P4-2004-67

Ю. Л. Ратис*

ШАРОВАЯ МОЛНИЯ КАК МАКРОСКОПИЧЕСКОЕ ПРОЯВЛЕНИЕ β-РАСПАДА ЯДЕР РАДИОАКТИВНОГО ФОСФОРА В СВЯЗАННОЕ СОСТОЯНИЕ

Направлено в журнал «Письма в ЭЧАЯ»

*Самарский государственный аэрокосмический университет им. акад. С. П. Королева, Самара, Россия Ратис Ю. Л. Шаровая молния как макроскопическое проявление β-распада ядер радиоактивного фосфора в связанное состояние

В настоящей работе обосновывается гипотеза о том, что шаровая молния, иногда наблюдающаяся в природных условиях, представляет собой область пространства, в которой протекает цепная ядерная реакция индуцированного β -распада ядер радиоактивного фосфора в связанное состояние.

Работа выполнена в Лаборатории теоретической физики им. Н. Н. Боголюбова ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна, 2004

Перевод автора

P4-2004-67

P4-2004-67

Ratis Yu. L. Fireball as a Macroscopic Manifestation of the β -Decay of the Radioactive Phosphor into Bound States

This paper substantiates a hypothesis that the natural fireball represents an area of space where the chain nuclear reaction of the bound state β -decay of radioactive phosphorus nuclei takes place.

The investigation has been performed at the Bogoliubov Laboratory of Theoretical Physics, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna, 2004

введение

Все трудности существовавших теорий шаровой молнии (ШМ) были связаны с тем, что по умолчанию предполагалось, что ШМ — это плазмоид. Для поддержания макроскопического объема воздуха (смеси азота, кислорода, водяных паров и т. п.) в ионизированном состоянии требуется огромная энергия, которую необходимо откуда-то черпать. Многие экспериментаторы, включая таких известных специалистов, как П.Л. Капица, неоднократно предпринимали попытки создания долгоживущего шарового плазмоида в лабораторных условиях. Однако никаких реальных способов подпитки энергией изолированных сгустков плазмы для поддержания их в стационарном состоянии в течение нескольких минут (а именно столько времени живет ШМ в природных условиях) найти так и не удалось.

Цель настоящей работы — обоснование гипотезы о том, что ШМ, иногда наблюдающаяся в природных условиях, представляет собой область пространства, в которой протекает цепная ядерная реакция индуцированного β -распада ядер радиоактивного фосфора в связанное состояние. В связи с этим наблюдаемое явление недостаточно обоснованно называется ШМ, поскольку к физике электрического разряда в газах оно имеет весьма опосредованное отношение.

1. ФЕНОМЕНОЛОГИЧЕСКАЯ МОДЕЛЬ ШАРОВОЙ МОЛНИИ

Основная гипотеза, обосновываемая ниже, впервые была сформулирована в работе [1, с. 4]. Логика ее происхождения такова.

1. ШМ всегда оставляет после себя запах серы, озона и окислов азота [2].

2. Сера может образоваться только в результате β -распада фосфора [3].

3. Постоянная скорости β-распада сильно зависит от степени ионизации распадающегося радионуклида [4–6]. Период полураспада ионизированного радиофосфора составляет примерно 15–20 мин, что соизмеримо со временем жизни ШМ в природных условиях.

4. Радиофосфор является распространенным в природе элементом. Он обнаружен в дождевой воде в макроскопических количествах [7].

Согласно [1] феноменологическая модель ШМ, основанная на изложенных выше экспериментальных данных [2–5,7] и теоретических оценках [4], описывается системой уравнений

$$\begin{cases} \frac{dN_1}{dt} = -\lambda_1 N_1 + \lambda_3 N_2 - \beta_{12} N_1 N_2 + \beta_{22} N_2^2 + q_1 - q_2, \\ \frac{dN_2}{dt} = -(\lambda_1 + \lambda_2 + \lambda_3) N_2 + \beta_{21} N_2 N_1 - \beta_{22} N_2^2 + q_2, \\ \frac{dN_3}{dt} = \lambda_1 N_1 + (\lambda_1 + \lambda_2) N_2, \end{cases}$$
(1)

где N_1 — число невозбужденных атомов ${}^{32}_{15}$ P (${}^{33}_{15}$ P); N_2 — число возбужденных атомов ${}^{32}_{15}$ P (${}^{33}_{15}$ P), с L- или K-оболочки которых удален один (или более) электрон; N_3 — число атомов изотопа серы ${}^{32}_{16}$ S (${}^{33}_{16}$ S); q_1 — интенсивность внешнего источника атомов радиофосфора (ШМ находится во внешней среде, содержащей эти атомы, и захватывает их во время полета); q_2 — интенсивность источника возбужденных атомов ${}^{32}_{15}$ P (${}^{33}_{15}$ P), образующихся при вырывании электронов из K- и L-оболочек атомов радиофосфора за счет механизмов, отличных от резонансной фотоионизации или ионизации от удара оже-электроном, ускоренным электрическим полем ШМ (например, за счет эффекта Пеннинга и т.п.).

Кроме того, в соотношении (1) использованы следующие обозначения: λ_1 — постоянная β -распада в непрерывный спектр; λ_2 — постоянная индуцированного β -распада в связанное состояние (в дискретный спектр, на вакансию в K- или L-оболочке)*; λ_3 — вероятность спонтанного перехода (в единицу времени) электрона на K(L)-оболочку возбужденного (либо ионизированного) атома ${}^{32}_{15}$ P (${}^{33}_{15}$ P) с M-, N-,... оболочек или из непрерывного спектра**; β_{12} — константа скорости возбуждения и ионизации атомов ${}^{32}_{15}$ P («обдирания» K- и L-оболочек атома ${}^{32}_{15}$ P) γ -квантами, образующимися при индуцированном β -распаде фосфора ${}^{32}_{15}$ P, а также оже-электронами, разогнанными электростатическим полем, создаваемым телом ШМ; β_{21} — перекрестный коэффициент (очевидно, что $\beta_{12} = \beta_{21}$); коэффициент β_{22} — константа

^{*}Постоянная λ_2 для K- и L-оболочек отличается почти на порядок ($\lambda_{2K} \gg \lambda_{2L}$). В данной статье используется некоторое средневзвешенное значение λ_2 . Кроме того, необходимо отметить, что фотоны осуществляют резонансное вырывание электронов только из L-оболочки, в то время как электроны, разогнанные электрическим полем тела ШМ, «обдирают» как L-, так и K-оболочку атомов радиофосфора.

^{**}В атоме фосфора, находящемся в основном состоянии, заполнены K- и L-оболочки, а M-оболочка заполнена частично.

скорости выбытия возбужденных атомов фосфора из-за взаимодействия между собой*.

Имеются веские основания считать, что $q_2 \approx \beta_{10}N_1 + \beta_{11}N_1^2 + \beta_{20}N_2$. Первое слагаемое соответствует вкладу процессов ионизации молекул воздуха за счет взаимодействия с β -электронами с энергией $E_e \sim 1$ МэВ, рождающимися в результате β -распада ядер радиофосфора в непрерывный спектр. Данное слагаемое весьма значительно. Дело в том, что порядка 10^5 низкоэнергетических электронов образуются в результате столкновений высокоэнергетических β -электронов с молекулами воздуха, каждый из которых, разгоняясь электрическим полем ШМ и сталкиваясь с другими молекулами воздуха, вызывает электронную лавину. Образующиеся при этом свободные электроны ($N_e \sim 10^{17} \div 10^{22}$) также разгоняются электрическим полем ШМ и взаимодействуют с атомами радиофосфора, «обдирая» у них K- и L-оболочки.

Второе слагаемое соответствует вкладу процессов ионизации атомов радиофосфора непосредственно β -электронами. Они также «обдирают» K- и L-оболочки радиофосфора.

Третье слагаемое описывает вклад двукратно ионизированных электронным ударом атомов радиофосфора, появляющихся в теле ШМ за счет того, что при ионизации молекул воздуха в области протекания цепной субатомной реакции образуется большое количество свободных электронов. Порядковые оценки говорят о том, что величина источника q_2 в случае стационарного горения ШМ такова, что практически полностью компенсирует убыль «ионов» радиофосфора $\lambda_0 N_2^{**}$. В нестационарные процессы (взрыв ШМ) источник q_2 начинает давать заметный вклад за счет нелинейного члена $\beta_{11} N_1^2$ только при высоких концентрациях паров соединений радиофосфора.

Радиофосфор образуется в ионосфере в результате ядерных реакций $^{29}_{14}{\rm Si}(\alpha,p)^{32}_{15}{\rm P}, ~~^{31}_{15}{\rm P}(d,p)^{32}_{15}{\rm P}, ~~^{31}_{15}{\rm P}(n,\gamma)^{32}_{15}{\rm P}, ~~^{32}_{16}{\rm S}(d,2p)^{32}_{15}{\rm P}, ~~^{33}_{16}{\rm S}(p,2p)^{32}_{15}{\rm P}, ~~^{35}_{16}{\rm Cl}(n,\alpha)^{32}_{15}{\rm P}, ~~^{32}_{16}{\rm S}(n,p)^{32}_{15}{\rm P}$ и $^{63}_{29}{\rm Cu} + p \rightarrow 2^{32}_{15}{\rm P},$ а также $^{32}_{15}{\rm P}(n,\gamma)^{33}_{15}{\rm P}, ~~^{37}_{16}{\rm S}(n,p)^{32}_{15}{\rm P}, ~~^{37}_{17}{\rm Cl}(\gamma,2p)^{33}_{15}{\rm P}, ~^{37}_{17}{\rm Cl}(\gamma,\alpha)^{33}_{15}{\rm P}, ~^{65}_{29}{\rm Cu} + p \rightarrow 2^{33}_{15}{\rm P}.$

Возникнув в ионосфере, облака атомарного радиофосфора опускаются на землю под действием силы тяжести.

Фосфор — химически активный элемент. Поэтому после образования изотопов ³²₁₅P и ³³₁₅P в верхних слоях атмосферы за счет расщепления ядер

^{*}Полная система уравнений, описывающих кинетику ШМ, конечно же должна также учитывать динамику фотонов, электронов, молекул азота, кислорода, озона, окислов азота и т.п. Однако целью настоящей работы является объяснение происхождения источника энергии ШМ. Поэтому из системы уравнений (1) исключены «переносчики взаимодействия». Их влияние интегрально учитывается с помощью кинетических коэффициентов.

^{**}Реально величина $\lambda_3 N_2$ отнюдь не мала. Но самосогласованность различных «фотонных» оценок говорит о том, что различные «электронные» процессы, протекающие в теле ШМ, практически полностью компенсируют друг друга!

³

космическими лучами [7] пары атомарного радиофосфора медленно опускаются к Земле и быстро вступают в реакцию с кислородом. В результате этой реакции образуется пятиокись фосфора P_2O_5 . В дальнейшем она взаимодействует с парами воды, в результате чего образуется фосфорная кислота H_3PO_4 . В связи с этим в контексте рассматриваемой задачи через N_2 обозначено число возбужденных атомов фосфора $^{32}_{15}P$ и $^{33}_{15}P$, входящих в состав молекул P_2O_5 и H_3PO_4 , с *L*- или *K*-оболочки которых один (или более) электрон перешел на более высокий дискретный энергетический уровень или в непрерывный спектр. Однако для краткости мы далее всюду, где речь идет о параметре N_2 , будем употреблять термин «ион фосфора».

Каждый β -распад ядра $^{32}_{15}$ Р сопровождается испусканием двух фотонов с энергией около 350 эВ каждый^{*}. Именно «встряхивание» K-оболочки при β -распаде $^{32}_{15}$ Р приводит к образованию возбужденного атома $^{32}_{16}$ S, испускающего в процессе девозбуждения два фотона, энергия которых практически совпадает с энергией связи электронов, находящихся на L-оболочке атома $^{32}_{15}$ Р. Кроме того, одним из основных механизмов девозбуждения атома серы является оже-эффект. В этом случае вместо двух мягких рентгеновских фотонов в выходном канале реакции появляется несколько электронов ($1 \le n_e \le 5$, если электроны вырываются из M-оболочки)**.

Из-за совпадения энергий γ -квантов с энергией «обдирания» *L*-оболочки атома радиофосфора становится возможным его резонансное возбуждение (или ионизация). В процесс ионизации радиофосфора определенную лепту вносят ускоренные электрическим полем тела ШМ оже-электроны («обдирающие» как *L*-, так и *K*-оболочку), а также атомные столкновения^{***}. В результате открывается канал β -распада в связанное состояние, и при определенных условиях может начаться цепная ядерная реакция. Данная реакция не есть цепная реакция деления, и в ней задействованы не только ядерные, но и атомные (и даже молекулярные) степени свободы. В этом состоит ее абсолютная уникальность. Она лежит на стыке молекулярной, атомной и ядерной физики.

Сама возможность протекания такой экзотической реакции связана со специфическим строением электронных оболочек фосфора. Именно назва-

^{*}Возбужденный атом ${}^{32}_{16}$ S, образующийся в результате β -распада ${}^{32}_{15}$ P, испускает и другие фотоны. Однако именно процессы, протекающие в K- и L-оболочках, отвечают за физику ШМ.

^{**}Девозбуждение серы может осуществляться многими способами: на выходе могут появиться два фотона с энергией $E_{\gamma} \approx 350$ эВ, один такой фотон и несколько электронов, ни одного фотона и много оже-электронов. Если возбужденный атом серы входил в нестабильную молекулу PSO₅, то возбуждение может передаться непосредственно атому фосфора, что приведет к резонансному «обдиранию» его *L*-оболочки.

^{***}Все механизмы ионизации, пропорциональные числу «ионов» радиофосфора N_2 и числу невозбужденных атомов радиофосфора, интегрально учитываются с помощью члена $\beta_{12}N_1N_2$. Остальные механизмы описываются с помощью эффективного источника q_2 .

Схема уровней природного рентгеновского лазера

ние этого элемента дало имя явлению фосфоресценции (т. е. люминесценции, продолжающейся значительное время после прекращения возбуждения)*.

Метастабильность возбужденного атома фосфора, у которого имеется вакансия (дырка) на K- или L-оболочке, и наличие источника q_2 приводят к тому, что при достаточно больших значениях N_1 становится возможным выполнение соотношения $|\lambda_0 - q_2 N_2^{-1}| \ll \beta_{12} N_1$, т.е. на метастабильном (промежуточном) уровне может накопиться достаточно большое количество возбужденных атомов фосфора с вакансией (электронной дыркой) на L-оболочке.

Именно это обстоятельство превращает ШМ в своеобразный рентгеновский лазер с ядерной накачкой^{**}. Классическая трехуровневая схема такого лазера представлена на рисунке. Причем ядерные степени свободы передают свою энергию на атомные степени свободы в результате β -распада ядер радиофосфора!

Необходимо отметить, что согласно порядковым оценкам имеет место соотношение $\lambda_3 \gg \lambda_1 + \lambda_2$. Метастабильность возбужденного атома радиофосфора весьма относительна. Просто источник q_2 достаточно велик и в случае стационарного течения реакции пропорционален N_2 . Два эффекта компенсируют друг друга практически полностью, о чем свидетельствует эмпирический факт существования ШМ.

Для того чтобы более детально разобраться в механизме этой компенсации, представим коэффициент β_{10} в следующем виде:

$$\beta_{10} = N_e \int_{E_L}^{E_K} \nu_e(E) P_e(E) f(E) dE,$$
(2)

^{*}Время высвечивания люминофора может составлять часы, сутки и даже месяцы! Но столь большие времена высвечивания люминофора связаны с молекулярными процессами. Время жизни электронной дырки на K- или L-оболочке значительно меньше. Если бы не наличие источника q_2 , то о метастабильности уровня N_2 не могло бы идти никакой речи.

^{**}Необходимо отметить, что отличительной особенностью этого рентгеновского лазера является малая интенсивность рентгеновского излучения. Значительная доля фотонов с энергией $E_{\gamma} \approx 350$ эВ поглощается внутри тела ШМ. Половина из них — атомами радиофосфора, и еще часть — молекулами воздуха.

где ν_e — число столкновений электронов с атомами радиофосфора в единицу времени, P_e — вероятность «обдирания» L-оболочки электронным ударом, N_e — число свободных электронов в объеме ШМ, f(E) — функция распределения электронов по энергиям, нормированная на единицу, $E_{L(K)}$ энергия ионизации L(K)-оболочки атома радиофосфора. Большая величина $N_e \sim 10^{22}$ приводит к тому, что даже при относительно малых величинах вероятности ионизации электронным ударом $P_e \sim 10^{-16} \div 10^{-18}$ мы приходим к оценке величины $\beta_{10} \sim 10^{12} \div 10^{13}$ с⁻¹. Если учесть, что для поддержания стационарного течения реакции необходимо выполнение условия $\lambda_3 N_2 = \beta_{10} N_1$, а величина N_1 на порядок больше величины N_2 , то отсюда следует, что $\lambda_3 \sim 10^{13} \div 10^{14}$ с⁻¹. Но это означает, что время жизни электронных дырок на L-оболочке радиофосфора составляет $10^{-13} \div 10^{-14}$ с, что, в общем и целом, согласуется со спектроскопическими данными.

Приведенные выше оценки чрезвычайно грубы из-за практически полного отсутствия экспериментальных данных. Поэтому имеет смысл обсудить один из весьма необычных механизмов уменьшения величины λ_3 . В теоретических расчетах обычно вычисляется величина λ_3 для атома с заполненными электронными оболочками. При этом считается, что переход на дырку в *L*- или *K*-оболочку происходит с *M*-оболочки. В теле ШМ атомы радиофосфора находятся в ионизированном состоянии, поскольку электроны, находящиеся на *M*-оболочке атома фосфора, имеют не слишком большую энергию связи^{*}. Поэтому они легко захватываются атомами кислорода, входящими в состав молекул химических соединений радиофосфора, либо срываются электронным ударом. В данном случае электронная дырка в *L*-оболочке заполняется за счет захвата электрона из непрерывного спектра. Но характерное время такого процесса существенно больше, чем время жизни вакансии в *L*-оболочке при заполненной *M*-оболочке возбужденного атома.

Как бы то ни было, эмпирический факт существования ШМ однозначно указывает на выполнение условия $\lambda_3 N_2 = \beta_{10} N_1$ с огромной степенью точности^{**}. Но это означает, что уровень N_2 является *динамически метастабильным*. Данный тип метастабильных уровней в лазерных системах на сегодняшний день не описан в литературе!

Если цепная реакция индуцированного β -распада в связанное состояние началась, то условие ее стационарного течения имеет вид

$$-\lambda_0 N_2 + q_2 + \beta_{21} N_2 N_1 - \beta_{22} N_2^2 = 0, \qquad (3)$$

^{*}Именно поэтому фосфор является классическим люминофором.

^{**}Подробные оценки частоты электронных ударов, средней температуры электронного облака и т. п. будут приведены в одной из следующих работ.

⁶

$$\lambda_0 = \lambda_1 + \lambda_2 + \lambda_3,\tag{4}$$

откуда немедленно следует, что*

$$N_2^{\rm st} = \frac{\beta_{21}N_1 - \lambda_0 + q_2N_2^{-1}}{\beta_{22}} \approx \frac{\beta_{21}N_1}{\beta_{22}}.$$
(5)

Подставляя (3), (4) и (5) во второе уравнение системы (1), получаем

$$\frac{dN_2}{dt} = -\beta_{22}(N_2 - N_2^{\rm st})N_2.$$
(6)

Строго говоря, величина $N_2^{\rm st}$ сама является функцией величины N_2 , так как она зависит от величины N_1 . Уравнение (6) есть весьма сложное нелинейное уравнение (не в смысле техники решения уравнения с разделяющимися переменными, которая тривиальна, а в смысле вычисления или измерения входящих в него величин). Однако для порядковых оценок и качественного анализа поведения ШМ коэффициент β_{22} и величину $N_2^{\rm st}$ можно считать постоянными.

Даже в таком грубом приближении легко объясняется относительная (макроскопическая) устойчивость ШМ. Для этого введем переменную $x = 1 - N_2^{\text{st}}/N_2$ и перепишем уравнение (6) в следующем виде:

$$\frac{dx}{dt} = -\beta_{22}N_2^{\rm st}x.\tag{7}$$

Решение уравнения (7) имеет вид

$$x = x_0 \exp\left(-\beta_{22} N_2^{\rm st} t\right),\tag{8}$$

где x_0 — значение параметра x в момент времени t = 0. Величина x имеет смысл относительного отклонения числа ионов ${}^{32}_{15}$ Р от значения N_2^{st} , соответствующего стационарному течению реакции. Именно поэтому трактовка решения (8) совершенно очевидна: если цепная реакция индуцированного β -распада ${}^{32}_{15}$ Р^{ion} $\rightarrow ({}^{32}_{16}$ S^{ion} $+ e^-)_{L-\text{bound}} + \tilde{\nu}_e$ началась, то величина N_2 устойчиво стремится к своему равновесному значению N_2^{st} .

7

где

^{*}Существование стационарного режима горения ШМ возможно только в том случае, когда «горючее», поступающее в тело ШМ, убывает с той же скоростью. В связи с этим $N_2^{\rm st} \sim N_1$. Но это означает, что $q_2 \approx \lambda_0 N_2$. Именно поэтому соотношение (5) записано в весьма нестандартной форме.

Судя по описаниям очевидцев, светящийся шар возникает в воздухе, на глазах разрастаясь до своего равновесного значения. Поэтому в оценочных расчетах логично положить величину $\beta_{22}N_2^{\text{st}} \sim 1 \text{ c}^{-1}$. Если учесть, что объем ШМ по порядку величины составляет около 1 дм³, а содержание смеси изотопов фосфора (по массе) в нем не превышает 0,05% (на самом деле даже меньше), то оказывается, что количество возбужденных атомов радиофосфора $^{32}_{15}$ P (с *K*- или *L*-оболочки которых удален электрон) в рассматриваемом объеме имеет порядок 10^{18} дм⁻³. В результате мы получаем оценку величины коэффициента $\beta_{22} \sim 10^{-18}$ с⁻¹. Эта оценка соответствует тому, что в цепной реакции участвует примерно каждый десятый радионуклид $^{32}_{15}$ P. С учетом данного обстоятельства величина коэффициентов β_{12} и β_{21} составляет $\beta_{12} = \beta_{21} \sim 10^{-19}$ с⁻¹.

Невысокая плотность паров радиоактивного фосфора в воздухе приводит к тому, что если реакция и началась, то идет она крайне вяло, ибо коэффициент размножения фотонов, возбуждающих атомы $^{32}_{15}\mathrm{P}$, относительно мал (k=2). Длина свободного пробега электронов в воздухе при энергиях $E_e\sim350$ эВ и $E_e\sim1,5$ кэВ также невелика.

Особо остановимся на физико-химической природе коэффициента β_{22} . Если реакция β -распада происходит с ядром атома $^{32}_{15}$ P, входящего в состав молекулы P_2O_5 , то в результате на очень короткое время образуется не существующая в обычной химии молекула PSO₅. Эта молекула очень быстро разваливается, а электронные оболочки всех атомов, входивших в ее состав, мгновенно перестраиваются. Если второй атом фосфора в рассматриваемой молекуле PSO_5 был возбужден (т. е. у него имелась вакансия на L-оболочке), то в процессе распада данной молекулы и быстрой перестройки электронных оболочек атомов, входивших в ее состав, он испытывает индуцированное девозбуждение. Если же реакция β -распада происходит с ядром атома $^{12}_{15}P$, входящего в состав молекулы H₃PO₄, то индуцированного выбытия ионов радиофосфора не происходит. Именно поэтому критическая масса радиофосфора сильно зависит от процентного соотношения молекул P_2O_5 и H_3PO_4 в объеме ШМ. Кроме того, определенный вклад в величину β_{22} дают другие процессы: вынужденное излучение в результате взаимодействия возбужденных атомов радиофосфора с фотонами, столкновения с молекулами Р₂О₅ и H₃PO₄, в состав которых входит возбужденный атом радиофосфора, взаимодействие со свободными электронами и т.п.*

^{*}Вопрос о том, какая доля молекул химических соединений радиофосфора, образующих тело ШМ, не разваливается под действием электронных ударов и ионизирующего излучения, в настоящее время является открытым. Такой науки, как радиационная плазмохимия, на сегодняшний день не существует. Поэтому все приводимые в работе высказывания относительно влияния доли молекул H₃PO₄ и P₂O₅ в теле ШМ на величину кинетических коэффициентов достаточно условны. Они — результат глазомерных оценок, а не точного расчета.

Оценим другие величины, входящие в задачу. Во-первых, из эксперимента хорошо известно, что величина λ_1 для $^{32}_{15}$ P составляет [3]

$$\lambda_1 = \frac{\ln 2}{T_{1/2}} = 5.6 \cdot 10^{-7} \quad \mathrm{c}^{-1}.$$
⁽⁹⁾

С формальной точки зрения скорость β -распада в связанное состояние дается соотношениями, полученными в [4]. В ней расчет β -распада в связанное состояние производился в предположении, что гамильтониан процесса имеет вид

$$H_w = \frac{G_V}{\sqrt{2}} \left(\bar{\psi}_p \gamma_\alpha (1 - x\gamma_5) \psi_n \right) \left(\bar{\psi}_e \gamma_\alpha (1 + x\gamma_5) \psi_\nu \right) + \text{h.c.}$$
(10)

Согласно результатам этой работы, несколько устаревшей (теория электрослабого взаимодействия и физика кварков, включая квантовую хромодинамику, в 1961 г. находились в зачаточном состоянии), но достаточно полной и вполне пригодной для наших оценок, постоянная скорости β -распада в связанное состояние равна

$$\lambda_2 \equiv \Gamma_B = \frac{G_V^2 (\alpha Z)^3 (mc)^5}{2\pi^2 \hbar^7 c} \left(\frac{W_0}{mc^2} - 1\right)^2 \zeta \Sigma,\tag{11}$$

причем отношение ветвления для β -распада в связанное состояние и в непрерывный спектр имеет вид

$$\frac{\lambda_2}{\lambda_1} \equiv \frac{\Gamma_B}{\Gamma_C} = \frac{\pi (\alpha Z)^3}{f(Z, W_0)} \left(\frac{W_0}{mc^2} - 1\right)^2 \Sigma.$$
(12)

В формулах (10)–(12) используются обозначения работы [4], достаточно стандартные для физики слабых процессов. В частности, G_V — векторная постоянная слабого взаимодействия; $x = G_A/G_V$; \hbar — постоянная Планка; W_0 — энергетический выход ядерной реакции; Z — заряд дочернего ядра; m — масса электрона; c — скорость света; α — постоянная тонкой структуры; $f(Z, W_0)$ — функция, описывающая влияние поля атома на распределение β -частиц по энергиям; $\zeta = \delta_{I,I'} \langle 1 \rangle^2 + x^2 \langle \sigma \rangle^2$, $\langle 1 \rangle$ и $\langle \sigma \rangle$ — матричные элементы разрешенных β -переходов для векторного и аксиального вариантов теории; Σ — поправочный фактор, учитывающий влияние структуры ядра на вероятность процесса.

Одним из недостатков [4] есть тот факт, что все расчеты в ней выполнены для полностью ионизированных атомов. Это приближение достаточно обоснованно, если речь идет о β -распаде в связанное состояние на полностью вакантную K-оболочку. Последовательный расчет функции $f(Z, W_0)$ для атома радиофосфора, в котором два электрона находятся на K-оболочке,

а β -распад в связанное состояние происходит на *L*-оболочку, достаточно трудоемок и не является целью настоящего исследования. Кроме того, если речь идет о порядковых оценках, то логичнее опираться на сопоставление экспериментальных данных. Тем не менее, работа [4] дала начало систематическому изучению β -распада в связанное состояние. Некоторые результаты численных расчетов, выполненных в ней, приведены в таблице.

Изотоп	W_0 (в единицах mc^2)	$\log_{10} f(Z, W_0)$	Γ_B/Γ_C
${}^{14}_{6}C$	1,31	-2,25	0,01
$^{32}_{14}$ Si	1,20	-2,65	0,1
⁶³ ₂₈ Ni	1,13	-2,90	0,9
$^{106}_{44}$ Ru	1,08	-3,28	7
$^{155}_{63}{\rm Eu}$	1,30	-1,00	1
$^{191}_{76}$ Os	1,28	-0,85	1

Скорости *β*-распада в связанное состояние

К сожалению, как было выяснено несколько позже, теория *β*-распада в связанное состояние, развитая в [4], может существенно расходиться с экспериментом [8]. По нашим оценкам, средневзвешенное значение постоянной скорости β -распада радионуклидов ${}^{32}_{15}$ Р и ${}^{33}_{15}$ Р в связанное состояние на K- и L-оболочку составляет $\lambda_2 \sim 10^{-3}$ с⁻¹. Здесь следует отметить, что Природа позаботилась о том, чтобы у теоретиков не было больших хлопот с оценкой данной величины. Дело в том, что матричные элементы β -переходов для ядер $^{32}_{15}P$ ($^{33}_{15}P$) и $^{30}_{15}P$ ($^{29}_{15}P$) имеют совершенно одинаковую структуру с точностью до замены электронов на позитроны, а антинейтрино на нейтрино. Энергетика этих реакций достаточно близка. Фазовые объемы конечных состояний попарно одинаковы (у *β*-распада в связанное состояние фазовый объем конечного состояния имеет такую же структуру, как фазовый объем конечного состояния для реакции электронного захвата; фазовые объемы конечных состояний β^- -распада и β^+ -распада в непрерывный спектр также имеют одинаковую структуру). Тот факт, что электронный захват и позитронный распад имеют хорошо известное отношение ветвления, позволяет оценить величину λ_2 с учетом того, что для $^{30}_{15}$ Р $T_{1/2}=2,50\pm0,01$ м [3]. Если не учитывать различий в энергетике электронного и позитронного β -распада, то оказывается, что для ${}^{32}_{15}$ Р $\lambda_2 \sim 10^{-5} \div 10^{-4}$ с⁻¹. Аналогичный подсчет для изотопа ${}^{33}_{15}$ Р дает оценку $\lambda_2 \sim 10^{-2} \div 10^{-3}$ с⁻¹, поскольку для ${}^{29}_{15}$ Р $T_{1/2} = 4,50 \pm 0,05$ с. В дождевой воде присутствует смесь изотопов 32 Р и 33 Р. Поэтому глазомерная оценка величины $\lambda_2 \sim 10^{-3} \text{ c}^{-1}$ представляется достаточно разумной.

Отметим, что в «фотонном» приближении имеет место очевидное соотношение

$$\beta_{12} = 4\pi 2(\lambda_1 + \lambda_2)\gamma \frac{\sigma_L}{S_{\text{eff}}},\tag{13}$$

где γ — отношение ветвления для девозбуждения атома серы в фотонный и оже-электронный каналы, σ_L — сечение фотоионизации L-оболочки атома радиофосфора, а $S_{\rm eff}$ — эффективная площадь поверхности ШМ. Полагая $\gamma \sim 1$, $\sigma_L \sim 10^{-20}$ м², а $S_{\rm eff} \sim 0.01$ м², мы немедленно приходим к оценке $\beta_{12} \sim 10^{-20}$ с⁻¹, что несколько меньше феноменологических оценок. Отсюда можно сделать вывод о том, что резонансная фотоионизации дает заметный вклад в процесс «обдирания» электронных оболочек атомов радиофосфора от удара ускоренными оже-электронами, т.е. о нелинейном источнике ионов, пропорциональном N_1N_2 ; суммарный вклад от ионизации электронным ударом, безусловно, является абсолютно доминирующим за счет огромного по величине вклада линейного источника $\beta_{10}N_1$) в настоящий момент не представляется возможным.

Скорее всего, ионизация β -электронами и фотоионизация инициируют цепную реакцию, а дальше основную роль играет электронная лавина. Цепная реакция обусловлена малыми по величине нелинейными источниками, а динамическая метастабильность уровня N_2 поддерживается большим по величине линейным источником $\beta_{10}N_1$.

Следует сказать, что в [1] использовалось заниженное значение величины $\sigma_L \sim 10^{-21} \text{ м}^2$. Полученные в этом исследовании оценки оказались внутренне непротиворечивыми только потому, что при оценке величины σ_L на основе наблюдательных данных не были учтены эффекты поглощения фотонов с энергией $E_{\gamma} \approx 350$ эВ молекулами воздуха и паров воды, а для теоретического расчета величины σ_L использовалось крайне грубое приближение «черного диска».

Заключительный штрих к данной части работы состоит в оценке энергии фотонов, осуществляющих резонансное вырывание электронов из L-оболочки атома $^{32}_{15}$ P.

Разница между энергией связи электрона, находящегося на K-оболочках атомов $^{32}_{15}$ Р и $^{32}_{16}$ S, составляет

$$\Delta E \approx (2Z - 1)E_0,\tag{14}$$

где $E_0 = 13,2$ эВ — энергия связи электрона в атоме водорода, а Z — заряд дочернего ядра. Энергия, необходимая для резонансного вырывания электрона из L-оболочки материнского нуклида, подчиняется неравенству

$$\frac{(Z-5)^2}{n^2} E_0 \leqslant E_r \leqslant \frac{(Z-3)^2}{n^2} E_0, \tag{15}$$

где n = 2 — главное квантовое число. Таким образом, резонансное усиление процессов фотовозбуждения и фотоионизации, сопряженных с «обдиранием»

L-оболочки атомов $^{32}_{15}$ Р, участвующих в реакции, возможно только при условии $13 \leq Z \leq 16$, поскольку заряд ядра не может быть дробным числом. Так как в данных расчетах число *Z* есть заряд дочернего ядра. Поэтому «под подозрением» на участие в процессе β -распада в связанное состояние (т. е. на определяющую роль в процессе образования ШМ) оказываются следующие изотопы:

• ${}^{27}_{12}$ Мg, β^{-} -активен, имеет период полураспада $T_{1/2} = 9.45 \pm 0.04$ мин;

• $^{28}_{12}{\rm Mg},\,\beta^-$ -активен, $T_{1/2}=21,\!85\pm0,\!32$ ч;

• ${}^{28}_{13}$ Al, распространенность в природе более 5 · 10⁻⁵, β^- -активен, $T_{1/2} = 2,31 \pm 0,01$ мин;

• $^{29}_{13}$ Al, распространенность в природе более 2·10⁻⁵, β^- -активен, $T_{1/2} = 6,56 \pm 0,06$ мин;

• ${}^{31}_{14}$ Si, распространенность в природе более 5 · 10⁻³, β^- -активен, $T_{1/2} = 159 \pm 1$ мин;

• ${}^{32}_{15}$ P, распространен в природе в весовых количествах, обнаруживается в дождевой воде, образуется в атмосфере под действием космических лучей [3,7], β^- -активен, $T_{1/2} = 14,2950 \pm 0,0088$ сут;

• ${}^{33}_{15}$ P, распространен в природе в весовых количествах, обнаруживается в дождевой воде, образуется в атмосфере под действием космических лучей [3,7], β^- -активен, $T_{1/2} = 24.4 \pm 0.2$ сут.

Из всех перечисленных изотопов в дождевой воде обнаружены только радиоактивные изотопы фосфора. Кроме того, многие наблюдатели отмечали запах серы на месте взрыва ШМ, что явно указывает на образование изотопов серы из изотопов фосфора в результате β -распада в связанное состояние. Именно эти обстоятельства заставляют предположить, что основным «горючим материалом» ШМ являются именно изотопы $^{32}_{15}$ Р и $^{33}_{15}$ Р, а остальные дают некий, пока что трудно оцениваемый вклад в цепную реакцию β -распада в связанное состояние.

2. ЭМПИРИЧЕСКИЕ СВОЙСТВА ШАРОВОЙ МОЛНИИ

Для того чтобы проверить объяснительные свойства предложенной феноменологической модели ШМ, проделаем дополнительный анализ системы уравнений (1) в приближении

$$\lambda_1 \ll \beta_{12} N_2, \quad |\lambda_0 - q_2 N_2^{-1}| \ll \beta_{12} N_1, \quad \beta_{22} N_2 \sim \beta_{12} N_1.$$

То есть будем считать, что число невозбужденных атомов радиоизотопа $^{32}_{15}$ Р в загоревшемся объеме ШМ быстро убывает в основном за счет процессов возбуждения и ионизации; возрастает за счет спонтанных и вынужденных переходов электронов на вакансии в *K*- и *L*-оболочках $^{32}_{15}$ Р ($^{33}_{15}$ Р) весьма вяло,

внешние источники радиофосфора в значительной степени компенсируют его выгорание ($q = q_1 - q_2 - \lambda_1 N_1 + \lambda_3 N_2 + \beta_{22} N_2^2$), причем убыль «ионов» радиофосфора идет с той же скоростью, что и их поступление в зону реакции (по порядку величины $q \sim \beta_{12} N_1 N_2$). В этом случае исходная система уравнений существенно упрощается. Величина N_3 интереса не представляет, а величины N_1 и N_2 подчиняются системе уравнений

$$\begin{cases} \frac{dN_1}{dt} = -\beta_{12}N_1N_2 + q, \\ \frac{dN_2}{dt} = \beta_{21}N_2N_1 - \beta_{22}N_2^2. \end{cases}$$
(16)

Данная система уравнений может быть проанализирована следующим образом. Из первого уравнения системы (16) вытекает, что

$$N_1(t) = N_{10}(t) \, \exp\left(-\beta_{12} \int_0^t N_2(\tau) d\tau\right),\tag{17}$$

где

$$N_{10}(t) = N_{10}(0) + \int_{0}^{t} d\xi q(\xi) \exp\left(\beta_{12} \int_{0}^{\xi} N_{2}(\tau) d\tau\right).$$
 (18)

Таким образом, второе уравнение системы (16) можно представить в виде

$$\frac{dN_2}{dt} = -\left[\lambda_{\rm tr} + \beta_{22}N_2 - \beta_{21}N_{10}(t)\,\exp\left(-\beta_{12}\int_0^t N_2(\tau)d\tau\right)\right]N_2.$$
 (19)

Введем величину*

$$\lambda_{\text{eff}}(t) = \lambda_{\text{tr}} + \beta_{22}N_2 - \beta_{21}N_{10}(t) \exp\left(-\beta_{12}\int_0^t N_2(\tau)d\tau\right)$$
(20)

и представим уравнение (19) в виде

$$\frac{dN_2}{dt} = -\lambda_{\rm eff} N_2. \tag{21}$$

^{*}Здесь $\lambda_{\rm tr} = \lambda_0 - q_2 N_2^{-1} > 0$ — порог реакции. ШМ самопроизвольно загорается, если выполняется условие $\beta_{21} N_{10} > \lambda_{\rm tr}$. По статистике это происходит в 6% случаев [2]. В приводимых ниже оценках порог реакции во внимание не принимается.

Если величина N_{10} настолько мала, что $\lambda_{\text{eff}}(t) > 0$, то горение ШМ, даже если оно началось, очень скоро прекращается из-за быстрого нарастания затухания. Такова, в частности, судьба искр, отлетающих от тела ШМ в разные стороны.

Стационарному горению соответствует ситуация, когда

$$\beta_{22}N_2 = \beta_{21}N_{10}(t) \, \exp\left(-\beta_{12} \int_0^t N_2(\tau)d\tau\right).$$
(22)

Данное условие с высокой степенью точности выполняется, пока справедливо неравенство

$$\kappa(t) \equiv \beta_{12} \int_{0}^{t} N_2(\tau) d\tau \ll 1.$$
(23)

Таким образом, мы снова приходим к оценке (5) для величины $N_2^{\rm st}$.

Перейдем к анализу нестационарных эффектов. Если за счет наличия источника q_1 величина N_{10} становится настолько большой, что при $t \to 0$ справедливо неравенство

$$\beta_{22}N_2 \ll \beta_{21}N_{10} \exp\left(-\beta_{12} \int_0^t N_2(\tau)d\tau\right),$$
 (24)

то начинает выполняться условие

$$\lambda_{\rm eff} < 0, \tag{25}$$

причем величина λ_{eff} становится существенно зависящей от времени. При этом начинается лавинообразное нарастание величины N_2 по закону

$$N_2 = N_{20} \exp\left(-\int_0^t \lambda_{\text{eff}}(\tau) d\tau\right).$$
(26)

Число возбужденных и ионизированных атомов фосфора, у которых «ободрали» K- или L-оболочку, экспоненциально растет до тех пор, пока мы не дойдем до равновесного значения N_2 , задаваемого соотношением (21). Однако в отличие от ситуации стационарного горения в данном случае величина $\kappa(t)$, задаваемая соотношением (22), отнюдь не мала. Это приводит к тому, что, начиная с момента времени t_0 , являющегося корнем уравнения

$$\lambda_{\text{eff}}(t_0) = 0, \tag{27}$$

нарастание величины N_2 за счет процессов ионизации прекращается. Далее наблюдается лавинообразное падение величины N_2 , как за счет β -распада в связанное состояние и в континуум, так и за счет атомных процессов (рекомбинация, заполнение K- и L-оболочек $^{32}_{15}$ Р ($^{33}_{15}$ Р) за счет перехода на нее электронов из M-оболочки, испускание оже-электронов и т.п.). С физической точки зрения это означает, что процессы высвобождения накопленной энергии становятся лавинообразными, и ШМ взрывается^{*}.

Таким образом, тихое угасание или взрыв ШМ зависят от того, достаточно ли содержится радиофосфора в объеме ШМ для ее стационарного горения. Если изотопа ${}^{32}_{15}$ Р (${}^{33}_{15}$ Р) в области протекания реакции недостаточно, то она гаснет. Если радиофосфора хватает, то идет процесс стационарного горения. Если имеет место избыток реагирующего вещества, то молния взрывается. При этом бифуркационный параметр задачи есть величина N_{10} количество ядер ${}^{32}_{15}$ Р (${}^{33}_{15}$ Р) в объеме ШМ в некоторый момент времени t_1 . Особо отметим, что в качестве t_1 может выступать любой момент разряда ШМ, в который по тем или иным причинам в зону горения поступает дополнительное количество изотопа ${}^{32}_{15}$ Р (${}^{33}_{15}$ Р) и процесс приобретает характер неуправляемой цепной реакции (вклад внешнего источника q_1 превышает критическое значение).

Рассмотрим подробнее другие особенности описываемого явления.

В классическом обзоре Б. М. Смирнова [2] приводятся многие свойства ШМ. Остановимся на некоторых из них: «ШМ обладает электрическими свойствами. По этому вопросу нет четкой статистики. Ряд случаев такого рода описан Стахановым [10]. Действие ШМ на человека, как правило, подобно действию на него электрического тока. Она может вызвать временное онемение или паралич части тела. Согласно Григорьеву [11] в трех случаях его коллекции сообщается об ожогах от ШМ, подобных действию ультрафиолетового излучения».

В рамках предлагаемой теории данные свойства ШМ воспроизводятся естественным образом. Интенсивный выброс электронов при обычном β -распаде приводит к тому, что тело ШМ является сильнозаряженным. За 1 с она теряет заряд примерно $10^{-7} \div 10^{-6}$ Кл (при оценках предполагается, что суммарная активность ШМ составляет порядка 10^2 Ки). В результате электрический потенциал поверхности ШМ за 1 с возрастает примерно на $\Delta \varphi = \frac{1}{4\pi\varepsilon_0} \frac{1}{r} \sim \frac{9 \cdot 10^9 \cdot 10^{-7}}{0.1} \sim 10^4$ В.

^{*}Качественный анализ вариантов поведения ШМ, приведенный выше, является очень грубым, поскольку вблизи точки бифуркации нарушается условие $\beta_{22}N_2 \approx \beta_{12}N_1$, а само поступление радиофосфора в область реакции, вызывающее взрыв ШМ, связано с наличием случайного внешнего источника ($q_1 \neq 0$).

В силу этого электрический пробой воздуха вокруг облака паров химических соединений радиофосфора наступает за время ~ 1 с. Именно данный электрический разряд приводит к тому, что электрический потенциал поверхности ШМ не превосходит напряжения пробоя влажного воздуха при нормальных условиях. Большой по величине положительный заряд тела ШМ работает, как электростатический пылесос, собирая из окружающего пространства отрицательно заряженные ионы фосфорной кислоты $(H_3PO_4)^-$ и, таким образом, подпитывая запасы радиофосфора в области протекания цепной субатомной реакции индуцированного β -распада ядер радиофосфора в связанное состояние.

Кроме того, заряд ШМ, создавая высокий электрический потенциал, вызывает «тихий электрический разряд при атмосферном давлении или периферийное свечение электронного пучка с энергией в несколько десятков килоэлектронвольт, попадающего из вакуумной трубки в воздух при обычном давлении» [9]. Особо отметим, что электрический разряд при горении ШМ представляет собой макроскопическое квантовое явление — вторичный эффект при цепной субатомной реакции индуцированного β -распада в связанное состояние. Данный тип коллективных вторичных эффектов при β -распаде на сегодняшний день не описан в литературе. Именно этот процесс в течение продолжительного времени заставлял ученых искать причины появления ШМ в рамках физики электрического разряда в газах.

Что касается ожогов от ультрафиолетового излучения, то необходимо отметить, что фотоны с энергией $E_{\gamma} \sim 350$ эВ относятся либо к мягкому рентгену, либо к жесткому ультрафиолету (условная граница раздела по шкале электромагнитных волн). Именно это излучение и вызывает ожоги.

Полученные выше оценки позволяют приближенно определить светимость ШМ. Очевидно, что в рамках сделанных допущений в теле ШМ за одну секунду происходит примерно $\lambda_2 N_2 \sim 10^{15}$ β -распадов ядер радиофосфора в связанное состояние. При этом выделяется приблизительно $1 \le E \le 10$ Дж полезной энергии. Примерно такой же энергетический вклад дают процессы β -распада в непрерывный спектр. То есть ШМ должна светиться, как не очень яркая электрическая лампочка. Это утверждение вполне согласуется с данными наблюдения. Кроме того, из анализа совокупности наблюдательных данных следует, что в оценочных расчетах рассматривалась не очень большая и не очень яркая молния.

Многочисленные наблюдатели отмечали, что ШМ часто летит против ветра. Это связано с тем, что горючий материал (радиофосфор) в зону протекания реакции наносит именно воздушными потоками и электростатическим взаимодействием. Перемещение ШМ связано с конвекцией лишь в той мере, в которой электростатическое взаимодействие затягивает отрицательные ионы (H_3PO_4)⁻ в область протекания реакции. Зона горения (свечения) смещается туда, где радиофосфора больше. Ведь «спичкой» для «зажигания» радиофос-

фора служат γ -кванты с энергией порядка 400 эВ*, на которые ветер никак не влияет. Электроны, разогнанные электростатическим полем тела ШМ, и вследствие этого ионизирующие атомы радиофосфора при столкновениях с ними также достаточно слабо реагируют на ветер.

Взрыв ШМ часто происходит при столкновении с твердыми предметами. Все дело в том, что в зонах затишья воздушных потоков скапливается радиофосфор и реакция приобретает взрывной характер.

Способность ШМ проникать сквозь узкие щели становится очевидной, как только мы вспоминаем, что в зонах затишья воздушных потоков и на поверхностях щелей (в дверях, окнах, замочных скважинах) скапливается радиофосфор. Сквознячок, вызванный перепадом давления и электростатическими силами, затягивает пары радиофосфора сквозь щели навстречу налетающей ШМ. Геометрический центр области горения следует в направлении увеличения концентрации паров радиофосфора, т. е. имеет место полет ШМ «против ветра». Многочисленные очевидцы описывают это явление так. ШМ подходит к отверстию и выбрасывает впереди себя длинный светящийся шнур, который как бы нащупывает дорогу к отверстию, а потом втягивается в него. Дело в том, что ламинарная струйка радиофосфора вытягивается ШМ из отверстия электростатическими силами. Реакция бежит вдоль этой струйки, как огонь по бикфордову шнуру.

Шаровая форма молнии, очевидно, связана с тем, что кулоновское взаимодействие, собирающее отрицательные ионы (H_3PO_4)⁻ в область протекания реакции из окружающего пространства, сферически-симметрично. Кроме того, интенсивность излучения, инициирующего реакцию, падает обратно пропорционально квадрату расстояния от центра. Плотность паров соединений радиофосфора также уменьшается по мере удаления от геометрического центра ШМ. Как только произведение концентрации паров соединений радиофосфора на плотность ионизирующего излучения становится меньше критического значения, реакция гаснет.

Один из количественных критериев, позволяющих оценить видимые размеры ШМ, имеет вид

$$I_0 r^{-2} n \sigma_L \geqslant (I_0 r^{-2} n \sigma_L)_{\rm cr},\tag{28}$$

где I_0 — интенсивность излучения γ -квантов с энергией $E_{\gamma} \approx 350$ эВ, n — концентрация паров $^{32}_{15}$ Р в атмосфере, σ_L — сечение фотоионизации L-оболочки атома $^{32}_{15}$ Р. Реакция $^{32}_{15}$ Р^{ion} $\rightarrow (^{32}_{16}$ S^{ion} + e⁻)_{L-bound} + $\tilde{\nu}_e$ является самоподдерживающейся, если условие (28) выполняется. Если оно не выполняется, то реакция затухает. Величина ($I_0 r^{-2} n \sigma_L$)_{сг} в правой части соотношения (28) есть критическое значение параметра задачи. Этот параметр

^{*}Более корректный расчет E_{γ} с учетом эффектов экранировки дает значения 340–360 эВ.

может быть выражен через кинетические коэффициенты β_{12} , β_{21} , входящие в уравнения феноменологической модели ШМ.

Строго говоря, условие (28) зажигания цепной реакции индуцированного β -распада в связанное состояние недостаточно корректно. В нем не учтен вклад процессов ионизации атомов радиофосфора электронным ударом, который на много порядков больше, чем вклад от процессов фотоионизации. Однако, как уже отмечалось выше, за «цепь» отвечают именно процессы фотоионизации и ионизации электронным ударом оже-электронов, ускоренных электрическим полем ШМ. Именно поэтому условие (28) выполняется с достаточной степенью точности.

Полет ШМ сопровождается треском и шипением. Все дело в том, что именно электрический пробой воздуха, вызванный высоким электрическим потенциалом тела ШМ, сопровождается характерными звуками. Достаточно вспомнить школьные опыты с электрофорной машиной.

Предпочтительное загорание ШМ на проводниках связано с тем, что она имеет большой электрический заряд, и, следовательно, притягивается к металлическим предметам.

Предпочтительное появление в грозовую погоду связано с тем, что радиофосфор относится к короткоживущим изотопам. Интенсивные вертикальные воздушные потоки и капли дождя доставляют радиофосфор к поверхности земли до того, как он распался.

Совершенно аналогично объясняются все остальные эмпирические свойства ШМ.

ЗАКЛЮЧЕНИЕ

В настоящей работе построена феноменологическая модель ШМ, основанная на гипотезе о том, что она представляет собой макроскопическое проявление цепной реакции индуцированного β -распада ядер радиоактивного фосфора в связанное состояние. Это принципиально новый, не описанный в литературе тип цепных реакций, в которых участвуют как ядерные, так и атомные и молекулярные степени свободы. Причем данный процесс реализуется в природных условиях!

В связи с этим представляется крайне интересным: 1) экспериментальная проверка предложенной теории; 2) построение микроскопической модели ШМ; 3) изучение процесса образования облаков паров соединений радиофосфора в атмосфере; 4) оценка критической плотности для паров радиофосфора; 5) поиск других радиоизотопов, отличных от ${}^{32}_{15}$ P, интересных с точки зрения изучения процессов β -распада в связанное состояние; 6) поиск технологических приложений описанных процессов.

БЛАГОДАРНОСТИ

Выражаю благодарность В. А. Сойферу, Н. Л. Казанскому, В. И. Фурману, И. П. Завершинскому, В. С. Казакевичу, В. В. Ленивкину, Л. В. Туманову за многочисленные стимулирующие дискуссии, в результате которых на свет появилось данное исследование.

Я очень признателен В.П. Алфименкову и Ю.М. Чувильскому, которые первыми обратили мое внимание на проблему времени жизни электронных дырок. Эти ценные критические замечания позволили существенно уточнить картину физического явления.

Особую благодарность выражаю Φ . А. Гарееву за то, что он первым ознакомил меня с проблемой β -распада в связанное состояние, снабдил соответствующей научной литературой и постоянно поддерживал мою работу.

Выражаю особую благодарность ректорату Самарского государственного аэрокосмического университета, а также Фонду содействия экономическому развитию СГАУ (Фонду Лукачева) за финансовую поддержку.

Научные результаты, изложенные в настоящей статье, получены при выполнении проекта российско-американской программы «Фундаментальные исследования и высшее образование» при финансовой поддержке Американского фонда гражданских исследований и развития (CRDF Project SA-014-02), Министерства образования РФ и Администрации Самарской области.

ЛИТЕРАТУРА

- 1. *Ратис Ю. Л. //* Естествознание. Экономика. Управление: Спец. вып. Самара, 2003.
- 2. Смирнов Б. М. // УФН. 1990. Т. 160, вып. 4.
- 3. Селинов И. П. Изотопы. М., 1970. Т. 1. С. 623.
- 4. Bahcall J. N. // Phys. Rev. 1961. V. 124. P. 495.
- 5. Jung M. et al. // Phys. Rev. Lett. 1992. V. 69, No. 15. P. 2164.
- 6. Bosh F. et al. // Phys. Rev. Lett. 1996. V. 77, No. 26. P. 5190.
- 7. Lal D., Narasappaya N., Zutshi P. K. // Nucl. Phys. 1957. V. 3. P. 69.
- Гареев Ф. А., Ратис Ю. Л. // Естествознание. Экономика. Управление: Сб. науч. тр., посвящ. памяти А.И. Федосова. Самара, 2002. Т. 1, вып. 3. С. 103.
- 9. Дмитриев М. Т. Природа шаровой молнии // Природа. 1967. № 6. С. 98.
 - 19

- 10. Стаханов И.П. О физической природе шаровой молнии. М.: Энергоатомиздат, 1985.
- 11. Григорьев А. И., Григорьева И. Д. // Труды 3-го Всесоюзн. симп. по атмосферному электричеству. Тарту, 1986. С. 22.

Получено 28 апреля 2004 г.

Редактор О. Г. Андреева Макет Е. В. Сабаевой

Подписано в печать 01.07.2004 Формат 60 × 90/16. Бумага офсетная. Печать офсетная. Усл. печ. л. 1,38. Уч.-изд. л. 1,68. Тираж 350 экз. Заказ № 54502.

Издательский отдел Объединенного института ядерных исследований 141980, г. Дубна, Московская обл., ул. Жолио-Кюри, 6. E-mail: publish@pds.jinr.ru www.jinr.ru/publish/