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Study of Wire Oscillation Processes in Stretching Measurement

Wire oscillations in stretching measurements are analyzed. The electrostatic
method of excitement of wire oscillation is considered in process of the resonance
frequency ˇnding, hanging on tension and parameters of wire. Wire oscillations are
described by wave equation. The solutions of the equation of free and forced wire
oscillation allow the effect of various factors on the resonance frequency to be esti-
mated. Effects of ambient conditions and external force on the accuracy of resonance
frequency determination are considered. The initial conditions are shown to impose
limitations on excitation of even oscillation harmonics irrespective of the detection
method. Experimental dependence and oscillograms of basic excitation frequencies
conˇrming correctness of the analytical expressions obtained and conclusions drawn
are given.

The investigation has been performed at the Dzhelepov Laboratory of Nuclear
Problems, JINR.
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INTRODUCTION

Wire detectors are at the heart of detection systems used in high energy
physics research. In modern facilities ATLAS, CMS, ALICE and others recording
channels of these detectors can number in a hundred thousand. As reliable
long-term operation of the detectors is important for the experiment, stringent
requirements are placed upon them and it is necessary to check their characteristics
at all stages of their production and operation in experimental setups. It is essential
to have a possibility of testing detectors and electronics. For wire detectors it is
important to check wire stretching as it largely governs the electrostatic properties
of the detector. Measuring the resonance frequency of wire oscillation one can
judge both stretching and density variation of the wire. The variation arises
from deposition of organic radicals on its surface (aging of the detector), which
adversely affects the detection efˇciency. Therefore, improvement of stretching
check methods and an increase in the detection sensitivity are still a crucial issue.
Understanding and allowance for factors affecting the detector checking results
ensures successful operation of detectors in experiments.

Measurement of wire stretching in detectors is related to excitation of its
oscillation at a resonance frequency ωn. When found, the resonance frequency
allows unambiguous determination of the tension T

T =
(

ωnL

nπ

)2
ρ

g
. (1)

Here ωn is the resonance frequency of free oscillation in Hz; L is the wire length
in m; T is tension in grams; ρ is the linear density in g/m; g = 9.8 m/s2; n
is the oscillation excitation harmonic, n = 1, 2, 3 . . . Various methods are
used to excite oscillation. However, determination of the resonance frequency
does not depend upon the method. It is constant in solution of the equation of
free oscillation of a string and depends only upon the parameters of the wire.
The value of ωn may be affected by the oscillation excitation device circuitry
leading to the presence of a constantly acting force. Resistance of the medium
can also affect the resonance frequency. These issues are considered in the paper
as applied to the use of the electrostatic method for excitation of oscillation. The
advantage of this method is that the wire is accessible only on one side through the
readout connector and no other devices have to be used near the wire. This allows
detectors to be tested both at the production stage and during their operation as
part of physical setups.
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FREE OSCILLATION

The equation of free oscillation of the wire is

T
d2y

dx2
= ρ

d2y

dt2
, (2)

where y is the transverse de�ection of the wire and x is the coordinate of the
wire over its length. Solution of this equation can be found in virtually all text-
books on mathematical physics equations [1, 2]. Note that the wave equation
is derived for an undeformed wire and constant tension over its length. A shift
of all points of the wire takes place in a plane orthogonal to its length. From
this follows independence of the equation from the wire slope angle with respect
to the gravity direction and constancy of the resonance frequency. An effective
method for solution of equations like that is the Fourier method. Superposition
of all solutions of the equation will be the expression

y(x, t) =
∞∑

n=1

[an cosnω1t + bn sin nω1t] sin
nπx

L
, (3)

where ω1 is the resonance frequency of the ˇrst harmonic. The coefˇcients an

and bn are found from the initial conditions

y |t=0 =
∞∑

n=1

an sin
nπx

L
= ϕ(x), 0 � x � L, (4)

dy

dt
|t=0 =

∞∑
n=1

nω1bn sin
nπx

L
= ψ(x), 0 � x � L. (5)

Equalities 4 and 5 are expansions of the functions ϕ(x) and ψ(x) in Fourier
series in the interval (0, L) in the orthogonal system of trigonometric functions{
sin

nπx

L

}∞

n=1
. Then the coefˇcients an and bn are determined by EulerÄFourier

formulas

an = ϕn =
2
L

L∫
0

ϕ(x) sin
nπx

L
dx; bn =

ψn

nω1
=

2
nω1L

L∫
0

ψ(x) sin
nπx

L
dx.

(6)
As applied to wire detectors, the function ϕ (x) can be determined explicitly. The
wire is acted upon by the tension and weight. Let us write down the Newton
equation for these forces:

T
d2y

dx2
+ ρ = 0. (7)
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A solution of this equation is the expression:

ϕ(x) =
ρ

2T
x2 + C1x + C2.

The boundary conditions for the wire ˇxed at its ends, y(0) = y(L) = 0, deter-
mine the constants C1, C2 and the function ϕ(x)

ϕ(x) =
ρ

2T
x (L − x) . (8)

In this case the coefˇcients an are calculated as

an =
2
L

L∫
0

ρ

2T
x (L − x) sin

nπx

L
dx =

=
2ρL2

T (nπ)3
(1 − cosnπ) =

4g

(2k − 1)πω2
2k−1

. (9)

The initial position of the wire (8) affects the solution: there remain only terms
with odd harmonics n = 2k−1. In the problem of determination of the resonance
frequency of the wire ω1 the initial oscillation rate dy/dt depends upon the method
of excitation. If the rate is equal to zero, the coefˇcients bn vanish and the terms
sin nω1t are absent in solution (3)

y(x, t) =
∞∑

k=1

4g

(2k − 1)πω2
2k−1

cosω2k−1t sin
(2k − 1)πx

L
. (10)

This mode is typical of free oscillation of the wire at the shock excitation by
a high-voltage signal. In this case high voltage is applied to the wire and then
is abruptly cut off. The electrostatic force causes initial de�ection of the wire.
Voltage cut-off and termination of the force action result in oscillation of the
wire as it returns to the initial position. Forced oscillation due to electrostatic
excitation by the alternating voltage signal also begins at the zero rate. The
induction method of excitation is based on the action of the magnetic ˇeld upon
a current-carrying conductor. A current pulse of amplitude I and duration ts is
passed through a wire placed in the magnetic ˇeld with induction B. The force
F1 acting upon the conductor of length Δl is expressed, according to the Ampere
law, by the relation

F1 = I ΔlB sin β, (11)

where β is the angle between the directions of the magnetic induction and the
current, Δl is the magnet-overlapped wire length. Under the action of the induc-
tion force the wire de�ects from the stationary position and free oscillation begins
after the current pulse ends.
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The frequency of natural oscillation for equation (2) is deˇned by the relation

ωn =
nπ

L

√
Tg

ρ
. (12)

The equation of free oscillation ignores the resistance of the medium. The medium
resistance force F2 acting upon a unit length of the wire is deˇned in [3] as

F2 =
4πη

0.5 − νE − ln R/4
· dy

dt
= α

dy

dt
, (13)

where νE = 0.577 is the Euler constant, η is the viscosity of the medium, R is
the Reynolds number.

Considering the effect of the medium, the equation of free oscillation is
written as

T
d2y

dx2
= ρ

d2y

dt2
+ α

dy

dt
, (14)

When the coefˇcient of friction is small, m = α/2ρ < ω2k−1, its solution takes
the form [4]

y(x, t) = e−mt
∞∑

k=1

4g

(2k − 1)πq2
2k−1

cos q2k−1t sin
(2k − 1) πx

L
. (15)

The oscillation amplitude decays exponentially and the oscillation frequency de-

creases q2k−1 =
√

ω2
2k−1 − m2. Evaluation of m made in [3] yields the value

m ≈ 0.01ω1, which practically does not affect the accuracy of determination
of the resonance frequency. On the other hand, the constant force F3 produces
a noticeable effect on the resonance frequency. Under the action of the force
F3 = ry(x) orthogonal to the x axis the wire shifts by a value y0, where r is the
proportionality coefˇcient. Let us write down equation of oscillation (2) for the
stationary state y0 and the variable u

T
d2u

dt2
+ ry + P = 0 and y = y0 + u, (16)

T
d2u

dx2
= ρ

d2u

dt2
+ ru. (17)

Let us search for the solution by the method of separation of variables
u = Z(x) · S(t). After substitution and cancellation of u the equation is re-
arranged in the form

1
S

d2S

dt2
=

T

ρ

1
Z

d2Z

dx2
+

r

ρ
≡ μ. (18)
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The functions Z(x) and S(t) can be found by solving the system of differential
equations

S′′(t) − μS(t) = 0, Z ′′(x) −
(

μ − r

ρ

)
ρ

T
Z(x) = 0. (19)

Considering the boundary conditions Z(0) = Z(L) = 0, the solution is

Zn(x) = sin
nπx

L
, Sn(t) = an cos qnt + bn sin qnt,

qn =

√(nπ

L

)2 Tg

ρ
− r

ρ
=

√
ω2

n − r/ρ. (20)

Action of the constant force decreases the resonance frequency. This should be
taken into account when wire stretching is being checked. This disadvantage is
characteristic of the device reported in [5] and, to a larger extent, in [6], where
voltage up to 4 kV is applied to the wire. The quantity r is the force per wire unit
length referred to the bias; it is expressed as n/m2. Figure 1 shows the measured
dependence of relative variation in the ˇrst harmonic frequency ε under the action
of the force. The electrostatic force acting on the wire was speciˇed by the value
of the constant negative cathode voltage Uc. The alternating excitation signal
of positive polarity Us was applied to the gold-plated tungsten wire of diameter
d = 30 μm and length L = 1 m. The amplitude of the signal was 250 V, the
distance between the wire and the cathode was H = 3 mm.

Fig. 1. Dependence of relative variation of the resonance frequency ε on constant force (Uc)

The resonance frequency varies quadratically with voltage, which agrees with
(28). A relative error in determination of the resonance frequency can amount
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to a few per cent. An increase in the wire tension T stabilizes its position and
decreases the error.

FORCED OSCILLATION

An external force is required to excite continuous oscillation of the wire. In
this paper we consider excitation of oscillation under the effect of a.c. voltage
U on the wire. The equation of forced oscillation involves action of a variable
force F4 upon the wire

T
d2y

dx2
= ρ

d2y

dt2
+ F4. (21)

The solution of (21) is sought for in the form of an expansion in the Fourier series

over the segment (0, L) in the system of orthogonal eigenfunctions
{

sin
nπx

L

}∞

n=1
.

In the general case it is expressed as

y(x, t) =
∞∑

n=1

[
ϕn cosnω1t +

1
nω1

ψn sinnω1t

]
sin

nπx

L
+

+
∞∑

n=1

1
nω1

⎡
⎣ t∫

0

fn (τ) sinnω1 (t − τ) dτ

⎤
⎦ sin

nπx

L
, (22)

where

fn =
2
L

L∫
0

F4(x, t)
ρ

sin
nπx

L
dx. (23)

The ˇst sum is the solution of the homogeneous equation and the second sum is
a partial solution resulting from the action of the force F4, which is expanded in
a Fourier series. The force F4 can be found from the energy conservation law.
The excited wire is a capacitor C relative to the electrode under test. Variation
in the energy of the capacitor under the effect of the applied voltage is equal to
the work done by the excitation force on the wire to change its position.

F4dH =
U2

2
dC, F4 =

dC

dH

U2

2
. (24)

Below are wire capacity formulas for the most popular conˇgurations of elec-
trodes: Cωp Å relative to the plane; Cωω Å relative to the wire; Cωt Å capacity
of cylinder-shaped electrodes.

Cω p =
2πε

ln 4H/d
, Cω ω =

πε

ln 2H/d
, Cω t =

2πε

ln D/d
. (25)
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Here H is the distance between the electrodes, d is the diameter of the wire,
D is the outer diameter of the cylinder, ε is the permittivity of the medium.
However, when using (24) one should bear in mind that the proˇle of bias dH
along the wire under the effect of the excitation force is sine shaped. Therefore,
a coefˇcient p taking into account the shape can be introduced in (24) and the
value of F4 can be averaged. The coefˇcient p is equal to the average value of
the wire de�ection amplitude at sine proˇle its offset over the length

p =
1
L

L∫
0

sin
nπx

L
dx =

2
π

. (26)

For comparison, the coefˇcient for taking into account the shape of the parabolic
proˇle (8) is p = 2/3. Let us consider excitation of wire oscillation relative to
the cathode plane. It is preferable to realize the high-voltage excitation signal U
in the form of a function U = U0 (1 − cosω t). In this case the signal becomes a
single-pole one with an amplitude varying from 0 to 2U0. The excitation force is

F3 = p·
∣∣∣∣dCω p

dH

∣∣∣∣·U2

2
=

2
π
· Cω pU

2
0

2H ln 4H/d
(1 − cosω t)2 = F0 (1 − cosω t)2 . (27)

The averaged value of the excitation force is

F0 =
Cω pU

2
0

π H ln 4H/d
. (28)

The Fourier series expansion coefˇcients fn for the force are, according to (23),

fn =
2F0

nπρ
(1 − cosnπ) · (1 − cosω t)2 . (29)

Now let us calculate the integral J0 which enters the sum of partial solution (22)

J0 =

t∫
0

fn (τ) sin nω1 (t − τ ) (1 − cosω t)2 dτ =

=
2F0

nπρ
(1 − cosnπ)

t∫
0

sinnω1 (t − τ )
(
1 − 2 cosωτ + cos2 ωτ

)
dτ. (30)

For the integral we shall use the trigonometric relation sinα cosβ =
1
2
[sin(α − β) + sin (α + β)]. The integral of interest consists of three parts:

J0 =
2F0

nπρ
(1 − cosnπ) (J1 + J2 + J3) , (31)
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J1 =

t∫
0

sin nω1 (t − τ ) dτ =
1

nω1
(1 − cosnω1t) , (32)

J2 = −2

t∫
0

sin nω1 (t − τ ) · cosωτ =
2nω1

(nω1)
2 − ω2

(cosωt − cosnω1t) , (33)

J3 =

t∫
0

sin nω1 (t − τ ) · cos2 ωτ =
0.5nω1

(nω1)
2 − 4ω2

(cos 2ω t − cosnω1t)+

+
1

2nω1
(1 − cosnω1t) . (34)

The factor 1 − cosnπ shows that the forced oscillation solution will also involve
only odd harmonics n = 2k − 1. Thus the common decision of the equation of
forced oscillation (21) will be

y (x, t) =
∞∑

k=1

4g

(2k − 1) πω2
2k−1

cosω2k−1t sin
(2k − 1) πx

L
+

+
∞∑

k=1

4F0

(2k − 1) πρ

[
3 (1 − cosω2k−1t)

2ω2
2k−1

+
2 (cosω t − cosω2k−1t)

ω2
2k−1 − ω2

+

+
0.5 (cos 2ω t − cosω2k−1t)

ω2
2k−1 − 4ω2

]
sin

(2k − 1)πx

L
. (35)

The second sum of this solution characterizes the forced oscillation amplitude.
When the excitation frequency coincides with the frequency of natural oscillation,
e. g. with the basic harmonic k = 1, ω = ω1, the oscillation amplitude will be
deˇned by the second term of the sum, being

lim
ω→ω1

2 (cosω t − cosω1t)
ω2

1 − ω2
= −

4 sin ω−ω1
2 t sin ω+ω1

2 t

ω2
1 − ω2

=
t sin ω1t

ω1
. (36)

Due to the factor t the amplitude increases linearly and the oscillation is phase
shifted by π/2 relative to the excitation signal that is characterized by sin ω1t.
The increase in the oscillation amplitude is limited by plastic deformation of the
wire and partially by the resistance of the medium. At the resonance frequency
there occur self-sustained oscillations with the decrease in the amplitude due to
damping being offset by the effect of the excitation force. Excitation of other odd
resonance harmonic is also determined by the second term of the sum. Its third
term explains the possibility of exciting the fundamental harmonic of oscillation at
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the frequency ω = ω1/2 with the amplitude 0.5t sinω1t/ω1. Forced oscillations
deˇned by third term are distinctly registered on frequency small exceeding ω1,
(Fig. 2). It is impossible to excite odd harmonics ω2k−1 with the third term at

Fig. 2. Forced oscillation deˇned by the third term

Fig. 3. Forced oscillation far from reso-
nance frequency

Fig. 4. The reaching of maximum oscil-
lation amplitude with time on resonance
frequency

ω = ω2k−1/2, probably because of symmetry breaking: one cannot try to excite
an odd number of waves of frequency ω2k−1 at the even wave frequency 2ω. In
addition, due to the second term, the excitation force is four time larger with total
symmetry conservation ω = ω2k−1. Te ˇrst term shows the constant amplitude
of oscillation faraway from resonance frequency ω2k−1. The phase shift of the
oscillation signal with respect to the excitation signal by π/2 at the resonance can
be successfully used to ˇnd resonance frequencies [6, 7]. Below are oscillograms
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of tested wire oscillation. Characteristics of the wire are given above. The
excitation signal amplitude was 500 V. Figure 3 shows the oscillogram of forced
oscillation far from the resonance frequency. The oscillation is in phase with the
acting force and has small amplitude. Figure 4 shows the oscillogram of reaching
maximum oscillation amplitude with time on resonance frequency. For standard
detectors the amplitude reaches this steady-state value within 0.5Ä0.9 s. Figure 5
shows oscillograms of excitation of basic resonance frequencies. Ray 1 is the

Fig. 5. The oscillograms of excitation of basic resonance frequencies

excitation signal decreased by a factor of 103, ray 2 is the recorded oscillation
signal. It is impossible to excite oscillation at frequencies higher than the third
harmonic with voltage variation in the range 0Ä1000 V. The use of the voltage
higher than 1500 V for this purpose requires the use of working gas mixture
to prevent breakdown in the detector. Oscillations at the frequency ω1/2 are
nonsymmetrical though the phase shift by π/2 with respect to the excitation
signal remains.

CONCLUSIONS

The above oscillograms conˇrm correctness of the relations derived for the
amplitude and resonance frequencies:

Å the wire oscillates in the plane orthogonal to its length, therefore the
resonance frequency does not depend upon the angle of slope with respect to the
gravity.

Experimental checks at wire slope angles of 0, 45, and 90 degrees conˇrmed
this fact with a measurement error of 0.1%;

Å only odd resonance frequencies ω2k−1 and ω1/2 are excited, which is also
conˇrmed by the authors of [8] in ˇnding the resonance frequency;
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Å the oscillation amplitude decreases cubically with the number of the fre-
quency, therefore it is practically impossible to excite frequencies above the third
harmonic;

Å the oscillation amplitude increases within less than one second.
Investigations of the authors of [3] and the experimental measuring show

that:
Å the effect produced by the resistance of the medium on the determination

of the resonance frequency can be ignored;
Å the constant force acting upon the wire decreases the resonance frequency

and thus should be taken into account. The variable excitation force does not
affect the resonance frequency.
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