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On an Inverse Eigenvalue Problem for a Semilinear SturmÄLiouville
Operator

The following problem is considered: −u′′ + f(u) = λu, x ∈ (0, 1), u =
u(x), u(0) = 1, u′(0) = u(1) = 0, where λ is a spectral parameter. We study the
inverse problem: for a given part of the spectrum λn → +∞ we seek odd f . We
obtain a description of the whole class of solutions of this problem. In addition,
we show that there exists at most one function f such that an auxiliary function is
nondecreasing.

The investigation has been performed at the Bogoliubov Laboratory of Theoretical
Physics, JINR.
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INTRODUCTION

Nonlinear second-order elliptic eigenvalue problems have been intensively
discussed in the mathematical literature during several last decades. At the same
time, results on inverse problems for these equations are in fact unknown. As for
inverse problems for linear self-adjoint second-order ordinary differential equa-
tions, now the classical Borg uniqueness theorem is well-known (see, for example,
[1]): in fact, for given two sequences {λ1

n}n=0,1,2,... and {λ2
n}n=0,1,2,... there ex-

ists at most one real-valued potential in the operator so that these sequences are
the spectrums of this operator taken with two different sets of standard boundary
conditions.

In the present paper, we consider an inverse problem for the simplest non-
linear SturmÄLiouville-type operator in a bounded interval. In fact, we study the
equation

−u′′ + f(u) = λu, u = u(x), x ∈ (0, 1), (1)

supplied with boundary conditions

u(0) = 1, u′(0) = u(1) = 0. (2)

Here λ is a spectral parameter. Our result also holds for the same equation with
the boundary conditions

u(0) = 1, u′(0) = u′(1) = 0;

our method applies without modiˇcations except the simplest ones. Hereafter, all
the quantities are real. We consider the inverse problem: given some sequence of
eigenvalues λn → +∞ (with the unknown corresponding eigenfunctions un), we
seek the corresponding nonlinearity f(u). Note that to each eigenvalue there cor-
responds a unique eigenfunction because the boundary conditions contain partly

the Cauchy data u(0) = 1, u′(0) = 0. Set F (u) = 2
u∫
0

f(t)dt. As readers

will see further, for any function f odd and continuously differentiable in R any
eigenfunction u of problem (1)Ä(2) taken with this function f satisˇes |u(x)| � 1.
So, in what follows, we use the following assumptions on the nonlinearity f .

(f) Let f(u) be a continuously differentiable odd function of u ∈ [−1, 1].

As is shown in [2, 3], unlike the statement of the problem in the linear case,
it is natural to consider a nonlinear eigenvalue problem with an additional normal-
ization condition as u(0) = 1 or similar. An explanation is the following. Problem
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(1)Ä(2) with a given odd nondecreasing nonlinearity f has an inˇnite sequence
of eigenvalues λn with the corresponding eigenfunctions un (n = 0, 1, 2, ...)
such that each nth eigenfunction un has precisely n zeros in (0, 1), there are no
any other eigenvalues and eigenfunctions and the sequence {un}n=0,1,2,... of all
eigenfunctions is a basis (in addition, a Riesz basis) in L2(0, 1). So, the problem
that includes the normalization condition u(0) = 1 has properties quite similar
to those of a linear self-adjoint second-order problem. At the same time, if one
excludes the normalization condition from the statement of the problem, then the
set of all eigenfunctions becomes too wide.

Let g(u) = (F (u) − F (1))/(1 − u2). Our result here is the following.

Theorem. Let {λn}n=1,2,3,... be a sequence of real numbers such that λn →
+∞ as n → ∞. Then

(a) if there exists an increasing sequence of positive integers mn → ∞ such
that each λn = [(π(2mn + 1))/2]2, then there exists a unique nonlinearity f
obeying hypothesis (f) such that each λn is an eigenvalue of problem (1)Ä(2)
taken with this function f and this function f is identically equal to 0 in [−1, 1];

(b) There exists at most one solution f1 (or f2) of our inverse problem
satisfying hypothesis (f) with the nondecreasing corresponding function g = g1(u)
(resp., with the nonincreasing corresponding function g = g2(u));

(c) For any function h continuous in R and arbitrary two solutions f1 and f2

of the inverse problem with the corresponding functions g = g1(u) and g = g2(u)
one has

1∫
0

h(g1(u))(1 − u2)−1/2du =

1∫
0

h(g2(u))(1 − u2)−1/2du. (3)

Remark 1. A function g uniquely determines the corresponding function f .

PROOF OF THE THEOREM

Below we summarize results for the direct problem (1)Ä(2) (with a given f )
proved in fact in [2, 3].

Proposition. Let f be a function continuously differentiable and odd in R.
Then

(a) for any integer n � 0 problem (1)Ä(2) has an eigenvalue λn with the
corresponding eigenfunction un(x) such that un possesses precisely n zeros in
(0, 1);

(b) for each n and an eigenfunction u that possesses precisely n zeros in
(0, 1) the zeros of u in (0, 1) are precisely the points xn

i = 1
2n+1 + 2i

2n+1 , i =
0, 1, ..., n− 1;

2



(c) any eigenfunction has a ˇnite number of zeros in (0, 1);
(d) u′(x) < 0 in (0, xn

1 ] for an arbitrary eigenfunction u possessing precisely
n zeros in (0, 1);

(e) |u(x)| � 1 for all x ∈ [0, 1] and for an arbitrary eigenfunction u.
Let us return to our inverse problem. Let {λn}n=1,2,3,... be a sequence of

real numbers going to +∞ as n → ∞ and let f1 and f2 be two solutions of our
inverse problem that obey hypothesis (f). Denote by µn = ([π(2n+1)]/2)2, n =
0, 1, 2, ..., the set of all eigenvalues of the linear problem

−w′′ = µw, w = w(x), x ∈ (0, 1), w′(0) = w(1) = 0. (4)

Denote also by ki
n the number of zeros in (0, 1) of the solution ui

n of problem
(1)Ä(2) taken with f = fi and with λ = λn. Then, by the standard comparison
theorem, ki

n → +∞ as n → ∞ and there exists D > 0 such that

|λn − µki
n
| ≤ D, n = 1, 2, 3, ..., i = 1, 2

(because the nth eigenfunction wn of the linear problem (4) has precisely n zeros
in (0, 1)). Therefore, |µk1

n
− µk2

n
| � 2D for all n. Hence, we have k1

n = k2
n for

all sufˇciently large n because µn+1 − µn → +∞ as n → ∞. Let kn = k1
n. We

have proved following result.
Lemma 1. For all sufˇciently large n the eigenfunctions u1

n and u2
n have the

same number of zeros kn in (0, 1).
Denoting now by xn,i

1 the smallest positive zero of ui
n, we get xn,1

1 = xn,2
1

for all sufˇciently large n. Without the loss of generality, we accept that this is
valid for all n. Set xn = xn,1

1 .
Now, we apply the solvability of Eq. (1) by quadratures. Multiply it by

2u′(x) and integrate the result from 0 to x. Then, we obtain the identity

[u′(x)]2 + F (1) − F (u(x)) + λu2(x) − λ ≡ 0, x ∈ [0, 1]. (5)

Using property (d) and denoting by xn(u) the function inverse to un(x) in [0, xn],
we derive from (5):

x′
n(u) = − 1√

λn − λnu2 + F (u) − F (1)
, u ∈ [0, 1),

and

xn =

1∫
0

du√
λn − λnu2 + F (u) − F (1)

, n = 1, 2, 3, ... (6)

Note that u = 1 is the point of singularity for the expression in the right-hand
side of (6). However, there exists C > 0 such that

λn − λnu2 + F (u) − F (1) ≥ C(1 − u) (7)
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for all u ∈ [0, 1) and for all sufˇciently large n so that the improper integral in
(6) is absolutely converging for all sufˇciently large n. In addition, in view of
(7), u = 1 is the only point of singularity in (6) for all sufˇciently large n.

Let us prove statement (a) of the theorem. Clearly, f ≡ 0 is a solution of
the inverse problem. Let f be an arbitrary its solution satisfying hypothesis (f).
We have from (6) using Taylor expansions:

λ−1/2
n

1∫
0

(1 − u2)−1/2du =

= λ−1/2
n

1∫
0

(1 − u2)−1/2

[
1 − 1

2
λ−1

n g(u) +
3
8
θλ−2

n [g(u)]2
]

du = xn

where θ = θ(n, u) ∈ (0, 1). Hence,
1∫
0

(1−u2)−1/2g(u)du = 0 and thus, g(u) ≡ 0

which completes the proof of statement (a).

Let again f1 and f2 be arbitrary two solutions of our inverse problem satis-
fying hypothesis (f) with the corresponding functions Fi and gi, i = 1, 2.

Lemma 2. One has
1∫
0

(1 − u2)−1/2[g1(u)]ldu =
1∫
0

(1 − u2)−1/2[g2(u)]ldu

for all l = 0, 1, 2, ... (it is easy to see that the improper integrals here are
absolutely converging).

Proof. Take a sufˇciently large n and consider the expression

xn =

1∫
0

(λn − λnu2 + Fi(u) − Fi(1))−1/2du =

= λ−1/2
n

1∫
0

(1 − u2)−1/2(1 + λ−1
n gi(u))−1/2du. (8)

For any ε > 0 the expression |λ−1
n gi(u)| is smaller than ε for all sufˇciently large

n and it is continuous in u ∈ [0, 1] (at the point u = 1, there exists a limit of
gi(u) as u → 1−0). So, for all sufˇciently large n, we can expand the expression
in the right-hand side of (8) into a Taylor's series obtaining

xn = λ−1/2
n

∞∑
l=0

λ−l
n Al

1∫
0

(1 − u2)−1/2[gi(u)]ldu, i = 1, 2,
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so that

∞∑
l=0

λ−l
n Al

1∫
0

(1 − u2)−1/2[g1(u)]ldu =
∞∑

l=0

λ−l
n Al

1∫
0

(1 − u2)−1/2[g2(u)]ldu

for all sufˇciently large n where

A0 = 1 and Al =
(−1/2)(−1/2− 1)(−1/2 − 2)...(−1/2− l + 1)

l!

for l = 1, 2, 3, ... so that these coefˇcients do not depend on i, n and u and
|Al| � 1 for all l. Since λn → +∞ as n → ∞, the relations above yield

1∫
0

(1 − u2)−1/2[g1(u)]ldu =

1∫
0

(1 − u2)−1/2[g2(u)]ldu, l = 0, 1, 2, ...,

and lemma 2 is proved.�

Lemma 3. For any function h(s) continuous in R one has

1∫
0

(1 − u2)−1/2h(g1(u))du =

1∫
0

(1 − u2)−1/2h(g2(u))du.

Proof. Denote M = supi=1,2, u∈[0,1) |gi(u)| + 1. Due to lemma 2 and

the linearity, for any polynomial h(s) of the kind h(s) =
N∑

m=0
amsm with real

coefˇcients am the statement of lemma 3 holds. In the general case, it follows
by approximations of h(s) uniform with respect to u ∈ [−M, M ] by polynomial
functions.�

Remark 2. With lemma 3, we have proved statement (c) of our theorem.
Remark 3. Of course, equality (3) is a necessary condition for a function f2

to be a solution of the inverse problem if f1 is known. However, in view of (6)
and (8), this condition is ®almost¯ sufˇcient.

Let us prove statement (b) of the theorem. On the contrary, suppose the
existence of two solutions f1 and f2 of the inverse problem such that the corre-
sponding functions g1 and g2 are nondecreasing (for nonincreasing functions gi,
the proof can be made by the complete analogy). Take an arbitrary continuous h
and make in the integrals in (3) the change of the independent variable by setting

z = arcsinu. Then, we obtain: I1(h) = I2(h) where Ii(h) =
π/2∫
0

h(pi(z))dz and

pi(z) = gi(sin z).
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First of all, it is easy to see that p1(0) = p2(0) and p1(π/2) = p2(π/2) by
lemma 3. Denote p1(0) = A and p1(π/2) = B. By S, denote the set of all
points p ∈ [A, B] such that, for each i = 1, 2, the preimage p−1

i (p) consists of
a unique point zi = zi(p) and p′i(z)

∣∣
z=zi(p)

�= 0, i = 1, 2. It is easy to see that

the set S is dense in [A, B]. First, let p ∈ S. Take for the function h = h(s)
the characteristic function of the interval [A, p] equal to 1 if s ∈ [A, p] and 0
otherwise. It is easy to see that equality (3) still holds for this function h. This
equality immediately implies that z1(p) = z2(p).

Now, consider the case when p ∈ [A, B] and p �∈ S. Then, there exist
two sequences ps

2 ↘ p and ps
1 ↗ p such that ps

i ∈ S, i = 1, 2. Hence, by the
proved above, z1(ps

i ) = z2(ps
i ), i = 1, 2. Therefore, zi(ps

1) → z̄, zi(ps
2) → ¯̄z

as s → ∞ (the limits z̄ and ¯̄z do not depend on i) and p−1
i (p) = [z̄, ¯̄z] so that

{z : p1(z) = p} = {z : p2(z) = p}. So, we have proved that p1(z) = p2(z)
for all z ∈ [0, π/2] and statement (b) is proved. Our proof of the theorem is
complete.

Example of non-uniqueness. Obviously, for any h one has

π/2∫
0

h(f(sin 2z))dz =
1
2

π∫
0

h(f(sin z))dz =

π/2∫
0

h(f(sin z))dz.

According to (6) and (8), there exists a sequence of eigenvalues λn → +∞ of
problem (1)Ä(2) taken with each of these two nonlinearities f(u) and
f(sin(2 arcsinu)) where u = sin z.
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