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About One Contradiction in Classical Electrodynamics

A standard problem is considered which arises in classical electrodynamics when
the processes of energy absorption and its radiation, and accompanying effects are
studied and interpreted. It primarily concerns the processes of energy propagation in
electromagnetic ˇelds of charged particles moving in various regimes.

We consider two identical isolated systems; in each one we have a charged particle
moving at a constant velocity. One particle's velocity is changed by an external force.
Thus the difference between the energies of the considered systems is equal to the
external force's work. From this obvious equality we have obtained a nonphysical
result: the energy of the electromagnetic ˇeld of the charged particle moving at a
constant velocity does not depend on the velocity of movement.

The investigation has been performed at the Dzhelepov Laboratory of Nuclear
Problems, JINR.
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INTRODUCTION

During the last years an interest to Maxwell electrodynamics principles, to
results arising from them, and to their possible interpretation [1Ä3] has been
renewed. First of all this interest is related with transfer processes of electromag-
netic ˇeld energy under conditions of different regimes [4] of charged particles'
movement. Of great interest are also the processes of energy absorption and its
radiation in a strong electromagnetic ˇeld, the investigation and interpretation of
accompanying effects [5], nonstationary interference of electromagnetic waves
[6], etc. Main attention in the cited works is focused on the study of localiza-
tion and propagation of electromagnetic ˇeld energy. In addition, in a part of
the discussed problems the effects of so-called ®tachyons¯ [7Ä9] take place, i. e.
exchange of energy between sources located in points with space-like interval
between them, dislocation of interference maximums' with velocity higher than
the speed of light. Some authors noted the misbalance in an energy-momentum
4-vector during calculation of its variations caused by radiation reaction force,
etc. A number of authors see the roots of these difˇculties in the existence
of singularities of point sources (or, generally, central-symmetric ˇelds), which
complicates correct analysis of obtained results and realistic conclusion-making
process.

In the present article two new contradictions are found in the framework of
classical electrodynamics. While deriving the ˇrst result we used the quantity of
ˇeld energy (but not its explicit form) localized in the vicinity of the point charge,
and that's why this contradiction may be explained by the causes mentioned above.
The second result appears in the area of weak ˇelds and therefore its explanation
requires different ideas.

Two systems are discussed in the framework of classical electrodynamics.
In the ˇrst system a charge moves at a constant velocity υ1, the second system
is identical to the ˇrst one until moment t′; then work A is done on it, causing
change of the velocity of a charge from v1 to υ2 (υ1||υ2). Based on the energy
conservation law it is derived that starting from moment t = −∞ the energy
of the electromagnetic ˇeld of a charge moving at a constant velocity does not
depend on the velocity of movement.

1. ENERGY OF LAYER

Let us consider a linear but nonuniform movement of a charge (Fig. 1). Fields
radiated by the charge during its movement along AB interval are being localized
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for moment t in an eccentric spherical layer between AD and BC spherical sur-
faces. Calculation of the energy localized in this layer gives the following (see
Appendix A, formula (28)):

Wt′,t′+Δt′;t =
2e2

3c

t′+Δt′∫
t′

β̇2dt1
(1 − β2)3

+
e2

6c

[
3 + β2

1 − β2

1
t − t1

]t1=t′+Δt′

t1=t′
, (1)

where β = υx(t1)/c;

BC = c (t − t′ − Δt′), AD = c (t − t′).

Fig. 1

From formula (1) for a particle moving at a constant velocity we obtain

Wt′, t′+Δt′;t (υ) =
e2

6c

3 + β2

1 − β2

(
1

t − t′ − Δt′
− 1

t − t′

)
. (2)

2. WORK OF RADIATION REACTION FORCE

A charge moving with acceleration is impacted by radiation reaction force
of its own ˇeld. The work of this force during period of time (t′, t′ + Δt′) is
calculated by means of the following formula (see Appendix B, formula (37)):

ARRF = −2e2

3c

t′+Δt′∫
t′

β̇2dt1
(1 − β2)3

+

[
ββ̇

(1 − β2)2

]t1=t′+Δt′

t1=t′

2e2

3c
. (3)

Here again β =
υx(t1)

c
(motion of the particle is linear).
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3. LAW OF ENERGY CONSERVATION

1) Let us consider two systems:

I Å a charge e moves at conserved velocity υ1 from t = −∞ up to obser-
vation moment t;

II Å a charge e moves at velocity υ1 from t = −∞ up to t′ moment, t′ < t;
then during (t′, t′ + Δt′) time interval, t′ + Δt′ < t, it undergoes work A as a
result of which its velocity becomes υ2. From t′ + Δt′ up to the moment of
observation t the particle moves at constant velocity υ2. In accordance with the
law of energy conservation,

EII − EI = A. (4)

On the other hand, the work done on system II consists of the work done
against the radiation reaction force and the work for the change of kinetic energy
of the particle:

A = −ARRF +
m0c

2√
1 − β2

2

− m0c
2√

1 − β2
1

. (5)

Here β1 = υ1x/c, β2 = υ2x/c.

2) Let us calculate EII and EI energies in formula (4) (Fig. 2, a and 2,
b). In these ˇgures AD = c(t − t′), BC = c(t − t′ − Δt′), Wt1,t2;t3(υ) is the
energy of ˇelds radiated by the particle moving at a constant velocity υ during
the time interval (t1, t2), the localization of which is being observed for the
t3 moment. W t′, t′+Δt′; t is the energy of ˇelds radiated by the charge moving
at a variable velocity during the time interval (t′, t′ + Δt′), whose localization is
being observed for the moment t.

Fig. 2
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From Fig. 2, a and 2, b we can obtain

EII − EI = Wt′,t′+Δt;t + Wt′+Δt′,t;t(υ2) +
m0c

2√
1 − β2

2

−

− Wt′,t′+Δt′;t(υ1) − Wt′+Δt′,t;t(υ1) −
m0c

2√
1 − β2

1

. (6)

3) Let us insert formulae (5) and (6) into formula (4):

Wt′,t′+Δt′;t + Wt′+Δt′,t;t(υ2) − Wt′,t′+Δt′;t(υ1) − Wt′+Δt′,t′t(υ1) = −ARRF.

With account of formulae (1) and (3) the last equation turns to the following:

2c2

3c

t′+Δt′∫
t′

β̇2dt1
(1 − β2)3

+
e2

6c

[
3 + β2

1 − β2

1
t − t1

]t1=t′+Δt′

t1=t′
+ Wt′+Δt′,t;t(υ2)−

− Wt′,t′+Δt′;t(υ1) − Wt′+Δt′,t;t(υ1) =

=
2e2

3c

t′+Δt′∫
t′

β̇2dt1
(1 − β2)3

− 2e2

3c

[
ββ̇

(1 − β2)2

]t1=t′+Δt′

t1=t′

. (7)

The integrals in both sides of equation (7) are annihilated, and the second sum-
mand on the left side of the equation can be rewritten, with the use of formula
(2), in the following way:

e2

6c

[
3 + β2

1 − β2

1
t − t1

]t1=t′+Δt′

t1=t′
=

e2

6c

3 + β2
2

1 − β2
2

1
t − t′ − Δt′

−

− e2

6c

3 + β2
1

1 − β2
1

1
t − t′

= W−∞,t′+Δt′,t(υ2) − W−∞,t′;t(υ1). (8)

Inserting the obtained expression into formula (7) we get the following:

W−∞,t;t(υ2) − W−∞,t;t(υ1) = −2e2

3c

[
ββ̇

(1 − β2)2

]t1=t′+Δt′

t1=t′

. (9)

If the velocity of a particle is changing smoothly, then β̇(t′) = β̇(t′ + Δt′) = 0
and it follows from equation (9) that for the time interval (−∞, t) the energy of
the electromagnetic ˇeld induced by a charge moving at a constant velocity does
not depend on the velocity of the charge's movement.
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CONCLUSIONS

The two main results obtained in the paper are the following:
1) The energy of the electromagnetic ˇeld induced by a charge moving a

constant velocity does not depend on the velocity of the charge's movement.
2) According to formula (2) the energy of the electromagnetic ˇeld induced

by a charge moving along (A, B) section (Fig. 1) at a constant velocity and
localized within the asymmetric layer formed by spheres with CB and AD radii
depends on the observation moment t (it decreases as t−2). It is unclear where
this energy disappears, because the ˇeld and, therefore, its energy outside the
layer is unambiguously determined by motion of the charge beyond the (A, B)
section (by LienarÄWiechert potentials).

The aforementioned results are based on the standard idea that the electro-
magnetic ˇeld's energy and momentum in a volume enclosed by some surface is
calculated by integrating the densities of these quantities in the considered area.
But it is known that Lorentz transformation for energy and momentum densities
generally includes the densities of �ows of energy and momentum [10]. If these
�ows are not equal to zero, the quantities obtained by integrating energy and
momentum densities do not have proper transformational qualities. That is why
these quantities cannot be considered as the energy and momentum of the ˇeld
localized in some space area. It means that if we cut some area from space ˇlled
by electromagnetic ˇeld, we cannot consider it as an independent physical object
because it does not satisfy Maxwell equations and its energy and momentum do
not have proper transformational qualities.

We think that the reason for the appearance of nonphysical results when we
consider complicated nonstationary processes and try to reach energyÄmomentum
balance by traditional methods is that we just do not take into account the cir-
cumstances mentioned above.

APPENDIX A. ENERGY OF LAYER

1) The ˇeld of a moving charge is described by potentials:

E(r, t) =
e(1 − β2)

[R − (Rβ)]3
(R − βR) +

e

[R − (Rβ)]3

[
R,

[
(R − βR),

β

c

]]
, (10)

H(r, t) =
1
R

[R,E]. (11)

In formulae (10) and (11) [a, b] is a vector product of a and b vectors, the
values of E and H are M (r) deˇned in some point (Fig. 3) at moment t, and
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the values of β and R in the right-hand parts of the formulae are given for the
moment t′ which is deˇned by the following relation:

t′ +
R(t′)

c
= t. (12)

Fig. 3

2) Let us discuss the case of a charge moving along the Ox axis (Fig. 4).
Formulae (10) and (11) are rewritten in the following way:

E(r, t) =
e

(1 − β cosα)3

{
1 − β2

R2

(
R̂ − x̂β

)
+

1
R

β̇

c

(
R̂ cosα − x̂

)}
, (13)

H(r, t) =
e

(1 − β cosα)3
[x̂, R̂]

[
1 − β2

R2
β +

1
R

β̇

c

]
, (14)

where β =
υx

c
, x̂ =

x
|x| , R̂ =

R
|R| (Fig. 4).

Fig. 4
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Let us calculate the density of ˇeld energy:

w =
E2 + H2

8π
=

e2

8π(1 − β cosα)6
×

×
{

(1 − β2)2

R4
(1 + 2β2 − 2β cosα − β2 cos2 α)+

+ 2 sin2 α

(
1

R2

β̇2

c2
+ 2

1 − β2

R3

β̇

c
β

) }
. (15)

3) Let us assume that the particle at the moment t′ was in point A (Fig. 5)
and at the moment t′ +Δt′ was in point P . For the moment t (t > t′ +Δt′ > t′)

Fig. 5

during the motion on AP section the ˇeld radiated by a charge is localized in a
layer formed by spherical surfaces with AD and PQ radii. Let us calculate the
volume element of this layer. According to formula (12),

AD = c(t − t′) = R(t′), (16)

PQ = c(t − t′ − dt′) = R + dR, (17)

i. e. dR = −cdt′, AP = υdt′. (18)

Let us consider the triangle ΔAPQ. According to cosine theorem,

PQ2 = AQ2 + AP 2 − 2AQ AP cosα. (19)

Inserting formulae (16) and (18) into Eq. (19) gives the following:

c2(t − t′ − dt′)2 = AQ2 + υ2dt′2 − 2 AQ υdt′ cosα.

Let us solve this equation relative to AQ (in the ˇrst approximation to dt'):

AQ = c(t − t′) − (c − υ cosα)dt′.
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Therefore,
QD = (c − υ cosα)dt′. (20)

Let us transfer to spherical coordinates and measure radius R from point A
(Fig. 5). Then we obtain

dV = (c − cosα)dt′ R2 sin α dα dϕ = −(1 − β cosα)dR R2 sin α dα dϕ. (21)

Formula (17) was used in deriving the last equality.
4) Let us use formula (15) for the energy density and calculate the amount

of energy localized in an inˇnitely thin layer drawn on Fig. 5:

dW = −
π∫

0

2π∫
0

w(r, t)(1 − β cosα)R2dR sin α dα dϕ =

= −e2

4
dR

⎧⎨
⎩ (1 − β2)2

R2

π∫
0

(1 + 2β2 − 2β cosα − β2 cos2 α) sin α dα

(1 − β cosα)5
+

+

(
2
β̇2

c2
+ 4

1 − β2

R

β̇

c
β

) π∫
0

sin3 α dα

(1 − β cosα)5

⎫⎬
⎭ . (22)

The calculation of integrals in this expression gives the following:

I1 =

π∫
0

sin α dα

(1 − β cosα)5
=

2(1 + β2)
(1 − β2)4

, (23)

I2 =

π∫
0

sin α dα

(1 − β cosα)4
=

2
3

3 + β2

(1 − β2)3
, (24)

I3 =

π∫
0

sin α dα

(1 − β cosα)3
=

2
(1 − β2)2

, (25)

I4 =

π∫
0

sin3 α dα

(1 − β cosα)5
=

β2 − 1
β2

I1 +
2
β2

I2 −
1
β2

I3 =
4
3

1
(1 − β2)3

. (26)

After inserting the obtained results into (22) we get the expression

dW = −e2

4
dR

{
(1 − β2)2

R2
(2β2I2 + I3) +

(
2
β̇2

c2
+ 4

1 − β2

R

β̇

c
β

)
I4

}
=

= −e2

6
dR

{
3 + β2

R2(1 − β2)
+

(
β̇2

c2
+ 2

1 − β2

R

β̇

c
β

)
4

(1 − β2)3

}
. (27)
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5) Let us calculate the energy ΔW (Fig. 1) localized in a layer of ˇnite
thickness. Let us remember that dR = −cdt′, R = c(t − t′), and β is taken for
the moment t′. Integration of expression (27) from the t′ to t′ + Δt′ moment
gives the following:

ΔW =
e2

6

t′+Δt′∫
t′

[
3 + β2

1 − β2

1
c2(t − t′)2

+
4β̇2

c2(1 − β2)3
+

8
(1 − β2)2

β̇

c
×

× β
1

c(t − t′)

]
cdt′ =

2e2

3c

t′+Δt′∫
t′

β̇2

(1 − β2)3
dt1 +

e2

6c

[
3 + β2

1 − β2

1
t − t1

]t1=t′+Δt′

t1=t′
.

(28)

APPENDIX B. WORK OF RADIATION REACTION FORCE

1) Four-vector of radiation reaction force acting on a nonuniformly moving
charge is given by the following expression (Landau, Lifshitz, vol.2, §76 (76.2)):

gi =
2e2

3c

(
d2ui

ds2
− uiuk d2uk

ds2

)
, (29)

where ui =

(
1√

1 − β2
,

β√
1 − β2

)
, ds = c

√
1 − β2dt, i, k = 0, 1, 2, 3.

Component g0 of this four-vector has the meaning of the work done by the force
acting on the charge during a unit of time Å a power of radiation reaction force.
Let us write the equation of motion in covariant form:

gi = mc
dui

ds
=

d

ds
pi. (30)

Here pi =
(ε

c
,p

)
=

(
m0c√
1 − β2

,
mv√
1 − β2

)
is the four-vector of momen-

tum, ε and p are relativistic energy and three-dimensional momentum, respec-
tively. Taking into account these notations, from equation (30) we can obtain
that

g =
d

ds
p =

1√
1 − β2

1
c

d

dt

m0v√
1 − β2

=
mβ(ββ̇)
(1 − β2)2

+
mβ̇

1 − β2
=

1√
1 − β2

F
c

,

g0 =
d

ds

ε

c
=

1√
1 − β2

1
c

d

dt

m0c√
1 − β2

=
m(ββ̇)

(1 − β2)2
= (gβ) =

1√
1 − β2

(Fβ)
c

,

(31)
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where F is the vector of three-dimensional force acting on the particle.
2) It is easy to obtain that

dui

ds
=

1
c

(
(β, β̇)

(1 − β2)2
,

β̇

1 − β2
+

β(β, β̇)
(1 − β2)2

)
, (32)

d2ui

ds2
=

1
c2

[
β̇2 + (ββ̈)
(1 − β2)5/2

+
4(ββ̇)2

(1 − β2)7/2
,

β̈

(1 − β2)3/2
+

3β̇(β, β̇) + ββ̇2 + β(ββ̈)
(1 − β2)5/2

+
4β(ββ̇)2

(1 − β2)7/2

]
, (33)

ui d
2ui

ds2
= ui

d2ui

ds2
=

β̇2

c2(1 − β2)2
+

(ββ̇)2

(1 − β2)3
. (34)

Let us insert expressions (33) and (34) into formula (29), and after some simpli-
ˇcations we obtain

g0 =
2e2

3c

[
(ββ̈)

(1 − β2)5/2
+

3(ββ̇)2

(1 − β2)7/2

]
. (35)

3) From formulae (31) and (35) we can obtain the work done by the radiation
reaction force (RRF):

Ar.Z. =

t′+Δt′∫
t′

(F,v)dt′ =
2e2

3c

t′+Δt′∫
t′

[
(ββ̈)

(1 − β2)2
+

3(ββ̇)2

(1 − β2)3

]
dt′. (36)

If a charge moves along the Ox axis, then we can introduce the notation β = υx/c
and expression (36) can be rewritten in the following way:

Ar.Z. = −2e2

3c

t′+Δt′∫
t′

β̇2dt1
(1 − β2)3

+
2e2

3c

[
ββ̇

(1 − β2)2

]t1=t′+Δt′

t1=t′

. (37)
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