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�·Éμ´μ·³ ²Ó´ Ö ¶μ²¨´μ³¨ ²Ó´ Ö  ¶¶·μ±¸¨³ Í¨Ö É¥·³μ³¥É·¨Î¥¸±¨Ì
ËÊ´±Í¨° ¤²Ö ¸¥´¸μ·μ¢ CERNOXÄRuO2

�·¥¤¸É ¢²¥´μ ³ É¥³ É¨Î¥¸±μ¥ μ¶¨¸ ´¨¥ É¥·³μ³¥É·¨Î¥¸±¨Ì Ì · ±É¥·¨¸É¨±
±·¨μ£¥´´ÒÌ É¥·³μ¸¥´¸μ·μ¢ CERNOXÄRuO2 ´  μ¸´μ¢¥ μ·Éμ´μ·³¨·μ¢ ´´ÒÌ ¶μ-
²¨´μ³μ¢. ‚ÒÎ¨¸²¥´Ò  ¶¶·μ±¸¨³¨·ÊÕÐ¨¥ ËÊ´±Í¨¨ ¤²Ö ¸μ¶·μÉ¨¢²¥´¨Ö ¨ É¥³¶¥-
· ÉÊ·Ò ¢ ¶μ²´μ³ É¥³¶¥· ÉÊ·´μ³ ¨´É¥·¢ ²¥ 330 ÷ 1.7 Š ¨ ¢ É·¥Ì ¶μ¤Ò´É¥·¢ -
² Ì. �¥§Ê²ÓÉ ÉÒ Î¨¸²¥´´ÒÌ Ô±¸¶¥·¨³¥´Éμ¢, μÉ´μ¸ÖÐ¨¥¸Ö ±  ¶¶·μ±¸¨³ Í¨μ´´Ò³
μÉ±²μ´¥´¨Ö³, ¸·¥¤´¥±¢ ¤· É¨Î¥¸±¨³ μÉ±²μ´¥´¨Ö³ ¨  ¡¸μ²ÕÉ´μ° · §·¥Ï ÕÐ¥°
¸¶μ¸μ¡´μ¸É¨ ¤²Ö É¥³¶¥· ÉÊ·Ò ¨ ¸μ¶·μÉ¨¢²¥´¨Ö, ¶μ± §Ò¢ ÕÉ ¢μ§³μ¦´μ¸É¨ ¶·¨³¥-
´¥´¨Ö ¶·¥¤²μ¦¥´´μ£μ ¶μ¤Ìμ¤ . Œ É¥³ É¨Î¥¸±μ¥ ³μ¤¥²¨·μ¢ ´¨¥ ´  μ¸´μ¢¥ ÔÉ¨Ì
¶μ²¨´μ³μ¢ μ¡¥¸¶¥Î¨¢ ¥É Ìμ·μÏÊÕ ÉμÎ´μ¸ÉÓ ¨ £¨¡±μ¸ÉÓ μ¶¨¸ ´¨Ö Ì · ±É¥·¨¸É¨±
± ± ¢ ¶μ¤Ò´É¥·¢ ² Ì, É ± ¨ ¢ ¶μ²´μ³ ¨´É¥·¢ ²¥.
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Orthonormal Polynomial Approximation of Thermometric Functions
for CERNOXÄRuO2 Composition Sensors

Mathematical description of thermometric characteristics of CERNOXÄRuO2

composition cryogenics temperature sensors is proposed using orthonormal polyno-
mials. The approximated functions for resistance and temperature are carried out in
the whole temperature interval 330÷1.7 K and in three subintervals. The results from
numerical experiments, concerning calculated approximated differences, root-mean
square deviations and absolute temperature and resistance resolutions demonstrate the
applicability of the used approach. The mathematical modeling based on these poly-
nomials ensures good accuracy and �exibility of the description of the characteristics
not only in subintervals but in the whole interval.

The investigation has been performed at the Laboratory of Information Tech-
nologies, JINR.
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INTRODUCTION

The investigations of the properties of materials applied in magnetic sys-
tems at low temperatures deˇne searching for new cryogenic thermometers. It
is important to minimize the high magnetic ˇeld effects on the used temper-
ature sensors. The ceramic nitride oxides (CERNOX) resistors and thick-ˇlm
chip resistors, based on RuO2, appear to be suitable for this application. The
studied new cryogenic thermometers CERNOXÄRuO2 are prepared and experi-
mentally calibrated at the Institute of Low Temperature and Structure Research
(ILTSR), Poland. They are composition of two parallel connected resistors Å
CERNOX (CX 1030 Bare Chip, Lake Shore, 0.7×1.0×0.38 mm3) and one half
of commercially available RuO2 (2×0.6×0.4 mm3, 2 kΩ), ˇrst proposed by
E. Bruck [1]. Two soldered resistors (indium was used as a solder for CERNOX
and Sn + Pb alloy Å for RuO2 resistor) are glued by BF-2 to a small copper
plate 2.3×2.6×0.3 mm3. Parallel electrical connection is done from platinum
wire 0.03 mm in diameter. These composition thermometers have the advantages
to be small and to have a higher resistivity.

In this paper an approximation of thermometric functions R(T ) and T (R),
where R is resistance and T is temperature, for CERNOXÄRuO2 composition
temperature sensors is proposed using our approach based on Orthonormal Poly-
nomial Expansion Method (OPEM) [2Ä4]. Mathematical description of thermo-
metric characteristics in the range of 330÷1.7 K is made in the whole temperature
interval and in three subintervals 330 ÷ 77, 78 ÷ 20, 21 ÷ 1.7 K. The presented
in the Table and in Figs. 1Ä5 numerical results are discussed.

1. MATHEMATICAL ALGORITHM

Our Orthonormal Polynomial Method (OPEM) is based on Forsythe [5] three-
term relation for generating orthogonal polynomials over the given point set
{qi, fi}, i = 1, 2 . . .M with given weights wi = 1/σ2

fi
. It is a generalization for

calculating derivatives and integrals with fourth term. The principal relation for

one-dimensional generation of orthonormal polynomials Ψ(0)
k , k = 0, 1, 2, . . . and

their derivatives Ψ(m)
k , m = 1, 2, . . ., in OPEM is

Ψ(m)
k+1(q) = γk+1[(q−αk+1)Ψ

(m)
k (q)− (1−δk0)βkΨ(m)

k−1(q)+mΨ(m−1)
k (q)], (1)

where Ψ−1 = 0, Ψ0 = γ0 = 1/β0, β0 =
√∑M

i=1 wi.
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The polynomials Ψ(0)
k satisfy the following orthogonality relations:

M∑
i=1

wiΨ
(0)
k (qi)Ψ

(0)
l (qi) = δkl

over the given point set {qi} with given weights {wi}.
The approximation values fappr of the function f and its mth derivative

f (m)appr are given by

f (m)appr(q) =
N∑

k=0

akΨ(m)
k (q) =

N∑
k=0

ckqk. (2)

The optimal degree N of the approximating polynomials in Eq. (2) is
selected by the algorithm, using the following two criteria. First, the ˇtting curve
should lie in the error corridor of the dependent variable. Second, the minimum
χ2 should be reached. When the ˇrst criterion is satisˇed, the search of the
minimum χ2 stops. (The new version of the algorithm deˇning the total variance
was published in [6, 7].)

The functions R(T ) and T (R) are described by orthonormal polynomials us-
ing new type of weights, WR and WT . By deˇnition the weighting functions WR

and WT are 1/σ2
f , where σ2

f is a variance for R(T ) and T (R) approximations.
In our investigation these variances are accepted to be squares of the absolute re-
sistance resolution and absolute temperature resolution of the investigated sensors
ΔRarr and ΔTatr, respectively.

Here the calculated accuracy of our R(T ) experimental data is in the range
of 0.20Ä0.50%, on average of 0.35%, giving

ΔRarr = 0.0035R [Ω]. (3)

The characteristic ΔTatr is deˇned by

ΔTatr = ΔRarr/|dR/dT | = 0.0035R/|dR/dT | [K]. (4)

Then the weights WR
i and WT

i in every point are:

WR
i = 1/(ΔR2

arr)i = 8.104/R2
i [Ω−2],

WT
i = 1/(ΔTatr)2)i = 8.104(dR/dT )2i /R2

i [K−2], (5)

i. e. the WR and WT are related to the speciˇed operating conditions and to the
ˇrst derivative dR/dT of the described thermometers.
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The deviations ΔRi between experimental Rexp
i and approximating Rappr

i

values of the resistance as well as their temperature equivalents (ΔRi)te are also
estimated in every point as follows:

ΔRi = (Rexp
i − Rappr

i ) [Ω], (ΔRi)te = (Rexp
i − Rappr

i )/(dR/dT )i [K]. (6)

The deviations ΔTi between experimental T exp
i and approximating T appr

i values
of the temperature are given by the differences

ΔTi = (T exp
i − T appr

i ) [K]. (7)

The temperature dependences of the evaluated in every point ˇrst derivative
(dR/dT ) of these temperature sensors as well as the temperature behavior of the
calculated approximation differences ΔT , ΔR and ΔRte, the root-mean square
RMS deviations for T (R) and R(T ) functions, the absolute temperature resolu-
tions ΔTatr and absolute resistance resolution ΔRarr for studied thermometers
are calculated by the OPEM.

2. APPROXIMATION DETAILS

The most interesting results of the approximation of the functions T (R) and
R(T ) as: the optimal degree of polynomials N and the approximation character-
istics Å maximum deviation Δmax [Ω], Δmax [K], root-mean square deviation
RMS [K], absolute mean deviation AMD [K] at M number of points are compared
in the Table.

Table. OPEM approximations of T (R) and R(T ) for CERNOXÄRuO2 sensor

T , K M R, Ω f, q N Δmax, Ω Δmax, K RMS, K AMD, K

330 ÷ 1.7 239 67 ÷ 4616 R(T ) 12 5.05(T=18) Ä0.86(T=253) 0.202 Ä
330 ÷ 1.7 239 67 ÷ 4616 T (R) 12 Ä Ä0.88(T=253) 0.197 0.095

330 ÷ 77 100 67 ÷ 259 R(T ) 12 Ä0.53(T=156) Ä1.06(T=253) 0.281 Ä
330 ÷ 77 100 67 ÷ 259 T (R) 12 Ä Ä1.08(T=253) 0.280 0.195
78 ÷ 20 67 259 ÷ 851 R(T ) 5 Ä1.59(T=21) Ä0.043(T=33) 0.019 Ä
78 ÷ 20 67 259 ÷ 851 T (R) 5 Ä 0.04 (T=21) 0.018 0.014
21 ÷ 1.7 82 851 ÷ 4616 R(T ) 6 4.84(T=18) 0.099(T=18) 0.017 Ä
21 ÷ 1.7 82 851 ÷ 4616 T (R) 6 Ä 0.098 (T=18) 0.016 0.008

Note 1. The Δmax [K] corresponds to ΔTmax [K] for T (R) approximation
or to (ΔRte)max [K] for R(T ) approximation. The Δmax [Ω] corresponds to
ΔRmax [Ω] for R(T ) approximation.

The optimal degrees are selected from the algorithm between 1st and 12th
degrees. For R = R(T ) and T = T (R) approximations the polynomial degree is
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12 for the whole interval and correspondingly 12, 5, 6 for subintervals 330÷ 77,
78 ÷ 20, 21 ÷ 1.7 K. The Table shows that the whole interval approximation
has quite good accuracy. The root-mean square RMS deviations for the second
and third intervals are about ten times smaller than these for the whole and ˇrst
intervals.

The temperature dependences of the function R(T ), absolute (dR/dT ), rel-
ative (1/R)(dR/dT ) and speciˇc (T/R)(dR/dT ) sensitivities for the whole in-
terval approximation are presented in Fig. 1. The steepest slope for the resistance
is observed at temperature below 20 K.

Fig. 1. Temperature dependences of the resistance R, the absolute dR/dT , relative
1/R(dR/dT ) and speciˇc (T/R)(dR/dT ) sensitivities for the whole interval approxi-
mation of CERNOXÄRuO2 composition thermometer

Temperature dependences of the deviations ΔT , RMST and ±ΔTatr for the
whole interval approximation are presented in Fig. 2.

For the whole interval approximation the temperature dependences of the
deviations ΔR and ΔRte (Eq. 6) between experimental and approximating values,
RMSR

te, the error corridors ±ΔRarr (Eq. 3) and ±ΔTatr (Eq. 4) are presented in
Figs. 3 and 4. The temperature dependences of ΔRte (Eq. 6) and ΔT deviations
(Eq. 7) together with ±ΔTatr, RMSR

te and RMST for three-interval approximation
are shown in Figs. 5 and 6.

When we follow the cited criteria the deviation results are in the error corri-
dor. The point out of interval Å it is a case where we have chosen the appropri-
ated lower degree. RMS for the second and third intervals are undistinguished.
The temperature dependences of the absolute (dR/dT ), relative 1/R(dR/dT )
and speciˇc (T/R)(dR/dT ) sensitivities are reported at the ISCMP [8].
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Fig. 2. Temperature dependences of the deviations ΔT , RMST and ±ΔTatr for the whole
interval approximation of CERNOXÄRuO2 composition thermometer

Fig. 3. Temperature dependences of the resistance deviations ΔR and ±ΔRarr for the
whole interval approximation of CERNOXÄRuO2 composition thermometer

Note 2. In our previous papers [2, 3] we have analyzed in details the
comparison with other appropriated mathematical methods. We have not found
the whole interval approximation by other descriptions: the improved interpolation
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Fig. 4. Temperature dependences of the deviations (ΔR)te, RMSR
te and ±ΔTatr for the

whole interval approximation of CERNOXÄRuO2 composition thermometer

Fig. 5. Temperature dependences of the deviations (ΔR)te, RMSR
te and ±ΔTatr for three-

interval approximation of CERNOXÄRuO2 composition thermometer

method and the piecewise least squares interpolation [9]. Our method permits the
ˇtting errors to be bounded by specially constructed in a priori deˇned weighting
function ΔT corridor, without excluding bad points. We have also compared
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Fig. 6. Temperature dependences of the deviations ΔT , RMST and ±ΔTatr for three-
interval approximation of CERNOXÄRuO2 composition thermometer

our results [3] with Chebyshev or ordinary polynomials description [10]. They
demonstrate also the advantages of our method giving straightforward description.

CONCLUSIONS

The proposed mathematical approach is useful for description of calibrated
test data of studied thermometers. The calculated thermometric characteristics
are also necessary for automating the low-temperature physics experiment carried
out in high magnetic ˇelds. The obtained numerical results demonstrate the
perspectives of the applied method in cryogenic thermometry.
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