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Evolution in Time of Moving Unstable Systems

Relativistic quantum theory shows that the known Einstein time dilation (ED)
approximately holds for the decay law of the unstable particle having deˇnite mo-
mentum p (DP). I use a different deˇnition of the moving particle as the state with
deˇnite velocity v (DV). It is shown that in this case the decay law is not dilated.
On the contrary, it is contracted as compared with the decay law of the particle at
rest. It is demonstrated that ED fails in both DP and DV cases for time evolution
of the simple unstable system of the kind of oscillating neutrino. Experiments are
known which show that ED holds for mesons. The used theory may explain the fact
by supposing that the measured mesons are in DP state.

The investigation has been performed at the Bogoliubov Laboratory of Theoretical
Physics, JINR.
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INTRODUCTION

Experimenters showed that the lifetime τ of a uniformly moving unstable
particle is equal to τ0γ, where τ0 is the lifetime of the particle at rest and γ
is the Lorentz factor γ = (1 − v2/c2)−1/2, e. g., see [1, 6]. In other words, if
F (t) is the decay law of the unstable particle moving in the laboratory frame and
F0(t) is the decay law of the same particle at rest, then F0(t) = exp(−t/τ0) and
F (t) = exp(−t/τ0γ) or

F (t) = F0(t/γ). (1)

A usual explanation of the fact is based on the Einstein special theory of
relativity and I call (1) the Einstein dilation (ED). For example, M	ller [9] sets it
forth as follows:

®In view of the fact that an arbitrary physical system can be used
as a clock, we see that any physical system which is moving relative to
a system of inertia must have a slower course of development than the
same system at rest. Consider for instance a radioactive process. The
mean life τ of the radioactive substance, when moving with a velocity
v, will thus be larger than the mean life τ0 when the substance is at
rest. From (2.36) we obtain immediately τ = (1 − v2/c2)−1/2τ0¯.

This argumentation may be complemented by the following possible deˇni-
tion of the unit of time provided by radioactive substance: this is the time interval
during which the amount of the substance decreases twice.

However, the standard clocks of the relativity theory are used when obtaining
Eq. (2.36) (from Ref. [9])

∆t = t2 − t1 = γ(t′2 − t′1) = (1 − v2/c2)−1/2∆τ

which M	ller mentions. He begins the derivation of this equation with the phrase:

®Consider a standard clock C′ which is placed at rest in S′ at a
point on the x′ axis with the coordinate x′ = x′

1¯.

However, such a quantum clock as an unstable particle cannot be at rest
(i. e., have zero velocity or zero momentum) and simultaneously be at a deˇnite
point (due to the quantum uncertainty relation). So the standard derivation of the
moving clock dilation is inapplicable for the quantum clock.

Another way of theoretical derivation may be used: to ˇnd the relativistic
quantum decay law F (t) of the moving particle and to compare it with the
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decay law F0(t) of the particle at rest. Lorentz transformation of the space-
time coordinates from one inertial frame to another is not needed as well as
the space coordinates themselves. The approach was employed by Exner [5];
Stefanovich [12]; Khalˇn [8]; Shirokov [11]. In these papers (below I shall refer
to them as (ESKS)) the state of the moving unstable particle was described by

the eigenvector Ψp of the momentum operator �̂P (Exner [5] used a packet with
almost exact momentum). One may state that the obtained decay law Fp(t) is
consistent with ED, Eq. (1), see Sec. 2 below. I use in Sec. 1 another deˇnition
of the moving particle: it is described by the vector Φv having a deˇnite nonzero
velocity �v. If the particle were stable, the vector Φv would coincide with Ψp at
�p = �vm0γ, m0 being the particle mass. However, the unstable particle has no
deˇnite mass, it is described by a distribution over masses, see Sec. 1. Therefore,
if �p is deˇnite, then �v cannot be deˇnite, see Eq. (12) below. The exclusion is
the case �p = 0 when �v is also zero.

In the case of unstable particles, whose decay laws can be measured one
may expect that using either Φv or Ψp should give only slightly different results.
Indeed, mass distributions of such particles are concentrated in small regions
near average masses m, the dimension Γ of the regions being much less than m.
However, the detailed calculation of Fv(t) presented in Sec. 1 provides instead the
unexpected result Fv(t) = F0(tγ), i. e., contraction instead of dilation: particles
with exact nonzero velocity decay faster than the one at rest.

A simple unstable system is considered in Sec. 3. The oscillating neutrino
may serve as an example. The usual formulae for the neutrino oscillation, e. g.,
see [2, 3], are valid when neutrino has deˇnite momentum �p. The corresponding
oscillation is dilated as compared to the oscillation of the neutrino with lesser
momentum. However, the dilation is not Einsteinian, Eq. (1). In the case when
neutrino has a deˇnite velocity I obtain another formula for neutrino oscillation
which gives the same contraction as in Sec. 1.

For summary and conclusion see Sec. 4.

1. DECAY LAW OF MOVING UNSTABLE PARTICLE WITH PRECISE
VELOCITY

Let us consider a relativistic theory which describes unstable particles, prod-
ucts of their decay, and the corresponding interactions. A ˇeld theory may be an
example. Such a theory must contain operators of total energy and momentum

Ĥ , �̂P (the generators of time and space translations), total angular momentum,
and generators of Lorentz boosts.

Suppose that at the initial moment t = 0 there is one unstable particle. Its

state Φ0 is deˇned as the eigenvector of the velocity operator �̂V corresponding
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to eigenvalue being zero. The operator �̂V is deˇned as �̂V = �̂P/Ĥ. It commutes

with Ĥ and, therefore, is conserved. Note that the total operators �̂P and �̂V are
the unstable particle momentum and velocity as there are no other particles at the
moment t = 0.

Let ϕµ be those eigenvectors of Ĥ which are simultaneously �̂V eigenvectors

with zero eigenvalue �v = 0. The corresponding Ĥ eigenvalues may be called
masses and are denoted by µ: Ĥϕµ = µϕµ. Expand Φ0 over ϕµ:

Φ0 =
∫

µ

c(µ)ϕµ, c(µ) = (ϕµ, Φ0). (2)

If the initial state of the unstable system under consideration is Φ0, then later
it is described by the vector Φ0(t) = exp(−iHt)Φ0,

Φ0(t) =
∫

µ

c(µ)e−iµtϕµ. (3)

Then the nondecay (survival) amplitude is

A0(t) ≡ (Φ0, Φ0(t)) =
∫

µ

|c(µ)|2e−iµt. (4)

The state Φ0 is called unstable if A0(t) → 0 as t → ∞. This property holds only
if the convolution

∫
µ

in Eqs. (2)Ä(4) is integral over continual µ values. Besides,

the spectrum of Ĥ must be bounded from below. So
∫

µ may be understood as

the integral
∫ ∞
0

dµ.
The vectors ϕµ may be endowed with other indices (e. g., spin ones), upon

which Ĥ eigenvalues do not depend. I do not write out these degeneration indices.
Let us deˇne the initial state vector Φv of a moving unstable particle as

Φv = LvΦ0, where Lv is the Lorentz transformation from the frame where the
unstable particle is at rest to the frame where it has the velocity �v (e. g., see [7].
Applying the operator Lv to both parts of Eq. (2) one obtains the expansion of
Φv over the vectors ϕvµ ≡ Lvϕµ:

Φv = LvΦ0 =
∫

dµ c(µ)ϕvµ. (5)

Let us show that ϕvµ is Ĥ eigenvector corresponding to the eigenvalue µγ,

γ = (1 − v2)−1/2. Indeed, one has L−1
v HLv = (Ĥ − �v · �̂P ) and, therefore,

HLvϕµ = Lv(Ĥ − �v · �̂P )γϕµ = γµLvϕµ. (6)
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The equations �̂Pϕµ = 0 and Ĥϕµ = µϕµ have been used.
Respectively, in place of Eqs. (3) and (4) one gets

Φv(t) =
∫

dµ c(µ)ϕvµ exp(−iµγt), (7)

Av(t) =
∫

dµ |c(µ)|2 exp(−iµγt). (8)

Note. When calculating Eq. (7) the orthonormalization equation (ϕvµ1 , ϕvµ2 )

= δ(µ1 − µ2) is used, implying unit normalization of �̂V eigenvectors. This is the

case if �̂V has a discrete spectrum analogously to the spectrum the momentum has
when the system is implied to be in a large space volume and usual periodicity
conditions are imposed (or the volume opposite boundaries are identiˇed).

Comparing Eq. (8) with Eq. (4) one obtains the following relation of survival
amplitudes:

Av(t) = A0(γt). (9)

The same relation holds for the probabilities Fv(t) = |Av(t)|2 and F0(t) =
|A0(t)|2:

Fv(t) = F0(γt). (10)

So one gets contraction instead of dilation, Eq. (1), if a moving unstable particle
has a deˇnite velocity. Note that Eq. (10) is the exact relation which does not
depend upon the speciˇc choice of c(µ).

In order to discuss this unexpected result I write out the corresponding sur-
vival amplitudes for particles with exact momentum.

2. DECAY LAW OF UNSTABLE PARTICLE WITH PRECISE
MOMENTUM

Let us describe the moving unstable particle by an eigenvector Ψp of the

momentum �̂P . The corresponding decay law may be derived in the same way as
in Sec. 1. I shall deal with a particular example of the eigenvector Ψp:

Ψp =
∫

dµ c(µ)ψpµ, ψpµ = Lpµ ϕµ (11)

(other deˇnitions are possible, e. g., when c(µ) depends upon �p). Here Lpµ

denotes the operator of the Lorentz transformation of the rest state ϕµ into the

frame where the velocity of the state is equal to �p/
√

p2 + µ2, i. e., corresponds

to the momentum �p. One may show that ψpµ is �̂P eigenvector with eigenvalue
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�p. So is Ψp. Analogously, one may demonstrate that ψpµ is Ĥ eigenvector with

eigenvalue Epµ =
√

p2 + µ2. The demonstrations are carried out in the same

way as in Sec. 1 after Eq. (5). The value
√

p2 + µ2 for Epµ has been obtained
in another way in [11].

Let us stress that Ψp is not the eigenvector of the velocity operator �̂V = �̂P/Ĥ .
Indeed,

�̂V Ψp =
∫

dµ c(µ) �̂P/Ĥψpµ = �p

∫
dµ c(µ) (p2 + µ2)−1/2ψpµ. (12)

So the r.h.s. of (12) is not proportional to Ψp =
∫

dµ c(µ)ψpµ.
Using Eq. (11) one obtains for survival amplitudes

Ap(t) ≡ 〈Ψp, e−iĤtΨp〉 =
∫

dµ |c(µ)|2 exp(−it
√

p2 + µ2), (13)

A0(t) ≡ 〈Ψ0, e−iĤtΨ0〉 =
∫

dµ |c(µ)|2 exp(−iµt). (14)

Note that when �p = 0 the state Ψp(t) coincides with Φp(t), see Eq. (3).
Now the survival law Ap(t) is not connected with A0(t) by such a simple

relation as Av(t) does, see Eq. (9). To compare Ap(t) with A0(t), one has to
calculate Ap(t) and A0(t) separately. For this purpose one needs to know |c(µ)|2.
The BreitÄWigner distribution

|c(µ)|2 =
Γ
2π

[
(µ − m)2 + Γ2/4

]−1
(15)

has been used in (ESKS). Let us write out approximate expressions for A0(t) and
Ap(t) which are valid for time not too short and not too long when the decay
laws are exponential [11]

A0(t) ∼= exp(−imt − 1
2
Γt), (16)

Ap(t) ∼= exp(−imγmt − 1
2
Γt/γm), γm ≡

√
p2 + m2/m. (17)

Here m is the average (or the most probable) mass in distribution (15). It follows
from Eqs. (16) and (17) that

|Ap(t)|2 ∼= |A0(t/γm)|2, (18)

i. e. ED holds for survival probability of unstable particle with precise momen-
tum. Dilation (18) is to be juxtaposed to contraction (10). As was argued in
Introduction, one may expect that the amplitudes Av(t) and Ap(t) should not
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differ appreciably. Let us show that this expectation is realized in a sense. Note
beforehand that Eqs. (16) and (9) result in the explicit approximate expression
for Av(t) when �v = �p/

√
p2 + m2

Av(t) ∼= exp(−imγt− 1
2
Γt/γ). (19)

Let us compare the exponents Ep and Ev of the corresponding exponentials
in Eqs. (17) and (19)

Ep = −imtγm − 1
2
Γt/γm, Ev = −imtγ − 1

2
Γtγ, (20)

assuming that γm = γ. As Γ � m the exponents coincide in the zero approxima-
tion when the terms ∼ Γ are neglected in Ep and Ev . So in this approximation
the corresponding amplitudes Ap(t) and Av(t) coincide and they both satisfy the
contraction property

Ap(t) ∼= Av(t) ∼= A0(tγ). (21)

However, the main terms of Ep and Ev are purely imaginary and do not contribute

to modules of Ap(t) and Av(t). It is real parts
1
2
Γt/γm and

1
2
Γtγ which do

contribute and determine the different dependencies of |Ap|2 and |Av|2 upon t,
see Eqs. (18) and (10).

In the next section I will consider a simple unstable system whose time
evolution is determined by the interference of the main terms deˇned above (the
terms ∼ Γ being absent). For this system one may expect the breakdown of ED
(in view of Eq. (21)) even if the system has precise momentum.

3. TIME EVOLUTION OF MOVING TWO-MASS SYSTEM

Let us consider unstable system at rest whose state vector φ is a superposition
of two Ĥ eigenvectors ϕ1 and ϕ2:

φ = c1ϕ1 + c2ϕ2, |c1|2 + |c2|2 = 1, (22)

Ĥϕ1 = m1ϕ1, Ĥϕ2 = m2ϕ2, m1 �= m2. (23)

The system time evolution is described by the survival amplitude

A0(t) ≡ (φ, φ(t)) = |c1|2e−im1t + |c2|2e−im2t. (24)

The survival amplitudes of the system with nonzero exact velocity �v and
exact momentum �p are

Av(t) = |c1|2 exp(−im1tγ) + |c2|2 exp(−im2tγ), (25)

Ap(t) = |c1|2 exp(−it
√

p2 + m2
1) + |c2|2 exp(−it

√
p2 + m2

2), (26)
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respectively, cf. Eqs. (8) and (13).
As examples of such a system one may take electron neutrino, e. g., see [2,

3] and K0 meson
|K0〉 = (|Ks〉 + |Kl〉) /

√
2,

provided that Γs = Γl = 0 (see [10]).
There exist different approaches to neutrino oscillations (see [4] and ref-

erences therein). However, I am not aware of papers which consider moving
neutrinos as eigenvectors of the velocity.

In what follows, I let c1 = c2 = 1/
√

2. Then

|A0(t)|2 = cos2
[
1
2
(m1 − m2)t

]
, (27)

|Av(t)|2 = cos2
[
1
2
(m1 − m2)tγ

]
= |A0(tγ)|2, (28)

|Ap(t)|2 = cos2
[
1
2

(√
p2 + m2

1 −
√

p2 + m2
2

)
t

]
= |A0(t/γ̃)|2,

γ̃ = (
√

p2 + m2
1 +

√
p2 + m2

2)/(m1 + m2). (29)

The oscillatory behavior of these probabilities allows us to use the two-mass
system as the quantum clock. Its unit of time may be deˇned as the period
of oscillation (the oscillation frequency being equal to m1 − m2 in the case of
|A0(t)|2), cf. with the deˇnition of the unit of time provided by radioactive
substance, see Introduction.

It follows from (27) and (29) that the time evolution |Ap(t)|2 in the case
of exact momentum is dilated as compared to |A0(t)|2, but the dilation is not
Einsteinian if m1 �= m2: γ̃ turns into the Lorentz factor only if m1

∼= m2. In the
case of exact velocity we have the same contraction as for unstable particles, cf.
Eqs. (27) and (28).

CONCLUSION

Relativistic quantum-mechanical derivation of the time evolution of moving
unstable particles was considered in the papers (EKSS). There the state of the
moving particle was deˇned as the eigenvector Ψp of the momentum operator

�̂P with eigenvalue �p. It was shown that then the nondecay law satisˇed ap-
proximately ED, Eq. (1). Here in Sec. 1 the moving particle is described by

eigenvector Φv of the velocity operator �̂V = �̂P/Ĥ. If the particle were stable,
then Φv would coincide with Ψp if �p = �vm0γ. The vectors do not coincide in the
case of unstable particle, but one may expect that they should give only slightly
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different results. It was shown in Sec. 2 that Φv and Ψp give indeed the same
nondecay amplitude in the zero approximation. However, the approximation does
not contribute to the corresponding probability, i. e., the nondecay law F (t). As
a result, the laws Fv(t) and Fp(t) turn out to be strongly different: Fv(t) is
contracted as compared to the nondecay law F0(t) of the particle at rest, see
Eq. (10), meanwhile Fp(t) is dilated, see Eq. (18).

Section 3 deals with unstable systems which are simpler than unstable parti-
cles. Oscillating neutrino may be the example. If it has exact momentum, then a
dilation follows, but it is not ED, Eq. (1). In the case of exact velocity I obtain
the formula which differs from the expressions for the neutrino oscillation known
from the literature. It leads to the contraction, see Eq. (28).

I conclude that relativistic quantum theory of the time evolution of moving
unstable systems does not ensure ED. The theory allows the possibility of moving
unstable systems whose time evolution breaks ED.

Experiments are known which show that moving mesons have longer life-
times than the immovable ones so that ED holds [1, 6]. The theory used here
may explain this fact supposing that the experiments deal with mesons which are
in states close to Ψp. In this case, the theory approximately gives ED.

Acknowledgments. I am grateful to Dr. E. Stefanovich who drew my
attention to that neutrino oscillations also allow one to verify ED along with K0

oscillations and to Dr. O. Teryaev who pointed to the paper by Dolgov et al.
(Ref. [4]).
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