors
and is zero if two factors coincide. Partial reciprocal zeta-functions,

(r(B) =1—pf =e ™7, (), (62)



almost coincide with the fermionic oscillator statistical sum,
Zor(B) = 3 p(En)e 7 En = 377, (63)
En, En

where the density of the occupied fermionic state is negative
p(Ey) = —1, (64)
free energy F, and entropy S, are
F,=E,+ 8,1, E,=w(n-1/2), S,=1rn, w=lInp, n=0;1. (65)

We can consider mixed quantum gases with different primes if we restrict
ourselves with some maximal prime py,

PN 124
Zne = |1 Zos, Zne =[] Zr. (66)
P=p1 p=p1

but we cannot consider the quantum systems with the infinite number of
prime components without renormalization (simply neglecting) infinite vacuum
energy.

For (,-functions we have an adelic identity

H CPT = 17 glr = gv (67)

p21

so in the corresponding, "number - theoretic universe”there is not a CC-
problem.

Note that the quantum statistical sums (39,63) are antisymmetric with
respect to the dual transformation p — p~'. Physical quantities, which are
logarithmic derivatives of the statistical sums, remain invariant. The classical
limit, p — 1, corresponds to the selfdual point p=1.

5.3 Following extension of the integer numbers

~1 A -
[l =" =T4p+p + 4", (68)

represents repunits (see e.g. [11}),
[n], = 11...1. (69)
In the classical limit, p — 1, [n]; = n. Note also the identity

[plpg....pk]q = [pl]q[pz]qm ...[pk]quz-vpk_l . (70)
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This identity in the classical limit,g — 1. reduce to the main arithmetic relation
n = pyps...px. If we take g = exp(zT"i), then [n], = 0, when p is equal to one of
the factors of n.

5.4 Now, for a hadronic string model (see e.g. [12]) we know, that the high
temperature phase, T' > Ty, is the quark-gluon phase or, as it was named by
S.B. Gerasimov, Gluqua.

Interesting questions are:

e what is the high temperature phase of the fundamental string (Twistor;
Topological; p-adic...) 7

o What 1s the "high temperature phase”, 3 < 1, of the zeta-function, what are
the constituents of the (prime) numbers ?

The following identity

=(14+2)1+2H1 +zh... (71)

1—x

for z = p~ tells us that (almost) bosonic gas of prime oscillators can be rep-
resented as a gas of (almost) fermionic oscillators with frequencies w = 2%inyp.
This is a hint on a grassmann constituents of primes.

5.5 Function R(f3) defined in (60) has the poles in the same points where
zeta-function has zeros. So it is natural to investigate R-function by methods
of scattering theory [13]. Corresponding resolvent

- 1
R(B) = ——=, 72
®=5"5 (72)
defines a hamiltonian with eigenvalues as zeros of zeta-function.
5.6 For each prime p we have the following representation of —1
—l=(p=D+p+p +p'+..), (73)

so we can eliminate negative numbers in the field of p-adic numbers, for each
p. Now we can represent v/—1

i=vV—_l=\p—1/14+p+.. (74)

Thus, for some primes,
p=4k®+1=>5 17, 37, 101, 197, 257, .. (75)

we can also eliminate complex numbers. Next, v/—1 can be eliminated for
primes

p =2k =17, 257, .. (76)
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and ¥/—1 can be eliminated for primes
p =20k +1=257, .. (77)

Note that the nearest integer to prime 957 is 256 = 28 = lbyte.

Let me also mention that in quantum computing (Quanputing, [14]) we al-
ready have quantum logic (dynamics, algorithms,...) but have not yet quantum
ethic (save conditions for quanputation, decoherence problems).

In a more general case, 2/~1. we come to the primes

p=2TkK" + 1 (78)

The case k = 1 in (78) corresponds to the primes of Fermat(1601 - 1665).
5.7 In quantum electrodynamics there is a fundamental constant a-fine
structure constant. The value of -l = 137.036... [4] is in a good approxi-
mation given by prime p=137*. There is no theoretical explanation to this
value.
Note that

137 = 117 + 42 = |11 + 43> = |4 + 113]... (79)

Now a curious question is: what is the distance between z; = 11 +4: and
20 =4 + 113,

‘Z‘ = |2'1 — 22| = \/49+4 = v 100 — 2 = 10(1 —_ - + ) (80)
2| = 10 + O(1%) (81)

If we want to take exactly 10, we must rise 11 a little. This will be in
right direction, but gives for o' = 138.5... So for more precise value of a”l =
137.036..., we will have a little bigger value of |z|, but less than 10.

If we put on the complex plane all the eight points z1, 22, ..., 28, and connect
the nearest points, we obtain an eightangle with sites with lengths 8 and
(almost)10. It seems interesting that with this figure we can cover the plane
on the scale of 10 figures, then the deviation of order 1 (fundamental)unit of
length appears. Next characteristic scale is of an order of 100 figures, where
deviation of the scale of 1 figure appears.

Some characteristic scales of the quantum theory of particles are : atomic
scale ~ 10~8cm, quantum electrodynamic scale ~ 10~!tem, strong interaction
scale ~ 10~ 13¢m, week interaction scale ~ 10~¢¢m, Plank scale ~ 10~33cm.
There are other scales including macroscopic and cosmological scales.

*Another prime number that T like is 887 - lifetime of neutron in seconds [4]. T like that
137 + 887 = 1024 = 2! = 1K.
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5.8 Dirac-Schwinger’s quantization {15, 16]
eg =n, (82)

says that if there is in Nature even one magnetic monopole, with charge g,
electric charge e is quantized. From (82), when n=1, we see

ag =gt = e ?=a"' =137, (83)
and fundamental force between elementary monopoles is

2 137
P9 =20 (84)

r2 re

6. Conclusions and perspectives

There were different attempts to solve the CC-problem (see e.g.[1]), one of
them is on the way of introduction of the several time coordinates [17].

The adelic mechanism considered in this paper can be included also in the
adelic generalization of the standard model of cosmology [18].

Zeta-function considerations in this text contain a hint that there is a
modification of the quantum field theory not containing divergences.

I would like to thank V.S. Vladimirov, I.Ya. Aref’eva, I.V. Volovich and
B. Dragovich for helpful discussions on the subject of this paper.
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AnensHadt Bcenennas
U npobneMa KOCMOJIOTHYECKOH MOCTOSHHOH

B KBAHTOBBIX aICNBbHBIX MOAEIAX TEOPHH IIOJI1 U CTPYH 3HEPIUS BaKyyma —
KOCMOJIOTHYECKAs TOCTOSHHAs MOXET 3aHyi1aTbcsa. Jpyroft (aibTepHaTUBHBINR?)
MEXaHH3M pelieHus npobiemsl kocMonoruyeckoit noctosuuon (IIKIT) naerca cy-
[IEPCHMMETPHYHBIMH TeopusaMH. IIpHBoaSTCA Takxe HEKOTOphble HaOMIONCHUS aB-
TOpa Hal MPOCTHIMU YHCIaMH, {-(PyHKLIHENR H ITOCTOSHHOM TOHKOH CTPYKTYDHI.

PaGota BhimonHeHa B Jlabopatopuu HH(OpMaUHOHHBIX TexHonoruit OMSIH.

[IpenpunT OObeaHMHERHOTO MHCTHTYTA AAEPHBIX HcciepoBanui. dybua, 2003

Makhaldiani N. E2-2003-215
Adelic Universe and Cosmological Constant

In the quantum adelic field (string) theory models, vacuum energy — cosmo-
logical constant vanishes. The other (alternative?) mechanism is given by super-
symmetric theories. Some observations on prime numbers, zeta-function and fine
structure constant are also considered.

The investigation has been performed at the Laboratory of Information Tech-
nologies, JINR.
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