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A general concept of potential ˇeld is introduced. The potential ˇeld that one
puts in correspondence with dark matter, has fundamental geometrical interpretation
(parallel transport) and has intrinsically inherent local symmetry. The equations of
dark matter ˇeld are derived that are invariant with respect to the local transforma-
tions. It is shown how to reduce these equations to the Maxwell equations. Thus,
the dark matter ˇeld may be considered as generalized electromagnetic ˇeld and a
simple solution of the old problem is given to connect electromagnetic ˇeld with
geometrical properties of the physical manifold itself. It is shown that gauge ˇxing
renders generalized electromagnetic ˇeld effectively massive while the Maxwell elec-
tromagnetic ˇeld remains massless. To learn more about interactions between matter
and dark matter on the microscopical level (and to recognize the fundamental role of
internal symmetry) the general covariant Dirac equation is derived in the Minkowski
spaceÄtime which describes the interactions of spinor ˇeld with dark matter ˇeld.
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INTRODUCTION

The problem of invisible mass [1, 2] is acknowledged to be among the
greatest puzzles of modern cosmology and ˇeld theory. The most direct evidence
for the existence of large quantities of dark matter in the Universe comes from
the astronomical observation of the motion of visible matter in galaxies [3].
One neither knows the identity of the dark matter nor whether there is one or
more types of its structure elements. The most commonly discussed theoretical
elementary particle candidates are a massive neutrino, a sypersymmetric neutralino
and the axion. So, at present time there is a good probability that the set of known
ˇelds is by no means limited to those ˇelds. Moreover, we are free to look for
deeper reasons for the existence of new entity unusual in many respects. Of
course, such reasoning is grounded on the point of view that there is a general
and easily visible mathematical structure that stands behind the all phenomena
that we observe.

Here a ˇeld theory of the so-called dark matter is derived from the ˇrst
principles. A general concept of potential ˇeld is introduced. We connect one
of these ˇelds with the problem of dark matter. The ˇeld that we put in corre-
spondence with dark matter has fundamental geometrical interpretation (parallel
transport) and has intrinsically inherent local symmetry. The equations of dark
matter ˇeld that are invariant with respect to the local transformations are derived.
It is shown how to reduce these equations to the Maxwell equations. Thus, the
dark matter ˇeld may be considered as generalized electromagnetic ˇeld and at the
same time we get a simple solution of the old problem raised by Weyl, Einstein
and Eddington to connect electromagnetic ˇeld with geometrical properties of the
physical manifold itself. The idea is that process of local symmetry breaking is
an intrinsic property of the system itself which means that gauge ˇxing cannot be
arbitrary. This approach is realized here in the framework of the concept of dark
matter ˇeld vacuum.

It is interesting that the vacuum ˇeld belongs to the set of potential ˇelds.
It should be noted that gauge ˇxing renders generalized electromagnetic ˇeld
effectively massive while the Maxwell electromagnetic ˇeld remains massless
(particle of dark matter is a heavy photon). To learn more about interactions
between matter and dark matter on the microscopical level the general covariant
Dirac equation is derived in the Minkowski spaceÄtime and in course of this
the fundamental role of internal symmetry is recognized. On this ground the
Dirac equation is derived which describes the interactions of spinor ˇeld with
dark matter ˇeld. From this it follows the general conclusion that interactions
of generalized electromagnetic ˇeld with Dirac spinor ˇeld occur only via the
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electromagnetic ˇeld and the above-introduced dark matter ˇeld vacuum. The
general conclusion is that a dark matter gravitates but there is no actually direct
interactions of this new form of matter with known physical ˇelds that represent
luminous matter. A rather simple and feasible experiment is proposed to verify
this conclusion.

The paper is organized as follows. The ˇrst two sections are the basis for all
considerations. Section 1 contains the geometrically motivated general deˇnition
of the concept of potential ˇeld. The conjecture is put forward that all potential
ˇelds have a geometrical interpretation. It is shown that in general case a parallel
transport is an exact realization of the abstract concept of potential ˇeld. We
consider this realization as a new physical ˇeld (dark matter ˇeld). In Sec. 2
the equations of the dark matter ˇeld are derived. Section 3 deals with the
vacuum of this ˇeld. The equations of vacuum ˇeld are considered in Secs. 4
and 5. Section 6 treats the general covariant Dirac equation in the Minkowski
spaceÄtime with careful consideration of internal and spaceÄtime symmetries and
connection between them. In Sec. 7 the theory of interactions of the mentioned
above potential ˇelds with matter (spinor ˇeld) is formulated. The source of
the dark matter vacuum ˇeld is the circulation of the energy of the spinning
matter, which is expressed in the direct connection between the potential of the
dark matter vacuum ˇeld and the canonical tensor energyÄmomentum of spinning
matter. Thus, it is shown that the canonical energyÄmomentum tensor plays
fundamental role in the theory of the spinor ˇelds. And ˇnally, Sec. 8 provides a
proposal of rather simple experiment that can give answer the series of principal
questions.

1. CONCEPT OF POTENTIAL FIELD

First of all, we shall consider the necessary elements of general mathematical
structure. According to the modern viewpoint a fundamental physical theory is the
one that possesses a mathematical representation whose elements are smooth man-
ifold and geometrical objects deˇned on this manifold. Most physicists nowadays
consider a theory to be fundamental only if it makes explicit use of this concept.
It is thought that curvature of the manifold itself provides an explanation of grav-
ity. Within the manifold, further structures are deˇned including vector ˇelds,
connections, particle path, and so forth, and these are taken into account for the
behavior of physical world. This picture is generally accepted and it is based on
such a long history of physical research, that there is no reason to question it.
Another element is the concept of potential ˇeld.

If we take the components of symmetrical covariant tensor ˇeld gij and form
its derivatives (∂igjk) then these derivatives are neither the components of a tensor
nor of any geometrical object. However, from gij and these partial derivatives
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one can form (with the help of algebraic operations only) a new geometrical
object

Γi
jk =

1
2
gil(∂jgkl + ∂jgkl − ∂lgjk), (1)

which is called Christoffel connection, where gil are contravariant components of
the gij . Now we can formalize this particular case and give general deˇnition of
the potential ˇeld.

If some geometrical object (or a geometrical quantity) is given and from
the components of this object and its partial derivatives one can form (using the
algebraic operations only) a new geometrical object (or geometrical quantity),
then we deal with a new geometrical quantity that will be called a potential ˇeld.
Potential ˇeld is characterized by the potential P and strength H and in what
follows will be written in the form (P , H). Connection between the potential and
strength is then called a natural derivative and in symbolic form can be written
as H = ∂P. If we go back to our starting point, then gij is a potential and Γi

jk is
a strength of potential ˇeld (g, Γ), known after Einstein as the gravitational ˇeld.

Now we introduce another very important and geometrically motivated po-
tential ˇeld. The most important geometrical notions are the metric gij and
parallel transport or linear (afˇne) connection P i

jk . Tensor ˇeld gij is symmetric,

gij = gji, but linear connection P i
jk in general is nonsymmetric with respect to

the covariant indices, P i
jk �= P i

kj and in any way does not link with the metric
gij . In fact, these notions deˇne, on a manifold M , different geometric opera-
tions. Namely, a metric on a manifold gives for each curve its length and linear
connection deˇnes the parallel transport of vectors along any path on M . Let us
consider a vector ˇeld Ei(x). Equation of local parallel transport from a point xi

to a point xi + dxi has in general the form

dEi(x) = −P i
jk(x)Ek(x)dxj , (2)

where functions P i
jk(x) are components of a new geometrical object on the

manifold, called a linear connection P . Under a parallel transport along the
inˇnitesimal closed curve the change of the vector is equal to the quantity

�Ek = −Hijl
kEldxiδxj ,

where
Hijl

k = ∂iP
k
jl − ∂jP

k
il + P k

imPm
jl − P k

jmPm
il (3)

is a tensor ˇeld of type (1, 3), called the Riemann tensor of the connection P i
jk .

Now we go back to the deˇnition of potential ˇeld and see that parallel transport
deˇnes new potential ˇeld (P, H). At ˇrst glance, this is in contradiction with
fundamental principle, which means that only irreducible quantity should enter
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into the theory. Indeed, from (2) it follows that under a coordinate mapping

x̃i = x̃i(x), xi = xi(x̃),

the transformation law for a P i
jk has the form

P̃ i
jk =

∂x̃i

∂xl
(P l

mn

∂xm

∂x̃j

∂xn

∂x̃k
+

∂2xl

∂x̄j∂x̃k
). (4)

Recall that a geometrical quantity is reducible if it is possible to ˇnd linear
combinations of its components which themselves constitute a new geometrical
quantity. As for linear connection under the coordinate mappings, it is a reducible
quantity which is easily seen from the expansion

P i
jk =

1
2
(P i

jk + P i
kj) +

1
2
(P i

jk − P i
kj).

From (4) it follows that a symmetrical part of the connection 1
2 (P i

jk + P i
kj), is

again the linear connection and the antisymmetrical part, 1
2 (P i

jk −P i
kj) transforms

as a tensor ˇeld of type (1, 2). However, there is a very interesting structure
which allows one to consider parallel transport as potential ˇeld.

Let Si
j be components of a tensor ˇeld of type (1,1) (a ˇeld of linear operator),

Det(Si
j) �= 0. Out of two tensor ˇelds Si

j and Qi
j of type (1, 1) a tensor ˇeld

P i
j = Si

k Qk
j of type (1, 1) may be constructed, called their product. With the

operation of multiplication thus deˇned, the set of tensor ˇelds of type (1, 1) with
a nonzero determinant forms a group, denoted by Gi. This is a natural group
of local symmetry on a manifold. At given vector ˇeld Ei, any element of the
group Gi deˇnes a bundle of vector ˇelds, which is deˇned as follows:

Ēi = Si
jE

j , Ẽi = T i
jE

j , etc.,

where T i
j are components of the ˇeld S−1 inverse to S, Si

kT k
j = δi

j . It is clear
that notion of the parallel transport is not applied to the bundle of the vector
ˇelds. From (2) it follows that the parallel transport of the bundle of the vector
ˇelds is deˇned by the bundle of the linear connections, which is deˇned by the
relation

P̄ i
jk = Si

mPm
jnT n

k + Si
m∂jT

m
k .

It is easy to see that for the bundle of linear connections the expansion considered
above has no sense, so the tensor P i

jk−P i
kj is evidently not a geometrical quantity

with respect to the transformations of the local group.
Thus, we shall expand the diffeomorphism group to include into the consid-

eration the group of local symmetry Gi, deˇned above. It can be shown that the
diffeomorphism group is the group of external automorphisms of the group of
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local symmetry, i.e. the group Gi is invariant under the transformations of the
group Diff(M). Thus, we have a nontrivial uniˇcation of these symmetries and
possibility to consider one more potential ˇeld.

We conclude that we really introduce geometrically motivated potential ˇeld
(P, H), but the theory of this ˇeld should be invariant not only with respect to the
general transformations of the coordinates but with respect to the transformations
of the local symmetry group Gi as well. We put in correspondence to this ˇeld
the so-called dark matter and develop theory of the dark matter as the theory of
this new potential ˇeld.

For brevity, we will use in what follows the matrix notation:

Pj = (P i
jk), E = (δi

j), Hij = (Hijl
k), S = (Si

j), TrS = Si
i ,

in which the transformation law of the potential Pj is of the form

P̄j = SPjS
−1 + S∂jS

−1 = Pi + SDiS
−1, (5)

where Di stands for the important operator

DiS = ∂iS + PiS − SPi = ∂iS + [Pi, S],

which is especially convenient when one deals with local symmetry in question.
In what follows we shall meet many examples of this. Relation (5) is indeed the
transformation of the connection, since SDiS

−1 is a tensor ˇeld of type (1, 2) and
on this reason P̄j is the connection with respect to the coordinate transformations.
Since the connection between the potential and strength in matrix notation is
given by the formula

Hij = ∂iPj − ∂jPi + [Pi, Pj ],

from (5) it follows that under the transformations of the group Gi the strength is
transformed as follows:

H̄ij = SHijS
−1. (6)

For Hij we have
DiHjk = ∂iHjk + [Pi, Hjk],

and if D̄i is deˇned by potential P̄i, then from (5) and (6) it follows that:

D̄iH̄jk = S(DiHjk)S−1.

In general case, the operator Di is not general covariant, however, the commutator
[Di, Dj] is always general covariant and we get the important relation for the
strength tensor of dark matter

[Di, Dj ]Hkl = [Hij , Hkl]. (7)

Thus, in our approach the theory of the dark matter is tightly connected
with the local symmetry, it is general covariant and has a profound geometrical
interpretation.
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2. FIELD EQUATIONS

The simplest general covariant and gauge invariant Lagrangian of the potential
Pi is a direct consequence of (6)

LP = −1
4
Tr(HijH

ij), (8)

where Hij = gikgjlHkl. Varying the Lagrangian LP with respect to Pi and using
the relation δHij = DiδPj − DjδPi, we obtain

δLP = Tr
((

1
√

g
Di(

√
gHij)

)
δPj

)
− 1

√
g
∂iTr(

√
gHijδPj),

and hence the following equations of the ˇeld hold valid:

1
√

g
Di(

√
gHij) = 0, (9)

where g = −Det(gij). From the properties of the operator Di it is not difˇcult to
see that Eq. (9) is invariant with respect to the local symmetry group. The tensor
character of this equation can be seen from the identity

1
√

g
Di(

√
gHij) =

p

∇i Hij + ωiH
ij − 1

2
(P j

ik − P j
ki)H

ik,

where
p

∇i is the usual covariant derivative with respect to the connection Pi,
and ωi = ∂i ln

√
g − P k

ki are the components of the covector ˇeld. Thus, it is
shown that the group of diffeomorphisms is the group of covariance of Eq. (9).
Equations (9) form the ˇrst group of the equations. The second one is presented
by the identity

DiHjk + DjHki + DkHij = 0. (10)

From deˇnition of the operator Di it follows that left-hand side of relation (10)
is a tensor and hence it is general covariant.

Varying the Lagrangian LP with respect to gij we obtain the so-called metric
tensor of energyÄmomentum of the dark matter ˇeld

Tij = Tr(HikHj
k) + gijLP , (11)

where Hj
k = Hjlg

kl. One can establish the identity

∇iTij = Tr(Hjk
1
√

g
Di(

√
gHik)) +

1
2
Tr(Hik(DiHjk + DjHki + DkHij)).
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With this equation and Eqs. (9) and (10) we see that the metric tensor of the
energyÄmomentum satisˇes the equation

∇iT
ij = 0, (12)

where ∇i denotes as usual the covariant derivative with respect to the Christoffel
connection (1) and ∇i = gik∇k. It is evident that the metric tensor energyÄ
momentum is invariant with respect to the group of local transformations in
question. Now we can write down the full action for the ˇelds gij and Pi

A = −c3

G

∫
R
√

g d4x − β2
�

4

∫
Tr(HijH

ij)
√

g d4x,

where R is the scalar curvature, G is the Newton gravitational constant, � is
the Planck constant, and β is dimensionless constant. From the geometrical
interpretation of the ˇeld P it follows that it has the dimension of cm−1. As all
coordinates can be considered to have the dimension of cm, the action A has a
correct dimension.

Varying the full action A with respect to gij we derive the Einstein equation

Rij −
1
2
gijR = β2l2Tij , (13)

where l =
√

�G/c3 is the Planck length, and Tij is the metric tensor of energyÄ
momentum of dark matter ˇeld. Thus, it is shown that the interactions of the dark
matter ˇeld with the gravitational ˇeld are characterized by some length λ = βl.
Equations (9), (10) and (13) are compatible in view of (12).

Equations (9) and (10) constitute the full system of the generalized Maxwell
equations in geometrical representation and new ˇeld (dark matter ˇeld) can
be considered as the generalized electromagnetic ˇeld. The arguments are as
follows. From the strength of the potential ˇeld in question it can be constructed
very interesting quantity that is invariant with respect to the transformations of
the group of local symmetry Gi, namely

Fij = TrHij . (14)

It is evident that Fij is an antisymmetrical tensor with respect to the transforma-
tions of coordinates. If Hij satisˇes Eqs. (9) and (10), then taking the trace we
obtain that bivector Fij satisˇes the Maxwell equations

1
√

g
∂i(

√
gF ij) = 0, ∂iFjk + ∂jFki + ∂kFij = 0. (15)

Now consider a question concerning the vector potential of the electromagnetic
ˇeld. We put Ai = TrPi = P k

ik. According to (5) and the differentiation rule for
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determinants, the transformation law for Ai under the local transformations has
the form

Āi = Ai − ∂iln| � |,
where � = Det(Si

j). Thus, the local transformations of potential P i
jk reduced

to the gauge transformations of the potential of the electromagnetic ˇeld Ai.
For completeness of the picture we shall also consider the arbitrary coordinate
transformations of Ai. From (4) one can derive that Ai transforms as follows:

Ãi = (Am − ∂mln|J |)∂xm

∂x̃i
,

where J = |∂x̃
∂x | is the Jacobian of the transformation. It is interesting to point

out that any arbitrary coordinate transformation is accompanied by the gauge
transformation. Since Fij = ∂iAj −∂jAi, the question on the nature of the gauge
transformations is completely solved and geometrical origin of the electromagnetic
ˇeld is recognized.

Now we have to solve two problems. If generalized electromagnetic ˇeld
represents dark matter it should be massive (whereas electromagnetic ˇeld is
massless), and the other problem is the general covariant gauge ˇxing that is
provided by the Cauchy problem for the ˇeld in question. The distinctive feature
of the generalized electromagnetic ˇeld is that it is self-interacting: it is non-linear
even in the absence of other ˇelds. Two potentials P̄i and Pi are physically
equivalent if there is a local transformation which takes Pi into P̄i, and clearly
P̄i satisˇes the ˇeld equations if and only if Pi does. In order to obtain a
deˇnite member of the equivalence class of potentials one has to introduce general
covariant gauge conditions. These conditions have to remove the sixteen degrees
of freedom and lead to unique solution for the potential components. To solve
these problems we suggest that gauge ˇxing is an internal property of the system
in question and introduce very important notion of the vacuum of generalized
electromagnetic ˇeld.

3. VACUUM

We have a vacuum if Hij = 0 and so the energy density of the generalized
electromagnetic ˇeld is equal to zero. On the other hand, Pi �= 0 so the vacuum
has a structure. Let four linear-independent covector ˇelds be given Eµ

i , p =
Det(Eµ

i ) �= 0. Greece indices belong to the internal symmetry which we shall
in what follows connect with internal symmetry inherent in the Dirac equation,
whereas Latin indices are coordinate. Under a general transformation xi = x̃i(x)
of the coordinate system, each of these ˇelds transforms as follows:

Ẽµ
i = Eµ

k

∂xk

∂x̃i
, µ = 0, 1, 2, 3.
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From the Eµ
i one can purely algebraically construct components of the four vector

ˇeld Ei
µ, so that

Ei
µEµ

j = δi
j, Ei

µEν
i = δν

µ (16)

hold valid. If we put P i
jk = V i

jk , where

V i
jk = Ei

µ∂jE
µ
k , (17)

then it is easy to show that this is the solution of the vacuum equation Hij = 0
for any Eµ

k . If V̄i is another solution then it can be shown that Ēi
µ = Si

kEk
µ and

V̄i = SViS
−1 + S∂iS

−1. Thus, the vacuum of generalized electromagnetic ˇeld
is again a potential ˇeld (E, V ) with Eµ

i being potential and Vi being strength.
Now we introduce the tensor ˇeld

Qi
jk = P i

jk − V i
jk, (18)

which can be called the deviation of the generalized electromagnetic ˇeld with
respect to a vacuum. It is evident that under the local transformations the deviation
tensor transforms as follows:

Q̄i = SQiS
−1.

The tensor Q is reducible and in what follows we shall consider the irreducible
deviation tensor

T i
jk = Qi

jk − 1
4
Qm

jmδi
k, Tj = Qj −

1
4
(TrQj)E.

With this we can consider the general covariant and gauge invariant Lagrangian
of the generalized electromagnetic ˇeld in the following form:

LP = −1
4
Tr(HijH

ij) − µ2

2
Tr(TiT

i), (19)

where µ is a constant, which has dimension of cm−1. It is natural to identify
this constant with the length that characterizes the interactions of the dark matter
ˇeld with gravitational ˇeld, µ = 1/λ. Varying (19) with respect to Pi we get
the following equations:

1
√

g
Di(

√
gHij) = µ2T j. (20)

We see that in some sense one can treat µ as the effective mass of the heavy
photon. Since trace of T i equals zero, from (20) it follows that photon remains
massless. From (20) it follows that T i has to satisfy the equation

1
√

g
Di(

√
gT i) = 0, (21)
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since in accordance with (7) DiDj(
√

gHij) = 0. It is very important that the
same equation appears under varying (19) with respect to Ei

µ. Equation (21)
represents sixteen additional constraints on the potential Pi.

However Eqs. (20) and (21) are invariant with respect to the local transfor-
mations and hence we still have a problem of gauge ˇxing. To ˇnd its natural
solution we can look for the geometrically motivated equations for the vacuum
ˇeld, which are not invariant with respect to the transformations of the local
symmetry group Gi. It is interesting that such a possibility really exists.

4. EQUATIONS OF THE VACUUM FIELD

The local symmetry will be broken if we introduce the quantity

U i
jk = Ei

µ(∂jE
µ
k − ∂kEµ

j ). (22)

From the deˇnition it follows that U i
jk is evidently a tensor ˇeld antisymmetric

in covariant indexes. On the other hand, from (5) it follows that this tensor
is not geometrical object with respect to the local symmetry group. The tensor
U i

jk deˇnes no representation of the group Gi. Thus, it is convenient for our
goal. Further we shall establish geometrically motivated Lagrangian that can be
constructed for this vacuum tensor ˇeld. It leads us to the investigation of the
geometry of afˇne space which is characterized by the connection

Li
jk = Γi

jk + U i
jk, (23)

where the ˇrst summand is given by expression (1). Physical meaning of this
connection is to investigate two quite independent potential ˇelds in the uniform
geometrical framework. Consider the most important geometrical quantity deˇned
by connection (23). For the Riemann tensor as a function of the potentials of
gravity and vacuum we have

Bijk
l = Rijk

l + ∇iU
l
jk −∇jU

l
ik + U l

imUm
jk − U l

jmUm
ik , (24)

where
Rijk

l = ∂iΓl
jk − ∂jΓl

ik + Γl
imΓm

jk − Γl
jmΓm

ik (25)

is the Riemann curvature tensor of metric gij and ∇i as earlier stands for the
covariant derivative with respect to the Christoffel connection (1)

∇iU
l
jk = ∂iU

l
jk + Γl

imUm
jk − Γm

ij U l
mk − Γm

ikU l
jm.

By contraction we get from (24) the tensor

Bjk = Bijk
i = Rjk + ∇iU

i
jk −∇jU

i
ik + U i

imUm
jk − U i

jmUm
ik , (26)

10



where Rjk is the Ricci tensor. From (26) one can ˇnd by contraction with metric
the following expression for the scalar:

B = gjkBjk = R + gjkU l
jmUm

kl −∇jU
j,

where R is the Ricci scalar curvature and U j = gjkUk = gjkU l
lk. Hence,

connection (23) uniquely determines the geometrical Lagrangian of the potential
ˇelds of curvature and vacuum which is a natural generalization of the EinsteinÄ
Gilbert Lagrangian of the gravitational ˇeld. Thus, we shall derive equations
describing the interactions of the gravitational and vacuum ˇelds from the action

A =
c3

2G

∫
B
√

gd4x. (27)

From (27) it follows that connection (23) uniquely determines the Lagrangian Lv

of the vacuum ˇeld itself

Lv =
1
2
gjkU l

jmUm
kl . (28)

It is natural that the Lagrangian of the vacuum ˇeld like the dark matter La-
grangian contains no derivatives of the components of the gravitational potential,
since U i

jk can be considered as a strength with respect to Eµ
i .

To conclude this section, we establish one more interesting connection be-
tween two potential ˇelds in question. Standard Lagrangian of the gravitational
ˇeld Lg = R contains the second order derivatives of gij and this leads to the
known difˇculties [4]. Let us show, that this Lagrangian can be generally
covariantly reduced to the Lagrangian without the second order derivatives of gij .

Introduce a binary tensor ˇeld

Bi
jk = Ei

µ∇jE
µ
k = V i

jk − Γi
jk. (29)

Setting
V i

jk = Γi
jk + V i

jk − Γi
jk = Γi

jk + Bi
jk

and following closely the line deˇned by (24) and (26), we derive the relation

0 = Rjk + ∇iB
i
jk −∇jB

i
ik + Bi

imBm
jk − Bi

jmBm
ik .

From the last formula it follows that:

R + ∇i(gjkBi
jk − gikBl

lk) = gjk(Bi
jmBm

ik − Bi
imBm

jk).

Thus, the EinsteinÄHilbert Lagrangian is equivalent to the Lagrangian

Lgv = gjk(Bi
jmBm

ik − Bi
imBm

jk),

which is deˇned by the vacuum ˇeld and may be more convenient in the quantum
theory of the gravitational ˇeld.

11



5. CURVATURE AND VACUUM IN INTERACTION

Varying action (27) with respect to gij , we get the Einstein equations

Gij = Tij ,

where
Tij = gijLv − Uk

ilU
l
jk (30)

is the metric tensor energyÄmomentum of the vacuum ˇeld. From (28) and (30)
it follows that gijTij = 2Lv, and hence equations of the vacuum ˇeld are not
conformally invariant. It is yet another general property of gravity and vacuum
ˇelds.

Now we make small variations in our ˇeld quantities El
µ. It is convenient to

introduce tensor
F ij

k = gilU j
lk − gjlU i

lk = U ij
k − U ji

k

with inverse transformation

U i
jk =

1
2
(gilFmn

l gjmgkn + gjlF
il
k − gklF

il
j ).

Since
U i

jk = Ei
µ(∂jE

µ
k − ∂kEµ

j ) = Ei
µ(∇jE

µ
k −∇kEµ

j ),

we get sequentially (28),

δB = δLv = F jk
l (∇jE

µ
k )δEl

µ + F jk
l El

µ∇jδE
µ
l . (31)

With (16) we get
δEν

k = −Eν
l Eµ

k δEl
µ.

By this, the second term in the right-hand side of (31) can be presented in the
following form:

∇j(F
jk
l El

µδEµ
l ) + Eµ

k (∇jF
jk
l + F jk

m Eν
l ∇jE

m
ν )δEl

µ.

Thus, the variational principle provides the following equation for the potential
of the vacuum ˇeld:

Eµ
k∇jF

jk
l + F jk

l ∇jE
µ
k + F jk

m Eµ
k Eν

l ∇jE
m
ν = 0.

It is possible to rewrite this equation in more symmetrical form (without covariant
derivative of the potential). With (16) and (29) we have

Eν
l ∇jE

m
ν = −Em

ν ∇jE
ν
l = −Bm

jl , ∇jE
µ
k = Bm

jkEµ
m

12



and hence equation of the vacuum ˇeld has the following form:

∇jF
jk
l + Bk

jmF jm
l − Bm

jl F
jk
m = 0. (32)

Like the equations of the gravitational ˇeld and dark matter ˇeld the equation of

the vacuum ˇeld is essentially nonlinear. Let
v

∇i be a covariant derivative with
respect to the connection (17). Since

∇jF
jk
l =

v

∇j F jk
l − Bj

jiF
ik
l − Bk

jmF jm
l + Bm

jl F
jk
m ,

equation of the vacuum ˇeld (32) can be presented in the following most simple
form:

(
v

∇j −Bj)F
jk
l = 0, (33)

where Bi is a contraction of the binary tensor ˇeld (29), Bi = Bk
ki.

In conclusion of this section we would like to point out on possible appli-
cations of the equations derived. It is of interest to ˇnd spherically symmetric
solution of the system of equations (Einstein equations plus (33)) and then inves-
tigate the corresponding metric of the generalized Schwarzschild solution.

Now we shall consider the interactions of generalized electromagnetic ˇeld
with matter in the framework of the Dirac theory that is very important since it
is known nothing about the interactions of the dark matter ˇeld with luminous
matter.

6. THE DIRAC EQUATION IN GENERAL COVARIANT FORM

The description of the interactions between the matter and dark matter we
will provide in the framework of the Dirac equation, which is the basis for the
description of matter. It is one of the fundamental principles of modern geometry
and theoretical physics that laws of geometry and physics do not depend on the
choice of coordinate systems. It is natural to write all equations in the coordinate
basis since the problem to rewrite these equations in any other basis is formal
and hence trivial task. In our days this statement is as canonical as the energy
conservation. Let us show that original Dirac equation is in full agreement with
this fundamental statement and that it is deˇned by the internal symmetry. As
is known, internal symmetries play fundamental role in modern physical theories
and hence it is very important to have clear understanding of the role of internal
symmetries in the Dirac equation, which is the basis for all modern theories of
elementary particles and their interactions, in particularly, Dirac's Hamiltonian
deˇnes entirely the spaceÄtime sector of the standard model.

Let C4 be a linear space of columns of four complex numbers ψ1, ψ2, ψ3, ψ4.
Linear transformations in this space can be presented by the complex matrices

13



(4× 4). The set of all invertible (4× 4) complex matrices forms a group denoted
by GL(4,C). Dirac's γµ matrices belong to GL(4,C) and obey anticommutation
relations

γµγν + γνγµ = 2ηµν ,

where ηµν is digital matrix such as the inverse matrix ηµν deˇnes the commutation
relations of the Poincar�e group. In the case of the Poincar�e group it is possible
to write the structure relations with help of matrix ηµν and signs plus and minus
but for our consideration the explicit form of the matrix ηµν is not important.
One should only not confuse ηµν with the Minkowski metric gij , which has quite
another sense.

From γµ one can construct sixteen linear-independent matrices that form a
basis of the Lie algebra of GL(4,C). This basis is especially important since
the matrices Sµν = 1

4 (γµγν − γνγµ) form the basis of the Lie algebra of the
Lorentz group (subgroup of GL(4,C).) Thus, we suppose that the Dirac spinor
is an element of the space C4 where the group GL(4,C) acts that is equipped
with the matrix ηµν . For better understanding it should be noted that in the space
C3 there are no matrices like γµ.

If one considers ψ1, ψ2, ψ3, ψ4 as a set of complex scalar ˇelds on the
spaceÄtime manifold then the Dirac spinor ˇeld emerges on the manifold which
is a basis of irreducible representation of the group GL(4,C). It is not difˇcult to
understand that GL(4,C) is a group of internal symmetry since its transformations
involve only functions of the spinor ˇeld and do not affect the coordinates. In
other words, spin symmetry is an internal symmetry.

Now, on this ground we consider general covariant formulation of the Dirac
equation in the Minkowski spaceÄtime. We shall follow the fundamental physical
principle that was mentioned above. With respect to an arbitrary curviliner system
of coordinates Minkowski spaceÄtime is characterized by the metric

ds2 = gijdxidxj

of the Lorentz signature, which satisˇes the equation Rijk
l = 0 and topology

R4. At given gij , the generators of the group of spaceÄtime symmetry can be
presented as a set of linear-independent solutions of general covariant system of
equations (Killing's equations)

Ki∂igjk + gik∂jK
i + gji∂kKi = 0

for a vector ˇeld Ki. In the case of the Minkowski metric we have ten linear-
independent solutions of the Killing equations, which are denoted Ki

µ and Ki
µν =

−Ki
νµ and hence the Greek indices enumerate vector ˇelds and take the values

0, 1, 2, 3, like coordinate Latin indices.

14



It is well known that the generators of the Poincar�e group

Pµ = Ki
µ

∂

∂xi
, Mµν = Ki

µν

∂

∂xi

satisfy the following commutation relations:

[Pµ,Pν ] = 0, (34)

[Pµ,Mνλ] = ηµνPλ − ηµλPν . (35)

It is evident that all these relations are general covariant and that the operators

Pµ = Ki
µ

∂

∂xi
transform a scalar ˇeld into the scalar one.

Now we shall show that the general covariant Dirac equation has the form

iγµPµψ =
mc

�
ψ, (36)

where ψ is a column of four complex scalar ˇelds in question and Pµ are the
generators of spaceÄtime translations. To be exact in all details let us explain what
does it mean that the Dirac equation is general covariant. Transformation ϕ of
the local group of diffeomorphisms (group of general coordinate transformations)
can be represented by the smooth functions

ϕ : xi ⇒ ϕi(x), ϕ−1 : xi ⇒ f i(x), ϕi(f(x)) = xi.

Induced transformation of the metric tensor is of the form

g̃ij(x) = gkl(f(x))fk
i (x)f l

j(x),

where fk
i (x) = ∂if

k(x). For the scalar and vector ˇelds we have

ψ̃(x) = ψ(f(x)), P̃ i(x) = P k(f(x))ϕi
k(f(x)),

where ϕi
k(x) = ∂kϕi(x). It is not difˇcult to verify that if Ki(x) is a solution of

the Killing equations for the metric gij(x), then K̃i(x) is a solution of the Killing
equations for the metric g̃ij(x). Further, if ψ(x) is a solution of Dirac equation
(36), then ψ̃(x) will be a solution of Eq. (36) when Ki

µ(x) is substituted by

the K̃i
µ(x). Besides the transformations of the diffeomorphisms group conserve

the form of the commutation relations of the Poincar�e group. Dirac's equation is
covariant with respect to the general coordinate transformations. It is known that
in the Minkowski spaceÄtime there is preferred class of the coordinate systems.
In the preferred system of coordinates Dirac equation (36) has a customary form.

It is also clear that Eq. (36) is equivalent to the equation

iγ̃µPµψ =
mc

�
ψ,
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if γ̃µ = SγµS−1, where S ∈ GL(4,C) (Dirac equation (36) is covariant with
respect to the transformations of the group GL(4,C)).

Now we have found enough to provide some valuable insights into the con-
nection between the spaceÄtime and internal transformations. Let us consider
again the generators of the internal Lorentz group Sµν = 1

4 (γµγν − γνγµ) and
pay attention to the commutation relations:

[γµ, Sνλ] = ηµνγλ − ηµλγν . (37)

Comparing (35) and (37) it is not difˇcult to verify that the operators

Lµν = Mµν + Sµν

commute with the Dirac operator D = iγµPµ and satisfy the commutation rela-
tions of the Poincar�e group. Thus, in the Minkowski spaceÄtime there is a relation
between the internal symmetry group and the spaceÄtime symmetry group. The
consequence is that Dirac's equation (36) is invariant with respect to the trans-
formations of the Poincar�e group. Thus, the geometrical and group-theoretical
meaning of both spinor and original Dirac equation is quite clear. We see that
structure of the Dirac equation is deˇned by the internal symmetry and the deriv-
atives with respect to the given directions. In considered case these derivatives
coincide with generators of the translation group. In this respect the Dirac equa-
tion differs radically from the Einstein equation, where internal symmetry has no
role at all. The spinor enters into the world of tensors as four-component com-
plex scalar ˇeld being a carrier of internal symmetry, which, thus, was discovered
together with the Dirac equation.

Consider now the possible natural generalizations of the general covariant
Dirac equation. We will strive to realize project when diffeomorphisms group
is the group of invariance (not covariance) of generalized theory and internal
symmetry remains without change. There is only one natural way to do this and
it will be subject of our consideration in later sections.

7. GENERALIZATION OF THE DIRAC THEORY

In this section it is shown that a spinor ˇeld can be presented as a natural
origin of the vacuum potential ˇeld, considered above.

We take that the canonical energyÄmomentum tensor plays fundamental role
in the theory of the spinor ˇelds and in accordance with this the generalized
Dirac's Lagrangian has the form

LD =
i

2
Ei

µ

(
ψ̄γµDiψ − (Diψ̄)γµψ

)
− mψ̄ψ, (38)
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where Ei
µ are contravariant components of the potential of vacuum,

Diψ = (∂i − iqAi)ψ, Diψ̄ = (∂i + iqAi)ψ̄, Ai = P k
ik.

It is evident that varying (38) with respect to Ei
µ results in canonical energyÄ

momentum tensor of the spinor ˇeld. Lagrangian (38) is invariant with respect
to the substitutions

ψ ⇒ eiϕψ, ψ̄ ⇒ e−iϕψ̄, Ai ⇒ Ai + ∂iϕ,

and hence it is general covariant and invariant with respect to the local transfor-
mation of the group Gi. Action has the form

A = �

∫
LD p d4x,

where p = Det(Eµ
i ). Since

Ei
µ∂jE

µ
i =

1
p
∂jp,

this action leads to the Dirac equations in the presence of external vacuum and
electromagnetic ˇelds

iEi
µγµ(Di +

1
2
Ui)ψ = mψ, (39)

iEi
µ(Di +

1
2
Ui)ψ̄γµ = −mψ̄, (40)

where, as earlier, Ui = Uk
ik.

Setting

Wµ
i =

i

2
(ψ̄γµDiψ − (Diψ̄)γµψ),

we have LD = P i
µWµ

i − mψ̄ψ. Hence, from the action

A = �

∫
LD p d4x +

c3

G

∫
Lv

√
gd4x, g = −Det(gij)

we verify (in accordance with (33)) the following equations for the potential of
the vacuum ˇeld:

∇jF
jk
l + Bk

jmF jm
l − Bm

jl F
jk
m + l2W k

l = 0, (41)

where
W k

l = εEk
µWµ

l , ε = p/
√

g.
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Equations (41) generalize Eq. (33) and together with Dirac equations (39) and
(40) explain clearly how the vacuum ˇeld interacts with the spinor ˇeld. The
potential of the generalized electromagnetic ˇeld enters into the Dirac Lagrangian
only in the form of the trace of P i

jk. The other possibility does not exist. From
Eqs. (41) an interesting relation can be derived. By summing over the indices k
and l we get that a trace of U i

jk satisˇes the following equation:

∇iU
i = mψ̄ψ, (42)

where U i = gikUk. We conclude that for m = 0 the interactions of the vacuum
and spinor ˇelds are characterized by a new conserved quantity. Indeed, this fact
simply means that the action is invariant under the mapping

Eµ
i → aEµ

i , ψ → a− 1
2 ψ,

where a is dimensionless constant. Thus, the introduction of the vacuum ˇeld
into the framework of the standard model may shed new light on the mechanism
of the lepton mass generation.

From the action

A = β2
�

∫
LP

√
g d4x + �

∫
LD p d4x

we derive the equations of the generalized electromagnetic ˇeld (dark matter ˇeld)
in interaction with the spinor ˇeld

1√
|g|

Di(
√
|g|Hik) +

q

β2
JkE = µ2T j, (43)

where
J i = εEi

µψ̄γµψ

is the Dirac vector of current. Thus, the basic equations of the considered ˇelds
are derived.

Now it is important to exhibit the equations that follow from the equations
derived. To this end we shall establish the identities for the Lagrangians of the
ˇelds in question. Identity for the Lagrangian of the vacuum ˇeld may be written
as follows:

∂jLv = ∇iS
i
j − Bi

jkSk
i + ∇i(Hk

ilH
l
jk), (44)

where

Si
j = ∇kF ki

j + Bi
klF

kl
j − Bl

kjF
ki
l = Ei

µ

δLv

δEj
µ

.

It is necessary to illuminate the important points under the derivation of identity
(44). We have

∂jLv = F ik
l (∇jE

l
µ)∇iE

µ
k + F ik

l El
µ∇j∇iE

µ
k .
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With Ricci's identity

∇j∇iE
µ
k = ∇i∇jE

µ
k − Rjik

lEµ
l

we can represent the second term in the right-hand side of the starting relation in
the following form:

∇i(F ik
l El

µ∇jE
µ
k ) − (∇i(F ik

l El
µ))∇jE

µ
k − F ik

l Rjik
l.

For the further transformations one needs to use identity

F ik
l Rjik

l = ∇i∇kF ik
j .

For Dirac's Lagrangian one can derive the identity

∂jLD = Djψ̄
δLD

δψ̄
− δLD

δψ
Djψ̄ +

1
ε
(∇iW

i
j − Bi

jkW k
i + eFjiJ

i).

From this identity it follows in accordance with (39) and (40) that the circulation
of the energy of the spinning matter is deˇned by the equation

∇iW
i
j − Bi

jkW k
i + qFjiJ

i = 0, (45)

when the electromagnetic and vacuum ˇelds are present. The canonical energyÄ
momentum tensor W i

j of the spinning matter is not symmetric.

CONCLUSION

Here we suggest an experiment to test the formulated theory. It is suggested
to measure the gravitational acceleration of electrons and positrons in the Earth
gravitational ˇeld. The motivation is as follows.

In 1967 Witteborn and Fairbank measured the net vertical component of
gravitational force on electrons in vacuum enclosed by a copper tube [5]. This
force was shown to be less than 0.09 mg, where m is the inertial mass of
the electron and g is 980 cm/s2. They concluded that this result supports the
contention that gravity induces an electric ˇeld outside a metal surface, of such
magnitude and direction that the gravitational force on electrons is cancelled.
If this is true, then the positrons will fall in this tube with the acceleration of
a = 2g. The conclusion from the theory presented here is that electrons and
positrons do not interact with the gravitational ˇeld directly but only through
the vacuum ˇeld and electromagnetic channel. And the result presented by the
measurements may be considered as an estimation for the energy of vacuum ˇeld
generated by electron (and positron). Thus, the new measurements of the net
vertical component of the force on positrons in vacuum enclosed by a copper
tube will have the fundamental signiˇcance for understanding of the conceptual
basis of contemporary theoretical physics and for the understanding of the nature
of dark matter as well.
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