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Geometrization of the Electromagnetic Field and Dark Matter

A general concept of potential field is introduced. The potential field that one
puts in correspondence with dark matter, has fundamental geometrical interpretation
(parallel transport) and has intrinsically inherent local symmetry. The equations of
dark matter field are derived that are invariant with respect to the local transforma-
tions. It is shown how to reduce these equations to the Maxwell equations. Thus,
the dark matter field may be considered as generalized electromagnetic field and a
simple solution of the old problem is given to connect electromagnetic field with
geometrical properties of the physical manifold itself. It is shown that gauge fixing
renders generalized electromagnetic field effectively massive while the Maxwell elec-
tromagnetic field remains massless. To learn more about interactions between matter
and dark matter on the microscopical level (and to recognize the fundamental role of
internal symmetry) the general covariant Dirac equation is derived in the Minkowski
space—time which describes the interactions of spinor field with dark matter field.
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INTRODUCTION

The problem of invisible mass [1,2] is acknowledged to be among the
greatest puzzles of modern cosmology and field theory. The most direct evidence
for the existence of large quantities of dark matter in the Universe comes from
the astronomical observation of the motion of visible matter in galaxies [3].
One neither knows the identity of the dark matter nor whether there is one or
more types of its structure elements. The most commonly discussed theoretical
elementary particle candidates are a massive neutrino, a sypersymmetric neutralino
and the axion. So, at present time there is a good probability that the set of known
fields is by no means limited to those fields. Moreover, we are free to look for
deeper reasons for the existence of new entity unusual in many respects. Of
course, such reasoning is grounded on the point of view that there is a general
and easily visible mathematical structure that stands behind the all phenomena
that we observe.

Here a field theory of the so-called dark matter is derived from the first
principles. A general concept of potential field is introduced. We connect one
of these fields with the problem of dark matter. The field that we put in corre-
spondence with dark matter has fundamental geometrical interpretation (parallel
transport) and has intrinsically inherent local symmetry. The equations of dark
matter field that are invariant with respect to the local transformations are derived.
It is shown how to reduce these equations to the Maxwell equations. Thus, the
dark matter field may be considered as generalized electromagnetic field and at the
same time we get a simple solution of the old problem raised by Weyl, Einstein
and Eddington to connect electromagnetic field with geometrical properties of the
physical manifold itself. The idea is that process of local symmetry breaking is
an intrinsic property of the system itself which means that gauge fixing cannot be
arbitrary. This approach is realized here in the framework of the concept of dark
matter field vacuum.

It is interesting that the vacuum field belongs to the set of potential fields.
It should be noted that gauge fixing renders generalized electromagnetic field
effectively massive while the Maxwell electromagnetic field remains massless
(particle of dark matter is a heavy photon). To learn more about interactions
between matter and dark matter on the microscopical level the general covariant
Dirac equation is derived in the Minkowski space—time and in course of this
the fundamental role of internal symmetry is recognized. On this ground the
Dirac equation is derived which describes the interactions of spinor field with
dark matter field. From this it follows the general conclusion that interactions
of generalized electromagnetic field with Dirac spinor field occur only via the



electromagnetic field and the above-introduced dark matter field vacuum. The
general conclusion is that a dark matter gravitates but there is no actually direct
interactions of this new form of matter with known physical fields that represent
luminous matter. A rather simple and feasible experiment is proposed to verify
this conclusion.

The paper is organized as follows. The first two sections are the basis for all
considerations. Section 1 contains the geometrically motivated general definition
of the concept of potential field. The conjecture is put forward that all potential
fields have a geometrical interpretation. It is shown that in general case a parallel
transport is an exact realization of the abstract concept of potential field. We
consider this realization as a new physical field (dark matter field). In Sec.2
the equations of the dark matter field are derived. Section 3 deals with the
vacuum of this field. The equations of vacuum field are considered in Secs.4
and 5. Section 6 treats the general covariant Dirac equation in the Minkowski
space—time with careful consideration of internal and space—time symmetries and
connection between them. In Sec.7 the theory of interactions of the mentioned
above potential fields with matter (spinor field) is formulated. The source of
the dark matter vacuum field is the circulation of the energy of the spinning
matter, which is expressed in the direct connection between the potential of the
dark matter vacuum field and the canonical tensor energy—momentum of spinning
matter. Thus, it is shown that the canonical energy—momentum tensor plays
fundamental role in the theory of the spinor fields. And finally, Sec. 8 provides a
proposal of rather simple experiment that can give answer the series of principal
questions.

1. CONCEPT OF POTENTIAL FIELD

First of all, we shall consider the necessary elements of general mathematical
structure. According to the modern viewpoint a fundamental physical theory is the
one that possesses a mathematical representation whose elements are smooth man-
ifold and geometrical objects defined on this manifold. Most physicists nowadays
consider a theory to be fundamental only if it makes explicit use of this concept.
It is thought that curvature of the manifold itself provides an explanation of grav-
ity. Within the manifold, further structures are defined including vector fields,
connections, particle path, and so forth, and these are taken into account for the
behavior of physical world. This picture is generally accepted and it is based on
such a long history of physical research, that there is no reason to question it.
Another element is the concept of potential field.

If we take the components of symmetrical covariant tensor field g;; and form
its derivatives (0;g;1) then these derivatives are neither the components of a tensor
nor of any geometrical object. However, from g;; and these partial derivatives



one can form (with the help of algebraic operations only) a new geometrical
object

I = %gzl(ajgkl + 059k — 019jk)s (1)
which is called Christoffel connection, where g“ are contravariant components of
the g;;. Now we can formalize this particular case and give general definition of
the potential field.

If some geometrical object (or a geometrical quantity) is given and from
the components of this object and its partial derivatives one can form (using the
algebraic operations only) a new geometrical object (or geometrical quantity),
then we deal with a new geometrical quantity that will be called a potential field.
Potential field is characterized by the potential P and strength H and in what
follows will be written in the form (P, H). Connection between the potential and
strength is then called a natural derivative and in symbolic form can be written
as H = OP. If we go back to our starting point, then g;; is a potential and F;k is
a strength of potential field (g, I"), known after Einstein as the gravitational field.

Now we introduce another very important and geometrically motivated po-
tential field. The most important geometrical notions are the metric g;; and
parallel transport or linear (affine) connection P}k. Tensor field g;; is symmetric,
gij = gji, but linear connection P;k in general is nonsymmetric with respect to
the covariant indices, P;k * P,ij and in any way does not link with the metric
gi;.- In fact, these notions define, on a manifold M, different geometric opera-
tions. Namely, a metric on a manifold gives for each curve its length and linear
connection defines the parallel transport of vectors along any path on M. Let us
consider a vector field E*(z). Equation of local parallel transport from a point z*
to a point 2° + dz* has in general the form

dE'(z) = — P (x)E* (z)da’, )

where functions P;k(a:) are components of a new geometrical object on the
manifold, called a linear connection P. Under a parallel transport along the
infinitesimal closed curve the change of the vector is equal to the quantity

AEk = — ijlkEldJ?iéJ?j,
where
Hijlk - 81'Pﬁ - 8_7P’L]? + Pz]:nP]Tln - ijmP'LYln (3)

is a tensor field of type (1, 3), called the Riemann tensor of the connection P]?k.
Now we go back to the definition of potential field and see that parallel transport
defines new potential field (P, H). At first glance, this is in contradiction with
fundamental principle, which means that only irreducible quantity should enter



into the theory. Indeed, from (2) it follows that under a coordinate mapping

the transformation law for a Pj?k has the form
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Recall that a geometrical quantity is reducible if it is possible to find linear
combinations of its components which themselves constitute a new geometrical
quantity. As for linear connection under the coordinate mappings, it is a reducible
quantity which is easily seen from the expansion

) “)

1

Pjy =3

, , 1 . ,
(P;k+Plzj)+§(P;k_PIzj)'

From (4) it follows that a symmetrical part of the connection %(P]?k + P,ij), is
again the linear connection and the antisymmetrical part, %(Pjik - p} j) transforms
as a tensor field of type (1, 2). However, there is a very interesting structure
which allows one to consider parallel transport as potential field.

Let S]i» be components of a tensor field of type (1,1) (a field of linear operator),
Det(S%) # 0. Out of two tensor fields S% and Q) of type (1, 1) a tensor field
Pj =5 Qf of type (1, 1) may be constructed, called their product. With the
operation of multiplication thus defined, the set of tensor fields of type (1, 1) with
a nonzero determinant forms a group, denoted by G;. This is a natural group
of local symmetry on a manifold. At given vector field E?, any element of the
group G; defines a bundle of vector fields, which is defined as follows:

B =SiE, B =T, ec,

where T]? are components of the field S~! inverse to S, S,i,Tf = 5; It is clear
that notion of the parallel transport is not applied to the bundle of the vector
fields. From (2) it follows that the parallel transport of the bundle of the vector
fields is defined by the bundle of the linear connections, which is defined by the
relation

P = SL PRI + S50, T

m* jn
It is easy to see that for the bundle of linear connections the expansion considered
above has no sense, so the tensor P}k - P} ; 1s evidently not a geometrical quantity
with respect to the transformations of the local group.
Thus, we shall expand the diffeomorphism group to include into the consid-
eration the group of local symmetry G;, defined above. It can be shown that the
diffeomorphism group is the group of external automorphisms of the group of



local symmetry, i.e. the group G; is invariant under the transformations of the
group Diff (M). Thus, we have a nontrivial unification of these symmetries and
possibility to consider one more potential field.

We conclude that we really introduce geometrically motivated potential field
(P, H), but the theory of this field should be invariant not only with respect to the
general transformations of the coordinates but with respect to the transformations
of the local symmetry group GG; as well. We put in correspondence to this field
the so-called dark matter and develop theory of the dark matter as the theory of
this new potential field.

For brevity, we will use in what follows the matrix notation:

Py =(P}), E=(8), Hi=(Hy"), S=(5), TxS=5],
in which the transformation law of the potential P; is of the form
Pj=SP;S™' + 59,87 = P+ SD;S™*, (5)
where D; stands for the important operator
D;S=0;S+PS—-SP,=0,S+ [P, S5],

which is especially convenient when one deals with local symmetry in question.
In what follows we shall meet many examples of this. Relation (5) is indeed the
transformation of the connection, since SD;S ! is a tensor field of type (1, 2) and
on this reason P; is the connection with respect to the coordinate transformations.
Since the connection between the potential and strength in matrix notation is
given by the formula

Hij = &-Pj - 8]»Pi + [Pi, Pj],
from (5) it follows that under the transformations of the group G; the strength is
transformed as follows: -

Hij = SHijsil. (6)

For H;; we have

D;Hj = 0;Hjy, + [Pi, Hj),
and if D; is defined by potential P, then from (5) and (6) it follows that:

Diﬁjk = S(Dlij)571

In general case, the operator D; is not general covariant, however, the commutator
[D;, D;] is always general covariant and we get the important relation for the
strength tensor of dark matter

[Di, Dj|Hy = [Hij, Hi]- @)
Thus, in our approach the theory of the dark matter is tightly connected

with the local symmetry, it is general covariant and has a profound geometrical
interpretation.



2. FIELD EQUATIONS

The simplest general covariant and gauge invariant Lagrangian of the potential
P; is a direct consequence of (6)

1 3
Lp= —ZTr(Hin”), (8)

where HY = ¢**gi' H};. Varying the Lagrangian Lp with respect to P; and using
the relation dH;; = D;0P; — D;0F;, we obtain

§Lp=Tr iDi(\/ﬁH”‘) 0P —iaiﬂ(\/ﬁHijfspj%
V9 V9

and hence the following equations of the field hold valid:
1
V9

where g = —Det(g;;). From the properties of the operator D; it is not difficult to
see that Eq. (9) is invariant with respect to the local symmetry group. The tensor
character of this equation can be seen from the identity

Di(\/gH") =0, )

%Diwﬂ”) =¥ HY 4 wHY — (P}~ PL)H™,
where %i is the usual covariant derivative with respect to the connection P,
and w; = 0; In,/g — P,fi are the components of the covector field. Thus, it is
shown that the group of diffeomorphisms is the group of covariance of Eq. (9).
Equations (9) form the first group of the equations. The second one is presented
by the identity

Diij + D;H}m + DkHij = 0. (10)

From definition of the operator D; it follows that left-hand side of relation (10)
is a tensor and hence it is general covariant.

Varying the Lagrangian L p with respect to g/ we obtain the so-called metric
tensor of energy—momentum of the dark matter field

T;; = Tr(Hy H;*) + gi; Lp, (11)

where H;* = Hj;g". One can establish the identity

, 1 ik 1 ik
VT = Tr(ijﬁDi(\/EH“‘)) + 5 Te(H™ (DiHji + DjHy; + DiHij)).



With this equation and Eqs. (9) and (10) we see that the metric tensor of the
energy—momentum satisfies the equation

V. TY =0, (12)

where V; denotes as usual the covariant derivative with respect to the Christoffel
connection (1) and V! = g““Vk. It is evident that the metric tensor energy—
momentum is invariant with respect to the group of local transformations in
question. Now we can write down the full action for the fields g;; and P;

3 B*h ij 4
A= [ Rvgate = [ gate

where R is the scalar curvature, G is the Newton gravitational constant, A is
the Planck constant, and 3 is dimensionless constant. From the geometrical
interpretation of the field P it follows that it has the dimension of cm~!. As all
coordinates can be considered to have the dimension of cm, the action A has a
correct dimension.

Varying the full action A with respect to g/ we derive the Einstein equation

1
R — §gin = BTy, (13)

where | = y/hG/c? is the Planck length, and T;; is the metric tensor of energy—
momentum of dark matter field. Thus, it is shown that the interactions of the dark
matter field with the gravitational field are characterized by some length A = fl.
Equations (9), (10) and (13) are compatible in view of (12).

Equations (9) and (10) constitute the full system of the generalized Maxwell
equations in geometrical representation and new field (dark matter field) can
be considered as the generalized electromagnetic field. The arguments are as
follows. From the strength of the potential field in question it can be constructed
very interesting quantity that is invariant with respect to the transformations of
the group of local symmetry G;, namely

Fij = TI‘Hij. (14)

It is evident that F}; is an antisymmetrical tensor with respect to the transforma-
tions of coordinates. If H;; satisfies Eqs. (9) and (10), then taking the trace we
obtain that bivector Fj; satisfies the Maxwell equations
1
V9

Now consider a question concerning the vector potential of the electromagnetic
field. We put A; = TrP; = Pz’}C According to (5) and the differentiation rule for

9i(v/gF7) =0, 0;Fji + 0;Fyi + 0xFy; = 0. (15)



determinants, the transformation law for A; under the local transformations has
the form

where A = Det(S]i»). Thus, the local transformations of potential P]?k reduced
to the gauge transformations of the potential of the electromagnetic field A;.
For completeness of the picture we shall also consider the arbitrary coordinate
transformations of A;. From (4) one can derive that A; transforms as follows:
m

A; = (A — 8mln|J|)%,
where J = |%| is the Jacobian of the transformation. It is interesting to point
out that any arbitrary coordinate transformation is accompanied by the gauge
transformation. Since Fj; = 0;A; — 0;A;, the question on the nature of the gauge
transformations is completely solved and geometrical origin of the electromagnetic
field is recognized.

Now we have to solve two problems. If generalized electromagnetic field
represents dark matter it should be massive (whereas electromagnetic field is
massless), and the other problem is the general covariant gauge fixing that is
provided by the Cauchy problem for the field in question. The distinctive feature
of the generalized electromagnetic field is that it is self-interacting: it is non-linear
even in the absence of other fields. Two potentials P; and P; are physically
equivalent if there is a local transformation which takes P; into P;, and clearly
P; satisfies the field equations if and only if P, does. In order to obtain a
definite member of the equivalence class of potentials one has to introduce general
covariant gauge conditions. These conditions have to remove the sixteen degrees
of freedom and lead to unique solution for the potential components. To solve
these problems we suggest that gauge fixing is an internal property of the system
in question and introduce very important notion of the vacuum of generalized
electromagnetic field.

3. VACUUM

We have a vacuum if H;; = 0 and so the energy density of the generalized
electromagnetic field is equal to zero. On the other hand, P; # 0 so the vacuum
has a structure. Let four linear-independent covector fields be given EY, p =
Det(E!) # 0. Greece indices belong to the internal symmetry which we shall
in what follows connect with internal symmetry inherent in the Dirac equation,
whereas Latin indices are coordinate. Under a general transformation x? = ()
of the coordinate system, each of these fields transforms as follows:

n=0,1,2,3.



From the E! one can purely algebraically construct components of the four vector
field E’?, so that

w’

ELE} =65, E.E] =6, (16)
hold valid. If we put P]?k = Vjik, where
e = E,0,EY, (17)

then it is easy to show that this is the solution of the vacuum equation H;; = 0

for any EJ. If V; is another solution then it can be shown that E/, = S} E} and

V; = SV;S~! + 59;S7L. Thus, the vacuum of generalized electromagnetic field

is again a potential field (E, V) with E! being potential and V; being strength.
Now we introduce the tensor field

Qlx = Pl — Vi, (18)

which can be called the deviation of the generalized electromagnetic field with
respect to a vacuum. It is evident that under the local transformations the deviation
tensor transforms as follows:

Qi =SQiS™".

The tensor () is reducible and in what follows we shall consider the irreducible
deviation tensor

gk = Wik — 1 jm5ka T, =Q; — Z(Ter)E'
With this we can consider the general covariant and gauge invariant Lagrangian
of the generalized electromagnetic field in the following form:

1 g 2 .

Lp == Te(H;HY) - %Tr(TiTl), (19)
where 4 is a constant, which has dimension of cm~1, Tt is natural to identify
this constant with the length that characterizes the interactions of the dark matter
field with gravitational field, © = 1/A. Varying (19) with respect to P, we get
the following equations:

1
V9
We see that in some sense one can treat p as the effective mass of the heavy

photon. Since trace of T" equals zero, from (20) it follows that photon remains
massless. From (20) it follows that 7% has to satisfy the equation
1 ,
L Dy(ygT") =0, @1
7 V9

Di(y/gH"Y) = 1>T9. (20)



since in accordance with (7) D;D;(,/gH"”) = 0. It is very important that the
same equation appears under varying (19) with respect to Ej,. Equation (21)
represents sixteen additional constraints on the potential P;.

However Eqgs. (20) and (21) are invariant with respect to the local transfor-
mations and hence we still have a problem of gauge fixing. To find its natural
solution we can look for the geometrically motivated equations for the vacuum
field, which are not invariant with respect to the transformations of the local
symmetry group G;. It is interesting that such a possibility really exists.

4. EQUATIONS OF THE VACUUM FIELD
The local symmetry will be broken if we introduce the quantity
jk = EL(0; B} — O EY). (22)

From the definition it follows that Uj’fk is evidently a tensor field antisymmetric
in covariant indexes. On the other hand, from (5) it follows that this tensor
is not geometrical object with respect to the local symmetry group. The tensor
U ;k defines no representation of the group G,. Thus, it is convenient for our
goal. Further we shall establish geometrically motivated Lagrangian that can be
constructed for this vacuum tensor field. It leads us to the investigation of the
geometry of affine space which is characterized by the connection

Liy =T, U, (23)

where the first summand is given by expression (1). Physical meaning of this
connection is to investigate two quite independent potential fields in the uniform
geometrical framework. Consider the most important geometrical quantity defined
by connection (23). For the Riemann tensor as a function of the potentials of
gravity and vacuum we have

Biji' = Riji' + ViU}), — V;Ujy + UL URE = UL, U, (24)
where
Rij' = 0.Th, — 9;Th, + T}, T —Th T (25)

is the Riemann curvature tensor of metric g;; and V; as earlier stands for the
covariant derivative with respect to the Christoffel connection (1)

ViU, = 0,Ul, + T4, Uk = T2U y, — DU,

im“~ jk
By contraction we get from (24) the tensor

Bji, = Bijt' = Ry + ViUj, — VU, + UL, Ui = U UG (26)

im“jk — YimYik>

10



where R;y, is the Ricci tensor. From (26) one can find by contraction with metric
the following expression for the scalar:
ik ikyrl j
B = gj B]k = R—f—gj U_]mU/:? - v]’U‘],
where R is the Ricci scalar curvature and U7 = ¢/*U, = ¢/*U, llk. Hence,
connection (23) uniquely determines the geometrical Lagrangian of the potential
fields of curvature and vacuum which is a natural generalization of the Einstein—
Gilbert Lagrangian of the gravitational field. Thus, we shall derive equations
describing the interactions of the gravitational and vacuum fields from the action

CS 4

From (27) it follows that connection (23) uniquely determines the Lagrangian L,
of the vacuum field itself

1 .
Ly = 5¢""Ujn Ui (28)

It is natural that the Lagrangian of the vacuum field like the dark matter La-
grangian contains no derivatives of the components of the gravitational potential,
since U ;k can be considered as a strength with respect to E¥.

To conclude this section, we establish one more interesting connection be-
tween two potential fields in question. Standard Lagrangian of the gravitational
field L, = R contains the second order derivatives of g;; and this leads to the
known difficulties [4]. Let us show, that this Lagrangian can be generally
covariantly reduced to the Lagrangian without the second order derivatives of g;;.

Introduce a binary tensor field

;‘k = E}il,vng = jik - ;k (29)
Setting ‘ ‘ ‘ ‘ _ _
=T + Vi — 15 =T + By,
and following closely the line defined by (24) and (26), we derive the relation
0= Rj, + ViBj, — VB, + B, Bji — Bj,, By

7 im* gk

From the last formula it follows that:

R+ vi(gjkB;‘k - g"*Bj},) = ¢’*(B}

m 7 m
imPik T B; jk)'

m
Thus, the Einstein—Hilbert Lagrangian is equivalent to the Lagrangian
L.‘]U - gjk(B;mBsz - BszleLc)7

which is defined by the vacuum field and may be more convenient in the quantum
theory of the gravitational field.

11



5. CURVATURE AND VACUUM IN INTERACTION
Varying action (27) with respect to g;;, we get the Einstein equations
Gij = Ty,
where
Tij = 9ij Lo — U’SU]Z'IC (30)

is the metric tensor energy—momentum of the vacuum field. From (28) and (30)
it follows that g% T;; = 2L,, and hence equations of the vacuum field are not
conformally invariant. It is yet another general property of gravity and vacuum
fields.

Now we make small variations in our field quantities EL It is convenient to
introduce tensor N - o N -
Fy = g"Uj - ¢"'Ujp = Uy = U}
with inverse transformation
, 1 . , .
= 5(9”Fzmn9jmgkn + g — g ).
Since ‘ A A
= EL (0B} — 8kE;f) =E,(V;E) — VkE;f),
we get sequentially (28),
8B =6L, = F/*(V,E!)E!, + F/*E. V6 E}". (1)

With (16) we get
SEy = —E{E}/SE!,.

By this, the second term in the right-hand side of (31) can be presented in the
following form:

Vi (F/*ELSE) + Bl (V;F/* + FIFEYV BN,

Thus, the variational principle provides the following equation for the potential
of the vacuum field:

BUVFY 4+ F*V B + FIFEEEYY BT = 0.

It is possible to rewrite this equation in more symmetrical form (without covariant
derivative of the potential). With (16) and (29) we have

E;’V]Elt” = —E,C”’VjEl” = -BY7

it _ opm o
gl VJEk - B]kEm

12



and hence equation of the vacuum field has the following form:

V,;F/* + BY, F/™ — B FiF = 0. (32)

m

Like the equations of the gravitational field and dark matter field the equation of

v
the vacuum field is essentially nonlinear. Let ¥; be a covariant derivative with
respect to the connection (17). Since

V,F" =v; F* — B,F{* — B}, F/" + B Fil"

equation of the vacuum field (32) can be presented in the following most simple
form:

(v, —B;)F{* =0, 33)

where B; is a contraction of the binary tensor field (29), B; = B,’ji.

In conclusion of this section we would like to point out on possible appli-
cations of the equations derived. It is of interest to find spherically symmetric
solution of the system of equations (Einstein equations plus (33)) and then inves-
tigate the corresponding metric of the generalized Schwarzschild solution.

Now we shall consider the interactions of generalized electromagnetic field
with matter in the framework of the Dirac theory that is very important since it
is known nothing about the interactions of the dark matter field with luminous
matter.

6. THE DIRAC EQUATION IN GENERAL COVARIANT FORM

The description of the interactions between the matter and dark matter we
will provide in the framework of the Dirac equation, which is the basis for the
description of matter. It is one of the fundamental principles of modern geometry
and theoretical physics that laws of geometry and physics do not depend on the
choice of coordinate systems. It is natural to write all equations in the coordinate
basis since the problem to rewrite these equations in any other basis is formal
and hence trivial task. In our days this statement is as canonical as the energy
conservation. Let us show that original Dirac equation is in full agreement with
this fundamental statement and that it is defined by the internal symmetry. As
is known, internal symmetries play fundamental role in modern physical theories
and hence it is very important to have clear understanding of the role of internal
symmetries in the Dirac equation, which is the basis for all modern theories of
elementary particles and their interactions, in particularly, Dirac’s Hamiltonian
defines entirely the space—time sector of the standard model.

Let C* be a linear space of columns of four complex numbers 1)1, 2, 13, V4.
Linear transformations in this space can be presented by the complex matrices
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(4 x 4). The set of all invertible (4 x 4) complex matrices forms a group denoted
by GL(4,C). Dirac’s * matrices belong to GL(4, C) and obey anticommutation
relations

YA A =2,

where n#¥ is digital matrix such as the inverse matrix 7, defines the commutation
relations of the Poincaré group. In the case of the Poincaré group it is possible
to write the structure relations with help of matrix 7, and signs plus and minus
but for our consideration the explicit form of the matrix 7,, is not important.
One should only not confuse 7, with the Minkowski metric g;;, which has quite
another sense.

From ~* one can construct sixteen linear-independent matrices that form a
basis of the Lie algebra of GL(4,C). This basis is especially important since
the matrices S, = %('y,fy,, — YY) form the basis of the Lie algebra of the
Lorentz group (subgroup of GL(4,C).) Thus, we suppose that the Dirac spinor
is an element of the space C* where the group GL(4,C) acts that is equipped
with the matrix 7,,,,. For better understanding it should be noted that in the space
C? there are no matrices like y*.

If one considers 1, V2, 93, ¥4 as a set of complex scalar fields on the
space—time manifold then the Dirac spinor field emerges on the manifold which
is a basis of irreducible representation of the group GL(4, C). It is not difficult to
understand that GL(4, C) is a group of internal symmetry since its transformations
involve only functions of the spinor field and do not affect the coordinates. In
other words, spin symmetry is an internal symmetry.

Now, on this ground we consider general covariant formulation of the Dirac
equation in the Minkowski space-time. We shall follow the fundamental physical
principle that was mentioned above. With respect to an arbitrary curviliner system
of coordinates Minkowski space—time is characterized by the metric

ds? = gijdxidxj

of the Lorentz signature, which satisfies the equation R;j,' = 0 and topology
R*. At given g;;, the generators of the group of space-time symmetry can be
presented as a set of linear-independent solutions of general covariant system of
equations (Killing’s equations)

Kiaigjk + gikajKi + gjiakKi =0

for a vector field K°. In the case of the Minkowski metric we have ten linear-
independent solutions of the Killing equations, which are denoted K L and K fw =
-K} ., and hence the Greek indices enumerate vector fields and take the values
0,1, 2,3, like coordinate Latin indices.
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It is well known that the generators of the Poincaré group

P, = Kﬁ%, M,, = K}, 821,
satisfy the following commutation relations:
[P, P,] =0, (34)
[P Mya] = 0 Px = nuaPo. (35)

It is evident that all these relations are general covariant and that the operators

.0 .
P, = K|, =— transform a scalar field into the scalar one.
Now we shall show that the general covariant Dirac equation has the form

mc

= (36)

where 1 is a column of four complex scalar fields in question and P, are the
generators of space—time translations. To be exact in all details let us explain what
does it mean that the Dirac equation is general covariant. Transformation ¢ of
the local group of diffeomorphisms (group of general coordinate transformations)
can be represented by the smooth functions

P =

prat= i), oliat s fia), o(flx) =2t
Induced transformation of the metric tensor is of the form
Gij(x) = g (f (@) f£ () [ (@),
where fF(z) = 9;f*(z). For the scalar and vector fields we have

U() = v(f(2), P'a) = P*(f(2))ek(f(2)),

where ¢t (7) = O (z). It is not difficult to verify that if K*(x) is a solution of
the Killing equations for the metric g; (), then K?(z) is a solution of the Killing
equations for the metric g;;(x). Further, if ¢(z) is a solution of Dirac equation
(36), then v (z) will be a solution of Eq. (36) when K (x) is substituted by

the K’L(m) Besides the transformations of the diffeomorphisms group conserve
the form of the commutation relations of the Poincaré group. Dirac’s equation is
covariant with respect to the general coordinate transformations. It is known that
in the Minkowski space—time there is preferred class of the coordinate systems.
In the preferred system of coordinates Dirac equation (36) has a customary form.

It is also clear that Eq. (36) is equivalent to the equation
» mc
VP = 71/)7
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if # = Sy*S~1, where S € GL(4,C) (Dirac equation (36) is covariant with
respect to the transformations of the group GL(4, C)).

Now we have found enough to provide some valuable insights into the con-
nection between the space-time and internal transformations. Let us consider
again the generators of the internal Lorentz group S,, = i('y,ﬂy — %7y,) and
pay attention to the commutation relations:

[Yir Sual = M Yn — Mpa Yo 37
Comparing (35) and (37) it is not difficult to verify that the operators
Lpl/ = Mp,v + S;u/

commute with the Dirac operator D = iy#P, and satisfy the commutation rela-
tions of the Poincaré group. Thus, in the Minkowski space—time there is a relation
between the internal symmetry group and the space—time symmetry group. The
consequence is that Dirac’s equation (36) is invariant with respect to the trans-
formations of the Poincaré group. Thus, the geometrical and group-theoretical
meaning of both spinor and original Dirac equation is quite clear. We see that
structure of the Dirac equation is defined by the internal symmetry and the deriv-
atives with respect to the given directions. In considered case these derivatives
coincide with generators of the translation group. In this respect the Dirac equa-
tion differs radically from the Einstein equation, where internal symmetry has no
role at all. The spinor enters into the world of tensors as four-component com-
plex scalar field being a carrier of internal symmetry, which, thus, was discovered
together with the Dirac equation.

Consider now the possible natural generalizations of the general covariant
Dirac equation. We will strive to realize project when diffeomorphisms group
is the group of invariance (not covariance) of generalized theory and internal
symmetry remains without change. There is only one natural way to do this and
it will be subject of our consideration in later sections.

7. GENERALIZATION OF THE DIRAC THEORY

In this section it is shown that a spinor field can be presented as a natural
origin of the vacuum potential field, considered above.

We take that the canonical energy—momentum tensor plays fundamental role
in the theory of the spinor fields and in accordance with this the generalized
Dirac’s Lagrangian has the form

Lp = %Eu <W‘Dm - (Diz/?)v“w> — map, (38)
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where EfL are contravariant components of the potential of vacuum,
Dy = (0; —iqA), Db = (0; +iqAy)p, A; = Pj.

It is evident that varying (38) with respect to EL results in canonical energy-—
momentum tensor of the spinor field. Lagrangian (38) is invariant with respect
to the substitutions

w = ew¢7 QL = e_qua A’L' = Az + 81'()0)

and hence it is general covariant and invariant with respect to the local transfor-
mation of the group G;. Action has the form

A:h/LDpd4x,

where p = Det(E!). Since

. 1
EL@E{‘ = Eajp,

this action leads to the Dirac equations in the presence of external vacuum and
electromagnetic fields

) 1

B (Di + iUi)w =ma, (39)
R T .
ZE“(Di + iUi)w’y“ = —mu, (40)

where, as earlier, U; = UL .
Setting

WE = Ly Dits — (Ditbr),

we have Lp = PﬁWi” — m@w. Hence, from the action

3
A= h/LDpd4$ + CE /Lv\/§d4x; 9= _Det(glj)

we verify (in accordance with (33)) the following equations for the potential of
the vacuum field:

V;F* + B /™ — BRFF + PWF =0, (41)

where
W) =eEMW}, e=p/\/g.
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Equations (41) generalize Eq. (33) and together with Dirac equations (39) and
(40) explain clearly how the vacuum field interacts with the spinor field. The
potential of the generalized electromagnetic field enters into the Dirac Lagrangian
only in the form of the trace of P]?k. The other possibility does not exist. From
Egs. (41) an interesting relation can be derived. By summing over the indices &
and [ we get that a trace of U }k satisfies the following equation:

ViU" = mip, (42)

where U? = ¢**U,. We conclude that for m = 0 the interactions of the vacuum
and spinor fields are characterized by a new conserved quantity. Indeed, this fact
simply means that the action is invariant under the mapping

1
EY — aEY, ¢ — a3,

(3

where a is dimensionless constant. Thus, the introduction of the vacuum field
into the framework of the standard model may shed new light on the mechanism
of the lepton mass generation.

From the action

A:ﬂsz/Lp\/Ed4m+h/LDpd4x

we derive the equations of the generalized electromagnetic field (dark matter field)
in interaction with the spinor field

L

Vldl

D,(\/IglH*) + %J’“E = 12TV, 43)

where

J' = ey
is the Dirac vector of current. Thus, the basic equations of the considered fields
are derived.

Now it is important to exhibit the equations that follow from the equations
derived. To this end we shall establish the identities for the Lagrangians of the
fields in question. Identity for the Lagrangian of the vacuum field may be written
as follows:

d;Ly, = V;S: — Bl SF + V' (HjHLp), (44)

where

i i i i i oL,
S = ViF[" + ByuF}' — By F{" = B, —=.
SE,

It is necessary to illuminate the important points under the derivation of identity
(44). We have

0;Ly, = F{*(V,E,)V,E} + F/*E.,V,;V,E.
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With Ricci’s identity
V;ViE! = V,V,El' — Ry ' BV

we can represent the second term in the right-hand side of the starting relation in
the following form:

Vi(F{*E\V,El) — (Vi(E{"E},))V; B} — F/*Rju".
For the further transformations one needs to use identity
F*Rji' = ViV F}.
For Dirac’s Lagrangian one can derive the identity
0Lp d6Lp
BT

From this identity it follows in accordance with (39) and (40) that the circulation
of the energy of the spinning matter is defined by the equation

VW, = By Wl + qF;J" =0, (45)

_ -1 ) ) )
9;Lp = D3 D+ —(ViWj — BLWE + eFyJ").

when the electromagnetic and vacuum fields are present. The canonical energy—
momentum tensor W} of the spinning matter is not symmetric.

CONCLUSION

Here we suggest an experiment to test the formulated theory. It is suggested
to measure the gravitational acceleration of electrons and positrons in the Earth
gravitational field. The motivation is as follows.

In 1967 Witteborn and Fairbank measured the net vertical component of
gravitational force on electrons in vacuum enclosed by a copper tube [5]. This
force was shown to be less than 0.09 mg, where m is the inertial mass of
the electron and g is 980 cm/s?. They concluded that this result supports the
contention that gravity induces an electric field outside a metal surface, of such
magnitude and direction that the gravitational force on electrons is cancelled.
If this is true, then the positrons will fall in this tube with the acceleration of
a = 2g. The conclusion from the theory presented here is that electrons and
positrons do not interact with the gravitational field directly but only through
the vacuum field and electromagnetic channel. And the result presented by the
measurements may be considered as an estimation for the energy of vacuum field
generated by electron (and positron). Thus, the new measurements of the net
vertical component of the force on positrons in vacuum enclosed by a copper
tube will have the fundamental significance for understanding of the conceptual
basis of contemporary theoretical physics and for the understanding of the nature
of dark matter as well.
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