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Bonkos A. I E13-2005-198
HccrnenoB Hule mporeccoB Kojied HUS MPOBOJIOYKH MPHU U3MEPEHUU H TSIXKEHUS

Hccenenyrorea mponeccsl Kosed HHs MPOBOIOYKM MPH M3MEPEHHUH H TSXKEHHS.
P ccm TpuB ercd 31eKTpOCT THYECKMIl MeTol BO30YyX/eHNS KoneO HHUH IPOBOIOYKH
B IIpoLleCCE€ H XOXAEHUS Pe30H HCHOW 4 CTOTHI, 3 BUCSINEH OT H TSEKEHHd U I p -
MEeTpOB IPOBOIOYKH. Koned Hus MPOBOJIOYKH ONUCHIB IOTCS BOJTHOBBIM yp BHEHHEM.
Pemenne yp BHeHHSI CBOOOIHBIX M BBIHYXIEHHBIX KOJIEO HUIl IPOBOJIOYKH ITO3BOJISIET
OLIEHWUTbH BIINSIHUE P 3MUYHBIX () KTOPOB H PE30H HCHYI 4 CTOTy. P ccm TpuB 1oTcs
BOIIPOCHI BIIMSIHUSL CPEIbl M BHEINHEH CHIBl H TOYHOCTh H XOXACHMS PE30H HCHOMU
4 cToThl. IIOK 3 HO, 4TO H Y JIBHBIE YCJIOBHS H KJI JIbIB IOT OIp HHYEHHE H BO3-
OyXIeHHe YEeTHBIX I' PMOHMK KoJieO HHMH BHE 3 BUCHMMOCTH OT METOJ PErucTp LIHUH.
ITpuBOAMTCS BKCHEPUMEHT JIbH I 3 BUCUMOCTb M OCLIMJUIOTP MMBI OCHOBHBIX 4 CTOT
BO30YXIEHUS, TMOATBEPXKA IOLIME IIP BHJIBHOCTD NMOJYYCHHBIX H JIMTHYECKHX BBIP -
KEHUH ¥ CHET HHBIX BBIBOZIOB.

P 6or Bbmmosnnen B JI 6Gop Topuum siepHbIx mpobiem um. B.I1. Ixxenernos
OHusIN.
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Study of Wire Oscillation Processes in Stretching Measurement

Wire oscillations in stretching measurements are analyzed. The electrostatic
method of excitement of wire oscillation is considered in process of the resonance
frequency finding, hanging on tension and parameters of wire. Wire oscillations are
described by wave equation. The solutions of the equation of free and forced wire
oscillation allow the effect of various factors on the resonance frequency to be esti-
mated. Effects of ambient conditions and external force on the accuracy of resonance
frequency determination are considered. The initial conditions are shown to impose
limitations on excitation of even oscillation harmonics irrespective of the detection
method. Experimental dependence and oscillograms of basic excitation frequencies
confirming correctness of the analytical expressions obtained and conclusions drawn
are given.

The investigation has been performed at the Dzhelepov Laboratory of Nuclear
Problems, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna, 2005




INTRODUCTION

Wire detectors are at the heart of detection systems used in high energy
physics research. In modern facilities ATLAS, CMS, ALICE and others recording
channels of these detectors can number in a hundred thousand. As reliable
long-term operation of the detectors is important for the experiment, stringent
requirements are placed upon them and it is necessary to check their characteristics
at all stages of their production and operation in experimental setups. It is essential
to have a possibility of testing detectors and electronics. For wire detectors it is
important to check wire stretching as it largely governs the electrostatic properties
of the detector. Measuring the resonance frequency of wire oscillation one can
judge both stretching and density variation of the wire. The variation arises
from deposition of organic radicals on its surface (aging of the detector), which
adversely affects the detection efficiency. Therefore, improvement of stretching
check methods and an increase in the detection sensitivity are still a crucial issue.
Understanding and allowance for factors affecting the detector checking results
ensures successful operation of detectors in experiments.

Measurement of wire stretching in detectors is related to excitation of its
oscillation at a resonance frequency w,. When found, the resonance frequency
allows unambiguous determination of the tension 7'
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Here w,, is the resonance frequency of free oscillation in Hz; L is the wire length
in m; T is tension in grams; p is the linear density in g/m; g = 9.8 m/s2; n
is the oscillation excitation harmonic, n = 1, 2, 3 ... Various methods are
used to excite oscillation. However, determination of the resonance frequency
does not depend upon the method. It is constant in solution of the equation of
free oscillation of a string and depends only upon the parameters of the wire.
The value of w, may be affected by the oscillation excitation device circuitry
leading to the presence of a constantly acting force. Resistance of the medium
can also affect the resonance frequency. These issues are considered in the paper
as applied to the use of the electrostatic method for excitation of oscillation. The
advantage of this method is that the wire is accessible only on one side through the
readout connector and no other devices have to be used near the wire. This allows
detectors to be tested both at the production stage and during their operation as
part of physical setups.




FREE OSCILLATION
The equation of free oscillation of the wire is
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where y is the transverse deflection of the wire and z is the coordinate of the
wire over its length. Solution of this equation can be found in virtually all text-
books on mathematical physics equations [1, 2]. Note that the wave equation
is derived for an undeformed wire and constant tension over its length. A shift
of all points of the wire takes place in a plane orthogonal to its length. From
this follows independence of the equation from the wire slope angle with respect
to the gravity direction and constancy of the resonance frequency. An effective
method for solution of equations like that is the Fourier method. Superposition
of all solutions of the equation will be the expression
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where w; is the resonance frequency of the first harmonic. The coefficients a,
and b,, are found from the initial conditions
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Equalities 4 and 5 are expansions of the functions ¢(x) and (x) in Fourier
series in the interval (0, L) in the orthogonal system of trigonometric functions

{bm %} . Then the coefficients a,, and b,, are determined by Euler—Fourier
n=1

formulas
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As applied to wire detectors, the function ¢ (x) can be determined explicitly. The
wire is acted upon by the tension and weight. Let us write down the Newton
equation for these forces:
d*y
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A solution of this equation is the expression:

p
p(x) = QTx + Crz + Cs.
The boundary conditions for the wire fixed at its ends, y(0) = y(L) = 0, deter-

mine the constants C, Co and the function ¢(z)

o(zr) = %x (L—1x). (8)
In this case the coefficients a,, are calculated as
L
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The initial position of the wire (8) affects the solution: there remain only terms
with odd harmonics n = 2k — 1. In the problem of determination of the resonance
frequency of the wire w; the initial oscillation rate dy/dt depends upon the method
of excitation. If the rate is equal to zero, the coefficients b,, vanish and the terms
sinnwit are absent in solution (3)
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This mode is typical of free oscillation of the wire at the shock excitation by
a high-voltage signal. In this case high voltage is applied to the wire and then
is abruptly cut off. The electrostatic force causes initial deflection of the wire.
Voltage cut-off and termination of the force action result in oscillation of the
wire as it returns to the initial position. Forced oscillation due to electrostatic
excitation by the alternating voltage signal also begins at the zero rate. The
induction method of excitation is based on the action of the magnetic field upon
a current-carrying conductor. A current pulse of amplitude I and duration ¢, is
passed through a wire placed in the magnetic field with induction B. The force
Fy acting upon the conductor of length Al is expressed, according to the Ampere
law, by the relation

Fy =1 AlBsin g, 11

where (3 is the angle between the directions of the magnetic induction and the
current, Al is the magnet-overlapped wire length. Under the action of the induc-
tion force the wire deflects from the stationary position and free oscillation begins
after the current pulse ends.



The frequency of natural oscillation for equation (2) is defined by the relation
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The equation of free oscillation ignores the resistance of the medium. The medium
resistance force F5 acting upon a unit length of the wire is defined in [3] as

Ay dy _ dy
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where vg = 0.577 is the Euler constant, 7 is the viscosity of the medium, R is
the Reynolds number.
Considering the effect of the medium, the equation of free oscillation is
written as ) )
dy  dy dy
T—=p——1 — 14
a2~ Pae T (14)
When the coefficient of friction is small, m = «/2p < wai_1, its solution takes
the form [4]

oo

_ 4q . (2k—=1) 7z
1) =e ™t _— J coSQop_qtsin—F 277, 15
y(z,t) =e ; k= 1) ng oS daetsin T (15)

The oscillation amplitude decays exponentially and the oscillation frequency de-
creases (orp_1 = W%kq — m?2. Evaluation of m made in [3] yields the value

m =~ 0.0lw;, which practically does not affect the accuracy of determination
of the resonance frequency. On the other hand, the constant force F3 produces
a noticeable effect on the resonance frequency. Under the action of the force
F5 = ry(z) orthogonal to the = axis the wire shifts by a value yo, where r is the
proportionality coefficient. Let us write down equation of oscillation (2) for the
stationary state yo and the variable u

d?u

Tﬁ#—ry—FP:O and y =vyo+ u, (16)
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Let us search for the solution by the method of separation of variables
uw = Z(x) - S(t). After substitution and cancellation of u the equation is re-
arranged in the form
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The functions Z(x) and S(t) can be found by solving the system of differential
equations

S"(t)— uSt) =0, Z"(x)- (u - %) %Z(x) = 0. (19)

Considering the boundary conditions Z(0) = Z(L) = 0, the solution is

Zn(x) = sin ?, Sn(t) = ay, cos gpt + by, sin g, t,
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Action of the constant force decreases the resonance frequency. This should be
taken into account when wire stretching is being checked. This disadvantage is
characteristic of the device reported in [5] and, to a larger extent, in [6], where
voltage up to 4 kV is applied to the wire. The quantity r is the force per wire unit
length referred to the bias; it is expressed as n/m?. Figure 1 shows the measured
dependence of relative variation in the first harmonic frequency ¢ under the action
of the force. The electrostatic force acting on the wire was specified by the value
of the constant negative cathode voltage U.. The alternating excitation signal
of positive polarity Us was applied to the gold-plated tungsten wire of diameter
d = 30 ym and length L = 1 m. The amplitude of the signal was 250 V, the

distance between the wire and the cathode was H = 3 mm.
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Fig. 1. Dependence of relative variation of the resonance frequency € on constant force (U.)

The resonance frequency varies quadratically with voltage, which agrees with
(28). A relative error in determination of the resonance frequency can amount



to a few per cent. An increase in the wire tension 7' stabilizes its position and
decreases the error.

FORCED OSCILLATION

An external force is required to excite continuous oscillation of the wire. In
this paper we consider excitation of oscillation under the effect of a.c. voltage
U on the wire. The equation of forced oscillation involves action of a variable
force F; upon the wire
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The solution of (21) is sought for in the form of an expansion in the Fourier series
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over the segment (0, L) in the system of orthogonal eigenfunctions {sm T} .
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In the general case it is expressed as
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The fist sum is the solution of the homogeneous equation and the second sum is
a partial solution resulting from the action of the force F), which is expanded in
a Fourier series. The force F, can be found from the energy conservation law.
The excited wire is a capacitor C' relative to the electrode under test. Variation
in the energy of the capacitor under the effect of the applied voltage is equal to
the work done by the excitation force on the wire to change its position.

U? dC U?
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(24)
Below are wire capacity formulas for the most popular configurations of elec-
trodes: C,,, — relative to the plane; C,,, — relative to the wire; C,,; — capacity
of cylinder-shaped electrodes.

2me co_ e Cc_ 2me
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Cu p = (25)



Here H is the distance between the electrodes, d is the diameter of the wire,
D is the outer diameter of the cylinder, ¢ is the permittivity of the medium.
However, when using (24) one should bear in mind that the profile of bias dH
along the wire under the effect of the excitation force is sine shaped. Therefore,
a coefficient p taking into account the shape can be introduced in (24) and the
value of F) can be averaged. The coefficient p is equal to the average value of
the wire deflection amplitude at sine profile its offset over the length

L

p:%/sin$dx=% (26)
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For comparison, the coefficient for taking into account the shape of the parabolic

profile (8) is p = 2/3. Let us consider excitation of wire oscillation relative to

the cathode plane. It is preferable to realize the high-voltage excitation signal U

in the form of a function U = Uy (1 — coswt). In this case the signal becomes a

single-pole one with an amplitude varying from 0 to 2U,. The excitation force is

dC,,,
dH

U? 2 C, U
=2 W0 coswit)? = Fy (1 —coswt)®. (27)
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The averaged value of the excitation force is

CopUg
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The Fourier series expansion coefficients f,, for the force are, according to (23),
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Now let us calculate the integral Jy which enters the sum of partial solution (22)
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For the integral we shall use the trigonometric relation sinacosfl =
1
E[Sin(a — ) +sin (a + 3)]. The integral of interest consists of three parts:
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The factor 1 — cos nm shows that the forced oscillation solution will also involve
only odd harmonics n = 2k — 1. Thus the common decision of the equation of
forced oscillation (21) will be
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The second sum of this solution characterizes the forced oscillation amplitude.
When the excitation frequency coincides with the frequency of natural oscillation,
e.g. with the basic harmonic k¥ = 1, w = wy, the oscillation amplitude will be
defined by the second term of the sum, being

. 2(coswt — coswnt) 4sin U5 sin “EE tsinwgt
lim 5 5 =— 5 5 = . (36)
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Due to the factor ¢ the amplitude increases linearly and the oscillation is phase
shifted by 7/2 relative to the excitation signal that is characterized by sinwst.
The increase in the oscillation amplitude is limited by plastic deformation of the
wire and partially by the resistance of the medium. At the resonance frequency
there occur self-sustained oscillations with the decrease in the amplitude due to
damping being offset by the effect of the excitation force. Excitation of other odd
resonance harmonic is also determined by the second term of the sum. Its third
term explains the possibility of exciting the fundamental harmonic of oscillation at



the frequency w = w;/2 with the amplitude 0.5¢sinwt/w;. Forced oscillations
defined by third term are distinctly registered on frequency small exceeding wi,
(Fig.2). It is impossible to excite odd harmonics wsgg—; with the third term at
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Fig. 2. Forced oscillation defined by the third term
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Fig. 3. Forced oscillation far from reso- Fig. 4. The reaching of maximum oscil-
nance frequency lation amplitude with time on resonance
frequency

w = wa_1/2, probably because of symmetry breaking: one cannot try to excite
an odd number of waves of frequency wsy—1 at the even wave frequency 2w. In
addition, due to the second term, the excitation force is four time larger with total
symmetry conservation w = weg_1. Te first term shows the constant amplitude
of oscillation faraway from resonance frequency wsy—3. The phase shift of the
oscillation signal with respect to the excitation signal by /2 at the resonance can
be successfully used to find resonance frequencies [6, 7]. Below are oscillograms



of tested wire oscillation. Characteristics of the wire are given above. The
excitation signal amplitude was 500 V. Figure 3 shows the oscillogram of forced
oscillation far from the resonance frequency. The oscillation is in phase with the
acting force and has small amplitude. Figure 4 shows the oscillogram of reaching
maximum oscillation amplitude with time on resonance frequency. For standard
detectors the amplitude reaches this steady-state value within 0.5-0.9 s. Figure 5
shows oscillograms of excitation of basic resonance frequencies. Ray 1 is the
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Fig. 5. The oscillograms of excitation of basic resonance frequencies

excitation signal decreased by a factor of 103, ray 2 is the recorded oscillation
signal. It is impossible to excite oscillation at frequencies higher than the third
harmonic with voltage variation in the range 0-1000 V. The use of the voltage
higher than 1500 V for this purpose requires the use of working gas mixture
to prevent breakdown in the detector. Oscillations at the frequency w;/2 are
nonsymmetrical though the phase shift by 7/2 with respect to the excitation
signal remains.

CONCLUSIONS

The above oscillograms confirm correctness of the relations derived for the
amplitude and resonance frequencies:

— the wire oscillates in the plane orthogonal to its length, therefore the
resonance frequency does not depend upon the angle of slope with respect to the
gravity.

Experimental checks at wire slope angles of 0, 45, and 90 degrees confirmed
this fact with a measurement error of 0.1%;

— only odd resonance frequencies war—1 and wq/2 are excited, which is also
confirmed by the authors of [8] in finding the resonance frequency;
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— the oscillation amplitude decreases cubically with the number of the fre-
quency, therefore it is practically impossible to excite frequencies above the third
harmonic;

— the oscillation amplitude increases within less than one second.

Investigations of the authors of [3] and the experimental measuring show
that:

— the effect produced by the resistance of the medium on the determination
of the resonance frequency can be ignored;

— the constant force acting upon the wire decreases the resonance frequency
and thus should be taken into account. The variable excitation force does not
affect the resonance frequency.
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