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AJITOPUTM HOCTPOEHUS KOMIBIOTEPHBIX MOJeeil

JUIOJNBHBIX M THUTOB C KOHTPOJIEM TOYHOCTH

U ero npuMeHeHue 1js nepeasero cnekrpomerp PANDA

ITpencT BAeH JropuUTM CO3[ HUS KOMIIBIOTEPHBIX MOJEEH AWMONBHBIX M THH-
TOB CHEKTPOMETPOB C 3 JI HHbIMHU 11 p MeTp MU. OH COCTOUT U3 CIIEAYIOLIUX III TOB:
1) nony4eHue H JUTHYECKUX OLEHOK AT MIEP-BUTKOB, [JUIMHBI M THUT U TOJILIMHBI
SpM ; 2) TMOCTPOEHHE KOMITBIOTEPHOH MOIEIH OOMOTKH M (POPMHPOB HHUS SIPM M TI-
HHUT ; 3) OLEHK TOYHOCTH KOMIIBIOTEPHOH Moenu; 4) moiyd4eHue X p KTEepUCTHK
M THHT .

B mpemn r eMoM  JITOPUTME HCIOJIB3YIOTCS CJEQyIOIIHe BXOIHBIE I P METPBIL:
MOBOPOTH Sl CUJI M THHUT , p 604 s 001 CTbh, THII CT JIX U M TEPH J1 NPOBOAHUK . B
K YecTBe IIPIMep IPUMEHEHHUsS P CCM TPUB €TCS 3 A U IOCTPOEHHS KOMITBIOTEPHOH
mognenu aunois s skernepumedT PANDA B GSI (I pmwt or).

P 6or Bemonnen B JI 60p Topuu nHGpOpPM LUMOHHBIX TexHonoruid OUAN.
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An Algorithm for Construction of Dipole Magnets

Computer Models with Quality Control and Its Application

for the PANDA Forward Spectrometer

This paper presents an algorithm for creating computer models of spectrometer
dipole magnets with required parameters. It contains the following steps: 1) analyti-
cal estimates for ampere turns, magnet length and yoke thickness; 2) construction of
a computer model for the coil and formation of the magnet yoke; 3) quality control
of the computer model; 4) output of obtained magnet characteristics.

The following input parameters are used in the proposed algorithm: the magnet
bending power, the magnet working region, steel type and conductor material. As
an example of its application we consider the problem of creation of the computer
dipole model for the PANDA experiment at GSI (Darmstadt).

The investigation has been performed at the Laboratory of Information Tech-
nologies, JINR.
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INTRODUCTION

The main requirements to spectrometer dipole magnets usually are a mag-
nitude of the magnet’s bending power, a volume of working region, operating
conditions, a conductor material and a steel type. Based on the input parameters,
the process of the computer dipole model development can be described by the
algorithm:

1) estimate the ampere turns, the magnet length and the yoke thickness by
means of analytical formulas;

2) construct a computer model for the coil and form a geometry of the magnet
yoke;

3) analyze the quality of the developed computer model;

4) calculate the most important magnet characteristics, for example:

— functions of the field along the rays in the polar coordinate system centered
in the interaction point to estimate the bending power;

— field behavior in the iron to estimate saturation effects;

— body forces and torques acting on conductors with using the formula:
J x B;

— field behavior around the magnet;

— stored energy;

— forces acting on the magnetic parts (Maxwell stress) and others.

As an example of the algorithm application, we consider the problem of
creating the computer dipole model for the PANDA experiment at GSI, Darmstadt.

The main requirements to the dipole magnet of the PANDA Forward Spec-
trometer are the following:

— the magnet bending power should be greater than 1.5 T-m and less or
equal to 2 T-m;

— the acceptance angles are +5 degrees in vertical plane and £10 degrees
in horizontal plane in the polar coordinate system with the centre outstanding
from the magnet at the distance of 3.5 m;

— it is desirable to use standard materials for steel and conductor.

There is an additional condition: the magnet length must be greater or equal
to 2 m and less or equal to 2.5 m. It was also suggested to introduce an iron plate
into the dipole to protect a beam against the magnetic field. The iron plate should
have 10 cm in thickness and the full width of the dipole in other two directions.
The beam channel of 7-8 cm in diameter inside the plate is presupposed.



In accordance with these requirements, a computer dipole magnet model
with iron plate (Fig. 1) has been constructed and presented by the authors at the
PANDA collaboration meeting, INP (Juelich), 29 November — 1 December 2004.

Let us describe all steps of the algorithm.

Fig. 1. Computer dipole model for the PANDA (1/2 symmetrical part)

1. ANALYTICAL ESTIMATES FOR AMPERE TURNS, MAGNET
LENGTH AND YOKE THICKNESS

We use static Maxwell’s equations in the form
V.-B=0, VxH=0, B=pouH
for a magnetic region,

V-B=0, VxH=J, B=yuH



for a nonmagnetic region, and
[B-n]=0, [Hxn]=0

for a boundary between the two regions, where B, H, J are magnetic flux density,
field intensity and current density, respectively; u is a function of magnetic
permeability; and po is the magnetic constant. For simplicity we assume that in
the Cartesian coordinate system the magnet center has zero coordinates, and B,
is the main field component. Let us estimate the magnet length and ampere turns
using such an information about the magnet as the given bending power and the
volume of the working region. We will presuppose that operation conditions of
the magnet permit one to apply low carbon steel 3 and that the permissible level
of average yoke saturation is less than 1.5 T.

From the equations mentioned above and from the Gauss theorem about
circulation we have

/H~d1:2~JZ, (1)
L

where L is a closed contour (see Fig.2 or Fig. 3).
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Fig. 2. Cross section of a Fig. 3. Cross section of a magnet with
magnet with coil placement coil placement of the second type
of the first type

Due to the symmetry and construction peculiarities of the dipole magnets
from Eq. (1) we obtain

1
— Bohg = J>,
Ho

where By is the field in the magnet center. If C' denotes the current density and
Sc is the area of the coil cross section, then

J, =CS¢



Ho Ho
By~ — = — 2. 2
0 ho CSC ho Cx ( )

Here for simplicity we presuppose that S¢ = 22, Let d be a magnet length. For
the bending power B we have

d/2—x
/ Bydz = B.
—d/24x
From approximate formula
d/2—x
B= / Bydz =~ By - (d — 2z)
—d/24x

and from Eq. (2) we obtain the following cubic equation:
; Cuo Cuo A Cuo\ 4
B —(—— ) d’B3 + (- )2dBBy — | —— | B* = 0. 3
0 <4h0) o g T ®)

The approximate solutions of Eq. (3) are presented in Table 1 for the following
values of parameters: C' = 220 A/cm?, hg = 0.5 m, B = 0 -2(T-m), 0 =
0.8,0.9,0.95,1.0, d = 2.0, 2.1, 2.2,...,3.2 m.

Table 1

d (m) 2.0 2.1 2.2 2.3 2.4 2.5 2.6

c=08 | Bo(T) | 1.99 | 1.52 | 1.30 | 1.15 | 1.04 | 0.96 | 0.89
xz(m) | 0.60 | 052 | 048 | 0.46 | 0.43 | 0.42 | 0.40

c=09 | Bo(T) | — — 160 | 139 | 124 | 1.13 | 1.04
z(m) | — — | 0541050047 | 045 | 043
c=095| Bo(T) | — — 1791152134 | 122] 1.12
z(m) | — — | 05710521049 | 047 | 045
c=10 | Bo () | — — — | 166 | 146 | 131 ] 1.20
x (m) — — — 1 0.55]0.51 | 049 | 0.47

d (m) 2.7 2.8 29 3.0 3.1 | 32

c=08 | Bo(T) | 0.83 | 078 | 0.74 | 0.70 | 0.67 | 0.63
x(m) | 039 | 038 | 0.37 | 0.36 | 0.35 | 0.34
=09 | Bo(T) | 097 | 090 | 0.85 | 0.80 | 0.76 | 0.73
x (m) | 042 | 040 | 0.39 | 0.38 | 0.37 | 0.36
0=095| By (T) | 1.03 | 0.97 | 0.91 | 0.86 | 0.81 | 0.78
x (m) | 043 | 042 | 041 | 0.39 | 0.38 | 0.37
oc=10 | Bo(T) | 1.11 | 1.03 | 0.97 | 0.91 | 0.87 | 0.82
x(m) | 045 | 043 | 042 | 0.41 | 0.40 | 0.30




For ¢ = 0.9,0.95,1.0, d = 2,2.1 m and ¢ = 1.0, d = 2.2 m the equation
has no solutions.

Table 1 shows that By ~ 2 T for ¢ = 0.8 and d = 2 m (bending power is
about 1.6 T-m). If we use the steel with magnetic characteristic from Fig. 4, then
the permissible level of the field entering the pole is less than 1.5 T. Therefore,
we should use d > 2 m.
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Fig. 4. The magnetic characteristic Fig. 5. The flux rotation in volume V'
u(|BJ) for steel 3

Let us estimate the thickness of the iron yoke using the magnetic steel
characteristic. Presuppose that the magnetic flux rotates in the yoke as in Fig.5
and B, =~ 0. Then from the formula

/V-Bd‘/z/B-ndS7
14

oV
where n is an outward normal vector, we obtain the approximations
Bi,ydi = By zdy, B gdy = —Bj3yds.

Since B; is the field entering the pole and d; is defined by the volume of a
working region, we can estimate dz, d3 choosing B3 ., B3, from the permissible
level of a yoke saturation. Futher the obtained estimates are an additional input
information for the next step of the algorithm.

2. CONSTRUCTION OF A COMPUTER MODEL FOR THE COIL
AND FORMATION OF THE MAGNET YOKE

Resistive coils are usually used for spectrometer dipole magnets in view of
their simple construction. The so-called «racetrack», «bedstead» coil types and



the coil wound on the surface of a cylinder are widely spread but they are not
optimal for the class of spectrometers with a magnet working region in the form
of a truncated pyramid or a cone. In this case for the coil description we have to
take into account that the coil should be placed around the working region and it
is useful to introduce special angles ¢, 6, ¥ which describe rotations of a point
2 = (1,22, 23) around the coordinate axes according to formulas [1]:

cosep —sing 0 cosf 0 sinf
Ai1(p) = | sing cose 0 |, A2(0) = 0 1 0 ,
0 0 1 —sinf® 0 cosf
1 0 0
As(yp) =1 0 cosyp —sing
0 siny cosy

If we calculate the coil field B® by the Biot-Savart’s law
1o n 1
BY(z) = — J; ——dQ
(l‘) 471_; / 7,(y)xv’y|x_y| Yo
T Qs

where Qg; (1 = 1,...,n) are the coil elements,
points = and y, then we have

x — y| is the distance between

, 1
BS((E) = @ Z / Ale(y ) X AZV /ﬁdﬂy/, (4)

Ve -y

where A; = A1 (p;)A2(0;)As(1);) and y belongs to ith local coordinate system
in which ¢th coil element has a simple geometry. In view of the conditions
V-B® =0and V x B® = J in the next section we shall discuss how to control
the accuracy of computations with formula (4).

The area of the coil cross section depends on a chosen conductor material
(usually copper or aluminum) and a cooling method. Figure 6 shows a top view
of the coil model which may be used for the PANDA dipole. Figure 7 presents
the coil field for plane y = 0 calculated with using the estimates for ampere turns.

In order to construct an additional iron field, we use the Maxwell’s equations
with substitutions: H = Vu for magnetic regions and H = Vv + B® /g for air
regions. As a result, we have the mathematical model [2]

V- -uVu=20 (5)

for a magnetic region,
V-Vo=0 (6)
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Fig. 6. The magnet cross section by Fig. 7. The coil field in working region
the plane y = 0.7 m for z > 0 for plane y = 0

for a nonmagnetic region, with boundary conditions between the two regions

w(Ou/dn) = dv/on +n- B /g,

u:v—l—vs,

(7)

and with condition v = 0 at infinity points. Here v° is defined by equations [3]:

(Vo' —B%/ug) x n =0,

v (z0) = 0, ®)
where xo belongs to the boundary. If p is a constant, then we have a linear
problem and for y = p(|Vu|) we obtain a nonlinear case.

Use an iterative process for yoke formation. As a starting point of the
process, a space around the coil is filled by iron in accordance with the analytical
estimates and Figs.2, 3. Further the following procedure is carried out step by
step:

1) for all elements w;, i = 1,...,k in iron: calculate |B;| in the middle point
of the ith element;

2) for all elements in iron (1 < i < k): if |B;| is greater than the permissible
field level for iron yoke saturation, then the element w; is filled by air;

3) if the yoke geometry has been changed in such a way, we repeat steps 1
and 2, otherwise the yoke formation process is finished.

On the final stage the obtained yoke configuration should be considered from
the point of manufacturing simplicity.
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behavior for plane z =0and z, y > 0 field behavior for plane z = 0 cm and
y =20

Table 2 and Figs.8, 9 show the distribution of |B| in the iron yoke of the
PANDA dipole model.

Table 2. The magnet parts saturation

1
Part V, em? — / BldV, T
VI
|4
0 < x <100.625
Front part of the pole | 47.0625 < y < 91.5 1.0124
—-70<2<0
0<x<123.75
Back part of the pole | 49.5 <y < 97.1875 0.9782
0<2<70
9 <175
Upper beam 85 <y <198 1.3474
—-80<2<80
149 <z < 276
Side wall 0<y<98 1.3798
—-80<2<80
0<x<175
Plate 0<y<5 0.5360
—125 <2< 125




Figure 10 presents the average field in- S,
tegral S4 as a relative current function. This
dependence is an important characteristic of 18 [
the magnet model and it is a linear function
in case of a nonsaturated magnet.

In Table 3 and Fig. 10
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Fig. 10. Average integral S as a rel-
1 o ative current I/I; function
y=|\m-3 tan5° - 6.8 m/ny;

0<z <6.80m} E=1,2,...n,, m=12,...n,
where n, = 48, ny, = 24, B, ; is the field obtained with current I;,
I
S:Li = I_i “Sau,

and [y is the nominal current.

Table 3
i 1 2 3 4
I; 0.519 0.7519 Iy 1.11p
Sa,i (T) 0.8647 | 1.2966 | 1.7207 | 1.8833
Sh i (T) 0.8647 | 1.2971 | 1.7294 | 1.9024
[Sai —Saql (T) 0 0.0005 | 0.0088 | 0.0191

Figure 10 and Table 3 show that the average integral S (bending power)
and the extrapolated integral S7 ; have practically a linear dependence on current
in the coil. Therefore, under the nominal current the iron yoke saturation is not
observed on the whole in the presented magnet model.



3. QUALITY CONTROL OF THE COMPUTER MODEL

When solving the magnetostatic problems by the finite element method, we
obtain generalized numerical solutions. Under the correct application of the
method on a sequence of condensed meshes we have a sequence of approximate
solutions convergents to the exact solution of the problem. The accuracy of
numerical solutions of mathematical model (5)—(7) depends on both the accuracy
of calculation of the vector B® by formula (4) and the accuracy of solving
the mesh problem. Let us regard possible reasons of the errors arising when
calculating the vector B, The first one is in piecewise constant approximation
of the vector J for every element of the coil.

n
Define Qg = > g ;. Then we have

i=1

1
—V x BY(2)=V x V x / %de:V v/ S BT

o drlz —y drle —y[
s Qs
J - v-J; J-n
v - 40,=V 40, — 4, |+
/4w|x—y| =V /47r|a:—y| v /4w|x—y| i)t
Qs i=1 Qs 00s,i

From here we obtain the condition
[Ji-n]:O, yeaQsﬂ-, i:l,Z,---,n.

Under this condition (1/p9)V x B = J.

Second, errors in calculations of the vector B appear under integration by
means of cubature formulas. These errors are connected with the limited accuracy
of the cubature formulas and with the restricted accuracy of the isoparametric
transformation [4] used as a rule for mapping, for example, a hexahedron into
the unit cube.

To test the correctness of the vector BS calculation, it is possible to use the
finite-difference operators in the form

DEBS () = (B (x; + h) — BS (2))/h,  1<i,j,<3,

where h is a parameter. Finite-difference operators V" and V" x can be con-
structed from these operators. As it follows from the approximation theory, for
the B9 calculated correctly we have to obtain the following two sequences:

vh.BS(z), V2 . B (x),..., V™ . BY(x),

Vi x BY(x), V2 x BY(2),..., V™ x BS(z),

which converge to corresponding exact values.

10



At the beginning of the model construction process we usually solve linear
and nonlinear problems on rough meshes. The necessity to obtain a more precise
model is connected with mesh refinement. There are some approaches for a
quality control of the model for the magnetic system [5]. We use two a posteriori
estimates in terms of characteristics 7; and 6;.

The first one is useful to check how the solutions satisfy the Maxwell’s
equations in a classical sense [6]. For the reason we apply the local error indicator
n; [7] in the air region

1 V><B 2

wy

where

B/ ( —quCJVN” (x), Bz _MOZCkVN(Q ().

j=1 k=1

Here (;, ( are potential values in points z;,x;. They have been obtained by

solving the problem with linear base functions on some mesh; N ;1), N}gz) are
base functions of linear and quadratic elements, respectively; y; is the middle
point of element w;; |w;| denotes the volume of w;. It should also be noted that
we have used the same characteristic n; for testing the magnetic field functions
based on measured data [7].

For iron region this local error indicator has another form in view of the
constant piecewise approximation for function 1 = p(|HJ). In fact, VxB/2 =0
in air due to the property of operator VX so this term can be omitted. We have
the same situation in the iron region for H = Vu. Therefore, for iron 7; can be
defined by the formula

1 V- Bint,2
|1I)—j| | |Bint.1] wl ],
W

=

where w; is a hexahedron with the nodes obtained as the middle points of the
elements which surround the jth mesh node inside the iron;

8
Blnt 2 _ Z BmN( ) 7 Bint,l — é Z Bm;

here B,,, is the field in the same middle points.

11



The other local error indicator 6; is useful to obtain a smooth (more correct)
distribution of the calculated magnetic field. It has the form [8]:

B/ - Bf2|d
i w
|wz|/ BT (y,)

Small values of 6; point to the magnitude of discontinuities in the field vectors

derived from the linear elements.
Table 4 presents 7); and 6; for the calculated field.

Table 4. Quality characteristics of magnetic field calculations

0s, %

3=

Part V, cm?

3=

>N
i=1 i=1

0 < z < tan10°(z + 475)
Working region | tan0.81°(z +475) < y <

of the magnet < tan 5.82°(z + 475) 0.561 0.103
—180 < z < 180

0 <z < 100.625

Front part 47.0625 <y < 91.5 1.478 1.199
of the pole -70<2<0
0 < x<123.75
Back part 49.5 <y < 97.1875 2.458 1.152
of the pole 0< 270
0<x <175
Upper beam 85 <y <198 1.123 0.895
—-80<2<80
149 < = < 276
Side wall 0<y <98 1.556 0.375
—80<2<80
0<x<35
Region inside 0<y<35 0.032 0.052
the channel —110 < 2 < 110

Using the local error indicators is important when we want to be sure that
the errors of approximate numerical solutions do not have an essential influence
on the field behavior. An example of this situation is the calculated field inside
the channel in the iron plate because the level of the magnetic field magnitude
can be comparable with the level of approximation errors.

As is known from the results of the EXCHARM experiment [9], the char-
acteristics 7; should be less than 1% [7]. In Table 4 this average characteristic

12
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Fig. 11. The behavior of the main field component in the channel (polar coordinate system),
©=0°

inside the channel of 7 cm in diameter is less than 0.052%. This result points
to a sufficient good approximation used in the field calculation. Figure 11 shows
the behavior of main field component in the channel.

4. OUTPUT OF OBTAINED MAGNET CHARACTERISTICS

Here we present some characteristics of the developed dipole model for the
PANDA experiment. Figures 12-18 show the behavior of the field components
along rays in the polar coordinate system (r,6, ) with the center at the point
(-475;0;0). Table 5 gives the magnet bending power along the rays. Figure 19
presents the distribution of bending power homogeneity in the working region of
the model. To prepare this picture, 1152 integrals have been calculated and we

13



finally conclude that the field integral homogeneity in 90% of the working region

is less than 5%.
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Fig. 12. The behavior of the main field com-
ponent along rays in the polar coordinate
system for ¢ = 22.5°
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Fig. 14. The behavior of the main field com-
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Fig. 13. The behavior of the main field com-
ponent along rays in the polar coordinate
system for ¢ = 45°
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Fig. 15. The behavior of the B, field com-
ponent along rays in the polar coordinate
system for ¢ = 22.5°

Figures 20, 21 give the distribution of |B| in the iron plate for two sections.
These pictures show that under the nominal current the iron plate saturation is

not observed.
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Fig. 16. The behavior of the B, field com-
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Table 5. The magnet bending power

[ Bydl (T - m)

0 =2°10=5°0 =100 =10°
=225 — [1.7119]1.7056] 1.7227
@ =45° |1.7185(1.7285(1.7443| —
@ =90° [1.7215(1.7352] — | —

—1000
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Warm magnet, length = 2.5 m, ¢ = 22.5°

Fig. 17. The behavior of the B, field com-
ponent along rays in the polar coordinate
system for ¢ = 22.5°
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Fig. 18. The behavior of B, field compo-
nent along rays in polar coordinate sys-
tem for p = 45°

In Figs. 22, 23 the body forces acting on conductors are presented for sym-
metrical parts of the coil. The forces have been calculated in accordance with the

formula

Fi:/JdeQ, i=1,...23,

Qs

where {)g ; is the enumerated part of the coil volume from Fig. 22.
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Fig. 20. Distribution of |B| in the iron plate and field behavior for plane z = 0 and
z,y >0
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CONCLUSION

We have described an algorithm for constructing dipole computer models
with quality control of computations. We did not consider the question of field
uniformity because it is a special problem. Note that some widely used computer
aided design (CAD) programs intended for computation of 3D magnetic fields
do not have the iterative loop to generate an iron yoke and do not have special
routines for users to control the quality of magnet models. The suggested new
characteristic 7; for the field quality control has two important advantages:

— it has a clear physical meaning because in essence it is the Maxwell
equations in every finite element;

— it is a convenient tool for comparison of the calculated magnetic field
functions, used for further simulations (for example, for tracking), with functions
based on measured data.

All steps of the algorithm have been demonstrated for the PANDA dipole
magnet model suggested by the authors in accordance with the requirements
formulated in Introduction.
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