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The fully developed turbulence with axial anisotropy for dimensions d > 2 was in-
vestigated by means of renormalization group approach. The in�uence of anisotropy
on the stability of the Kolmogorov scaling regime was analyzed. It was shown that
there are only rather speciˇc values of the anisotropy parameters in which the three-
dimensional scaling regime is destroyed by the in�uence of axial anisotropy. The
borderline dimension between stable scaling regime and unstable one was calculated
as a function of the anisotropy parameters.
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1. INTRODUCTION

It is believed that traditional approach to the description of fully developed
turbulence based on the stochastic NavierÄStokes equation is the most realistic
one [1]. The complexity of this equation leads to great difˇculties which defend
to solve it even in the simplest case when one assumes the isotropy of the
system under consideration. On the other hand, almost all real hydrodynamic
turbulent systems are more or less anisotropic, and strictly isotropic situations
are rather rare. Therefore, if one wants to model realistic developed turbulence,
one is pushed to consider anisotropically forced turbulence rather than isotropic
turbulence. Without doubt, this, of course, rapidly increases complexity of the
corresponding differential equation which itself has to involve a part responsible
for a description of the anisotropy. However, even in the isotropic case we have
no exact solution of the NavierÄStokes equation. In this situation, one is forced
to ˇnd some convenient methods to treat the problem at least step by step.

Among other approaches which were applied in the theory of fully developed
turbulence during the last decades, one of the most suitable and also powerful
tool is the so-called renormalization group (RG) method∗ which was widely
applied as an effective method of studying self-similar scaling behavior, e. g., it
was successfully used in the theory of critical phenomena to explain the origin
of critical scaling and to calculate universal quantities (critical dimensions and
scaling functions). During the last two decades the RG technique was widely used
in the fully developed turbulence, and gives answers to some principal questions
(e. g., the fundamental description of the infrared (IR) scale invariance) and is also
useful for the calculations of many universal parameters (e. g., critical dimensions
of the ˇelds and their gradients, etc.). A detailed survey of these questions can
be found in Refs. [7, 8, 9], and references therein.

In early papers, the RG approach was applied only to isotropic models of
developed turbulence. However, the method can also be used (with corresponding
modiˇcations) in the theory of anisotropically developed turbulence. A crucial

∗Here we consider and discuss quantum-ˇeld renormalization group (or also known as ˇeld-
theoretic renormalization group) approach [2] rather than Wilson renormalization group technique [3]
(see also [4Ä6]). It is this version of the RG that is the simplest and the most convenient in practical
calculations, especially in higher orders of the perturbation expansion.
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question immediately arises here: whether the principal properties of the isotropic
case and the anisotropic one are the same, at least at the qualitative level. If
they are, then it is possible to consider the isotropic case as a ˇrst step in the
investigation of the real turbulent systems. Maybe the most interesting question
is the following one: does the scaling regime remain stable under transition from
isotropically developed turbulence into the anisotropically developed turbulence?
In the framework of the RG approach the stable regimes correspond to the very
existence of the stable ˇxed points of the corresponding RG equations. Thus,
the aforementioned question can be reformulated in other words, namely, do
the stable ˇxed points of the RG equations remain stable under the in�uence of
anisotropy?

During the last decade a few papers have appeared in which the above
question was considered in the framework of the RG approach in fully developed
turbulence and related problems (magnetohydrodynamic developed turbulence,
advection of passive and vector ˇelds by a given turbulent environment, etc.). In
some cases, it was found that stability actually takes place (see, e. g., [10, 11]).
On the other hand, the existence of systems without such a stability has also been
proven. As was shown in Ref. [12] in the anisotropic∗ magnetohydrodynamic
developed turbulence a stable regime generally does not exist. In Refs. [11,
13], d-dimensional models with d > 2 were investigated for two cases: weak
anisotropy [11] and strong anisotropy [13], and it was shown that the stability of
the isotropic ˇxed point is lost for dimensions d < dc � 2.685. In Ref. [13],
where strong anisotropy was investigated, it was also stated that stability of the
ˇxed point, even for dimension d = 3, takes place only for sufˇciently weak
anisotropy. In the present paper, we would like to return to the problem of
the in�uence of strong anisotropy on the stability of the scaling regime in fully
developed turbulence which was studied in Ref. [13]. The reason is the suspicion
that their results are, at least, not precise. Our conclusion will be the following:
the numerical results and conclusions of Ref. [13] are not exact and must be
speciˇed although the conceptual framework of their approach is accurate. It will
be discussed in detail in the subsequent sections in the present paper.

Another problem in these investigations was that it is impossible to use them
in the physically important case d = 2, because new ultraviolet (UV) divergences
appear in the Green functions, when one considers d = 2, and they were not taken
into account in the papers [11,13]. Let us analyzed this problem a little bit more,
even though a solution of this problem is not the aim of our investigations below.
In Ref. [14], a correct treatment of the two-dimensional isotropic turbulence
was given. The correctness in the renormalization procedure was reached by

∗Now and in what follows we always have in mind the uniaxial anisotropy, i. e., the anisotropy
deˇned by one speciˇc direction (see next section).
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introducing a new local term (with a new coupling constant) into the model, which
allows one to remove additional UV divergences. From this point of view, the
results obtained earlier for anisotropically developed turbulence, presented in [15]
and based on [16] (the results of the last paper are in con�ict with Ref. [14])
cannot be correct because they are inconsistent with the basic requirement of
the UV renormalization, namely, with the requirement of the localness of the
counterterms [5,6].

The authors of the recent paper [17] used the double-expansion procedure
introduced in [14] together with minimal substraction (MS) scheme [18] for an
investigation of developed turbulence with weak anisotropy for d = 2. The
double-expansion procedure is a combination of the well-known Wilson dimen-
sional regularization procedure and an analytical one. In such a perturbation
approach the deviation of the spatial dimension from d = 2, δ = (d − 2)/2, and
that of the exponent of the powerlike correlation function of random forcing from
their critical value ε, play the role of expansion parameters. The main result of
the paper was the conclusion that the two-dimensional (2D) ˇxed point is not
stable under weak anisotropy. It means that 2D turbulence is very sensitive to the
anisotropy, and nonstable scaling regimes exist in this case. In the case d = 3, for
both isotropic and anisotropic turbulences, the existence of a stable ˇxed point,
which governs the Kolmogorov asymptotic regime, was established by means of
the RG approach and by using the analytical regularization procedure [10,11,13].
Using the analytical continuation from d = 2 to the three-dimensional (3D) tur-
bulence (in the same sense as in the theory of critical phenomena) one can also
verify whether the stability of the ˇxed point (or, equivalently, stability of the
Kolmogorov scaling regime) is restored. From the analysis made in Ref. [17],
it follows that it is impossible to restore the stable regime by transition from
dimension d = 2 to d = 3. In Ref. [19], it was supposed that main reason
for above-described discrepancy is related to the straightforward application of
the standard MS scheme. In the standard MS scheme one works with a purely
divergent part of the Green functions only, and its tensor part is neglected. In
the case of isotropic models, the stability of the ˇxed points is independent of
dimension d. However, in anisotropic models the stability of ˇxed points depends
on the dimension d, and the tensor structure of the Feynman diagrams becomes
to be important.

In Ref. [19], it was suggested to apply a modiˇed MS scheme. The modi-
ˇcation is based on the keeping of the d dependence of the UV divergences of
diagrams. After such a modiˇcation d dependence is correctly taken into account,
and can be used to investigate whether it is possible to restore the stability of
the anisotropically developed turbulence for some dimension dc when going from
two-dimensional system to three-dimensional one. Thus, after renormalization
which is made for the value d = 2, the d dependence of the tensor parts of
counterterms is remained. In Ref. [19] the in�uence of weak anisotropy on the
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stability of the ˇxed point and the corresponding dependence of the borderline
dimension dc on weak anisotropy were studied. It was shown that in the limit
of inˇnitesimally weak anisotropy for the physically most reasonable value of
ε = 2, the value of the borderline dimension is dc � 2.44, which is lower than
the value dc � 2.68 obtained within the traditional ε expansion [11, 13]. Below
the borderline dimension, the stable regime of the ˇxed point of the isotropically
developed turbulence is lost by in�uence of weak anisotropy.

Further step is the inclusion of a nonrestricted axial anisotropy or the so-called
strong axial anisotropy. Within ε expansion it was investigated in Ref. [13],
where the in�uence of anisotropy on Kolmogorov constant was also studied.
In Ref. [20], the in�uence of the strong anisotropy on the scaling regime was
studied within double-expansion scheme for some special situations. During the
calculations, the results obtained in Ref. [13] were also recalculated (part of
results were published in Ref. [20]), and numerical inconsistences with earlier
results of Ref. [13] were obtained. In this situation, it is necessary to return and
verify conclusions of the above-mentioned paper. This is the aim of the present
paper to specify these results in detail.

The paper is organized as follows: In Sec. 2 we discuss the ˇeld theoretic
functional formulation of the stochastic problem of fully developed turbulence
with strong anisotropy. In Sec. 3 the RG analysis of the problem is given. In Sec. 4
we discuss the stability of the ˇxed point under in�uence of strong anisotropy.
Our results are compared to the results of Ref. [13]. In Sec. 5 we discuss in
detail the numerical method which was used in calculations. In Conclusion
discussion of the results is presented. Appendix I contains explicit expressions
for the divergent parts of the important Feynman diagram. In Appendix II the
necessary and sufˇcient conditions for convergence of some integrals are proven.

2. DESCRIPTION OF MODEL. FIELD THEORETIC FORMULATION

We are going to study anisotropically driven fully developed turbulence. The
anisotropy is characterized by one speciˇc direction, i. e., we shall work with
uniaxial anisotropy. The value of the anisotropy parameters will not be restricted.

In the statistical theory of anisotropically developed turbulence, the turbulent
�ow is characterized by the random velocity ˇeld v(x, t), where v and x are
supposed to be d-dimensional vectors. Its evolution is governed by the randomly
forced NavierÄStokes equation

∂v
∂t

+ (v · ∇)v − ν0Δv − fA = f , (1)

where the incompressibility of the �uid is assumed, which is given mathematically
by the well-known conditions ∇ · v = 0 and ∇ · f = 0. The parameter ν0 is
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the kinematic viscosity (hereafter all parameters with a subscript 0 denote bare
parameters of unrenormalized theory; see below). The term fA is related to
anisotropy and will be speciˇed later. The large-scale random force per unit mass
f is assumed to have Gaussian statistics deˇned by the averages

〈fi〉 = 0, 〈fi(x1, t)fj(x2, t)〉 = Dij(x1 − x2, t1 − t2). (2)

The two-point correlation matrix

Dij(x, t) = δ(t)
∫

ddk
(2π)d

D̃ij(k) exp(ik · x) (3)

is convenient to parametrize in the following way [10,12]:

D̃ij(k) = g0ν
3
0k4−d−2ε[(1 + α1ξ

2
k)Pij(k) + α2Rij(k)] , (4)

where a vector k is the wave vector, d is the dimension of the space (in our case:
2 < d), ε � 0 is dimensionless parameter of the model. The physical value of
this parameter is ε = 2 (so-called energy pumping regime). We shall not discuss
here more complicated case d = 2. The value ε = 0 corresponds to a logarithmic
perturbation theory for a calculation of Green functions when g0, which plays
the role of a bare coupling constant of the model, becomes dimensionless. The
problem of the continuation from ε = 0 to the physical values was discussed
in Ref. [22]. The (d × d)-matrices Pij and Rij are the transverse projection
operators. Their explicit forms are deˇned by the relations (in the wave-number
space)

Pij(k) = δij −
kikj

k2
, Rij(k) =

(
ni − ξk

ki

k

) (
nj − ξk

kj

k

)
, (5)

where ξk is given by the equation

ξk = k · n/k. (6)

In Eq. (5), the unit vector n speciˇes the direction of the anisotropy axis. The
tensor D̃ij , given by Eq. (4), is the most general form with respect to the con-
dition of incompressibility of the system under consideration and contains two
dimensionless parameters α1 and α2. The positiveness of the correlator tensor
Dij leads to restrictions on the above parameters, namely, α1 � −1 and α2 � −1.
In what follows, we assume no further restrictions on these parameters.

Using the well-known MartinÄSiggiaÄRose formalism [23Ä26], the stochastic
problem (1) with correlator (3) can be transformed into the ˇeld theoretic model
of ˇelds v and v′, where v′ is independent of the velocity ˇeld v auxiliary
incompressible ˇeld, which we have to introduce when transforming the stochastic
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problem into a functional form. After this transformation the action of the ˇelds
v and v′ is given in the form

S =
1
2

∫
ddx1dt1d

dx2dt2
[
v′i(x1, t1)Dij(x1 − x2, t1 − t2)v′j(x2, t2)

]
+

∫
ddxdt

{
v′(x, t)

[
−∂tv − (v · ∇)v + ν0∇2v + fA

]
(x, t)

}
. (7)

The functional formulation gives the possibility to use the quantum ˇeld theory
methods, including the RG technique, to solve the problem. Standardly, the for-
mulation through action functional (7) replaces the statistical averages of random
quantities in the stochastic problem (1)Ä(4) with equivalent functional averages
with weight exp S(v,v′). Generating functionals of total Green functions G(A)
and connected Green functions W (A) are then deˇned by the functional integral

G(A) = eW (A) =
∫

DΦ eS(Φ)+AΦ, (8)

where Φ = {v,v′}, A(x) = {Av,Av′} represents a set of arbitrary sources for
the set of ˇelds Φ, DΦ ≡ DvDv′ denotes the measure of functional integration,
and linear form AΦ is deˇned as

AΦ =
∫

d x[Av
i (x)vi(x) + Av′

i (x)v′i(x)]. (9)

By means of the RG approach it is possible to extract large-scale asymptotic be-
havior of the correlation functions after an appropriate renormalization procedure
which is needed to remove UV divergences.

Now we can return to give an explicit form of the anisotropic dissipative term
fA (see, e. g., Ref. [13]). In our case we suppose that d > 2. In this situation, the
UV divergences are only present in the one-particle-irreducible Green function
〈v′v〉. To remove them, one needs to introduce into the action, in addition to
the counterterm v′∇2v (the only counterterm needed in the isotropic model),
the following ones: v′(n · ∇)2v, (n · v′)∇2(n · v), and (n · v′)(n · ∇)2(n · v).
These additional terms are needed to remove divergences related to anisotropic
structures. Therefore, in order to arrive at a multiplicatively renormalizable model,
we have to take the term fA in the form

fA = ν0

[
χ10(n · ∇)2v + χ20n∇2(n · v) + χ30n(n · ∇)2(n · v)

]
, (10)

where bare parameters χ10, χ20 and χ30 characterize the weight of the individual
structures in Eq. (10) on the viscous dissipation.

Action (7) with kernel (4) is given in the form convenient for a realization
of the ˇeld theoretic perturbation analysis with the standard Feynman diagram
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technique. From the quadratic part of the action, one obtains the matrix of bare
propagators (in the wave-number Å frequency representation):

= 〈vivj〉0 ≡ Δvv
ij (k, ωk),

= 〈viv
,
j〉0 ≡ Δvv,

ij (k, ωk),

= 〈v,
iv

,
j〉0 ≡ Δv,v,

ij (k, ωk) = 0,

where

Δvv
ij (k, ωk) = − K3

K1K2
Pij +

1
K1(K2 + K̃(1 − ξ2

k))[
K̃K3

K2
+

K̃(K3 + K4(1 − ξ2
k))

(K1 + K̃(1 − ξ2
k))

− K4

]
Rij

Δvv,

ij (k, ωk) =
1

K2
Pij −

K̃

K2(K2 + K̃(1 − ξ2
k))

Rij , (11)

with

K1 = iωk + ν0k
2 + ν0χ10(n · k)2 ,

K2 = −iωk + ν0k
2 + ν0χ10(n · k)2 ,

K3 = −g0ν
3
0k4−d−2ε(1 + α10ξ

2
k),

K4 = −g0ν
3
0k4−d−2εα20,

K̃ = ν0χ20k
2 + ν0χ30(n · k)2. (12)

In the case of weak anisotropy one can make the expansion and work only with
linear terms with respect to all parameters which characterize anisotropy [19].
The interaction vertex in our model is given by the expression

i

j

l

≡ Vijl = i(kjδil + klδij),

where wave vector k corresponds to the ˇeld v′. Now one can use the above
introduced Feynman rules for computation of the needed diagram.
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3. RENORMALIZATION, RG FUNCTIONS, AND RG EQUATIONS

The analysis of the UV divergences is based standardly on the analysis
of canonical dimensions (see, e. g., [5, 6, 8]). Our model has two scales [2,
7, 8, 9], i. e., the canonical dimension of some quantity F is deˇned by two
numbers, the momentum dimension dk

F and the frequency dimension dω
F . The

total canonical dimension is introduced as dF = dk
F + 2dω

F (because, in the free
theory, ∂t ∝ �), which plays in the theory of renormalization of dynamical
models the same role as the conventional (momentum) dimension does in static
problems. To ˇnd the dimensions of all quantities it is appropriate to use the
standard normalization conditions dk

k = −dk
x = 1, dω

ω = −dω
t = 1, dω

k = dω
x =

dk
ω = dk

t = 0, and the requirement that each term of the action functional
must be dimensionless separately with respect to the momentum and frequency
dimensions. The dimensions for our model (7) are given in Table 1, including
the parameters which will be introduced later on. The model is logarithmic (the
coupling constant g0 is dimensionless) at ε = 0. It means that the UV divergences
have the form of the poles in ε in the Green functions.

Table 1. Canonical dimensions of the ˇelds and parameters of the model under
consideration

F v v′ m, Λ, μ ν0, ν g0 g, χi0, χi, α1, α2

dk
F Ä1 d + 1 1 Ä2 2ε 0

dω
F 1 Ä1 0 1 0 0

dF 1 d Ä 1 1 0 2ε 0

The total canonical dimension of an arbitrary one-irreducible Green function
Γ = 〈Φ . . .Φ〉1−ir is given by the relation

dΓ = dk
Γ + 2dω

Γ = d + 2 − dvNv − dv′Nv′ , (13)

where Nv and Nv′ are the numbers of corresponding ˇelds entering into the
function Γ. The total dimension dΓ is the formal index of the UV divergence.
It is well known that superˇcial UV divergences, whose removal requires coun-
terterms, can be present only in those Green functions Γ for which the total
canonical index dΓ is nonnegative integer.

Detail analysis of divergences in our anisotropic stochastic model is the same
as in the case of isotropic fully developed turbulence model, and it was presented
in Ref. [2] (see also, e. g., [8, 9]), therefore we shall not repeat it here. The
conclusion of this analysis is that the UV divergences can be present only in the
1-particle-irreducible Green function 〈vv′〉1−ir.

It can be shown (for example by direct calculations) that the ˇeld theoretic
model (7) with anisotropic terms (10) is multiplicatively renormalizable, i. e., all
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terms needed for removing of the divergences are included in action (7). Thus
one can immediately write down the renormalized action (in the wave-number-
frequency representation, where ∇ → ik, ∂t → −iωk, and all needed integrations
and summations are assumed)

SR(v,v′) =
1
2
v′i

[
gν3μ2εk4−d−2ε

((
1 + α1ξ

2
k

)
Pij + α2Rij

) ]
v′j+

+ v′i

[
(iωk − Z1νk2)Pij − νk2

(
Z2χ1ξ

2
kPij +

(
Z3χ2 + Z4χ3ξ

2
k

)
Rij

) ]
vj+

+
1
2
v′ivjvlVijl, (14)

where μ is a scale setting parameter with the same canonical dimension as the
wave number. Quantities g, χi, i = 1, 2, 3, and ν are the renormalized counter-
parts of bare ones, and Zi are renormalization constants which are expressed via
the UV divergent parts of the function 〈vv′〉1−ir. In the one-loop approximation
their general form is

Zi = 1 − 1
ε
Fi. (15)

In standard MS scheme the amplitudes Fi are only some functions of g, χi, i =
1, 2, 3, α1, α2, and d and are independent of ε.

The transition from the action (7) to the renormalized one (14) is given by
the introduction of the following renormalization constants Z:

ν0 = νZν , g0 = gμ2εZg , χi0 = χiZχi , (16)

where i = 1, 2, and 3. By comparison of the corresponding terms in the action
(14) with deˇnitions of the renormalization constants Z for parameters (16), one
can immediately write the following relations between them:

Zν = Z1 , Zg = Z−3
1 , Zχi = Z1+iZ

−1
1 , (17)

where again i = 1, 2, and 3.
In one-loop approximation divergent one-irreducible Green function 〈vv′〉1−ir

is represented by the Feynman diagram:

〈v′v〉1−ir =

(18)
The divergent part of this diagram has the following structure:

Γv′v
ij = −νgA

2ε

[
a1δijk

2 + a2δij(n · k)2 + a3ninjk
2 + a4ninj(n · k)2

]
, (19)
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where parameter A is deˇned as A = Sd−1/((2π)d(d2 − 1)), Sd is d-dimensional
sphere given as Sd = 2π(d/2)/Γ(d/2), and functions ai (i = 1, . . . , 4) are given
in Appendix I. They are expressed in an integral form. The counterterms are
built up from these divergent parts, which lead to the following equations for
renormalization constants:

Z1 = 1 − A
g

2ε
a1 , Z1+i = 1 − A

χi

g

2ε
a1+i, i = 1, 2, 3. (20)

From these expressions one can deˇne corresponding anomalous dimensions
γi = μ∂μ ln Zi for all renormalization constants Zi (the logarithmic derivative
μ∂μ is taken at ˇxed values of all bare parameters). The β functions for all
invariant charges (running coupling constant g, and parameters χi) are given by
the following relations: βg = μ∂μg, and βχi = μ∂μχi (i = 1, 2, 3). Now using
Eqs. (17) and deˇnitions given above, one can immediately write the β functions
in the forms:

βg = −g(2ε + γg) = g(−2ε + 3γ1),
βχi = −χiγχi = −χi(γi+1 − γ1), (21)

where

γ1 = Aga1 , γi+1 =
Ag

χi
ai+1 , i = 1, 2, 3 . (22)

By substitution of the functions γi (22) into the expressions for the β functions
one obtains:

βg = g(−2ε + 3Aga1) , βχi = −Ag (ai+1 − χia1) , i = 1, 2, 3. (23)

4. STABILITY OF THE KOLMOGOROV SCALING REGIME

Fully developed turbulence is characterized by the large Reynolds number
Re. On the other hand, the large Re corresponds to the existence of a large
inertial interval, which is deˇned by the inequalities 1/Λ = l 
 r 
 L = 1/m,
where l corresponds to an inner scale (the scale where dissipation forces are
dominated, or the scale of the smallest eddies), and L is an outer scale of the
system (the scale of the energy pumping into the system, or the scale of the
largest eddies). In fully developed turbulence we are interested in the behavior
of the correlation functions of velocity ˇeld, 〈vi1(x1, t), . . . , viN (xN , t)〉, deep
inside of the inertial interval, i. e., far away from the dissipation effects as well
as far away from energy pumping scale. Within the ˇeld theoretic approach they
are given by the following functional integral (see also Sec. 2):
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〈vi1 (x1, t), . . . , viN (xN , t)〉 =
∫

DΦ vi1(x1, t), . . . , viN (xN , t)eS(Φ), (24)

where Φ = {v,v′}, 1 � ij � d, j = 1, . . . , N , and S(Φ) is given by Eq. (7).
The behavior of the correlation functions inside the inertial interval is the main

issue of the famous KolmogorovÄObukhov phenomenological theory [27,28] (see
also Ref. [29]). It was formulated in the form of two hypotheses which lead to
the scaling behavior of the correlation functions within the inertial interval. In
what follows we will discussed only the second Kolmogorov hypothesis related
to the IR scaling and our aim is to investigate the in�uence of the axial anisotropy
on this scaling behavior.

As was mentioned in Introduction the appropriate method to investigate self-
similar systems is the RG method. Within the RG technique the correlation
functions are obtained directly in the scaling form (with correct critical dimen-
sions) and their large-scale limit (i. e., IR limit) is described by the stable ˇxed
points of the renormalization theory, i. e., the scaling regime is stable if the corre-
sponding ˇxed point is IR stable. The IR ˇxed point is obtained using the system
of differential equations (also called the �ow equations) which drive the effective
variables C̄ = {ḡ, χ̄1, χ̄2, χ̄3} which are the functions of the dimensionless scale
parameter (wave number) t = k/Λ. Their explicit forms are the following:

t
dḡ

dt
= βg(ḡ, χ̄1, χ̄2, χ̄3; α1, α2, d) , (25)

t
dχ̄i

dt
= βχi(ḡ, χ̄1, χ̄2, χ̄3; α1, α2, d) , i = 1, 2, 3. (26)

The dimensionless wave number t belongs to the interval 0 � t � 1, and the initial
conditions for the above differential equations are taken at t = 1. The IR stable
ˇxed point corresponds to the values in the limit t → 0, i. e., (ḡ, χ̄1, χ̄2, χ̄3)|t→0 =
(g∗, χ∗

1, χ
∗
2, χ

∗
3).

In principle, one has two possible ways how to ˇnd the IR ˇxed point of the
model. First of all, one can solve the system of four equations

βC(C∗, α1, α2, d) = 0 , (27)

where we denote C∗ = {g∗, χ∗
1, χ

∗
2, χ

∗
3}. In this case, the IR stability of the ˇxed

point is determined by the positive real parts of the eigenvalues of the matrix

ωlm =
(

∂βCl

∂Cm

)
C=C∗

, l, m = 1, . . . , 4. (28)

This is a comfortable way for the determination of the ˇxed point but in our case
it cannot be used. The reason is the presence of the integrals in the β functions
(see Appendix I) which makes this way rather complicated.
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The second possibility is to solve directly the system of the differential
equations (25) and (26). It is the way which can be used, and will be used, in our
case. This method was also applied in Ref. [13]. More about numerical methods
will be said in the next section.

Now we have all necessary tools at hand to investigate the ˇxed point and its
stability. Because the aim of the present paper is to specify the results obtained
in the Ref. [13], in this sense, ˇrst of all, we have to discuss their results, and
we shall try to argue why they are not precise. After that, we shall present our
recalculated results.

As for results of Ref. [13], we shall concentrate on Fig. 1 therein. It shows
the dimensional borderline (in the spatial region 2 < d � 3) between the IR
stable regime (Kolmogorov scaling regime) and unstable regime as a function of
the anisotropy parameters α1, α2 (see Fig. 1 in Ref. [13]). The main conclusions
in [13] are the following:

• They conˇrm the existence of a universal kinetic scaling regime. It corre-
sponds to a stable ˇxed point of the renormalization group.

• The Kolmogorov scaling regime becomes unstable when anisotropy para-
meters are even not too large. This situation concerns mainly the parameter
α2, when even very weak anisotropy represented by the parameter α2 leads
to the destruction of the Kolmogorov scaling regime. When value of the
parameter α2 > 0.0235 then for all values of parameter α1 the Kolmogorov
regime is destroyed.

• According to their investigation the authors declare that in the limit of the
weak anisotropy, the nonzero χ3 parameter is irrelevant for the stability of
the scaling regime at d = 3.

Let us analyze what is inaccurate in these conclusions. The ˇrst one is a
general statement which is correct but the other two are a little bit problematic.

First problem in Fig. 1 of Ref. [13] is related to the isotropic limit of the
model. It is well known (see Ref. [11]) that in the isotropic limit (α1,2 → 0) the
borderline dimension dc between stable and unstable regimes is dc = (3

√
17 −

7)/2 � 2.6846. This result is also conˇrmed in Ref. [13] (Eq. (3.4)). On the
other hand, in Fig. 1 of Ref. [13], the borderline dimension in this limit is closed
to the value dc = 2.72, and the contour which corresponds to the borderline value
dc = 2.68 is rather far away from the point (α1, α2) = (0, 0) especially in the α1

direction. This is the ˇrst and the most important discrepancy.
The second problem is the rather strong dependence of the dc on the parameter

α2 (the region of the stability of the scaling regime is very narrow in α2 direction).
Why is it a problem? The answer is the following: the values of α2 from the
interval −0.025 < α2 < 0.025 belong to the weak anisotropy limit, i. e., one

12



Fig. 1. The three-dimensional view on the dependence of the borderline dimension dc on
the parameters α1 and α2

can expand all β functions into the series in anisotropy parameters and keep
only the linear parts. This is what we have in mind when we are talking about
the weak anisotropy approximation. The region close enough around the point
(α1, α2) = (0, 0) fulˇls this condition. In Ref. [19] the in�uence of the weak
anisotropy was studied in the similar problem but in the double expansion scheme
to be able to study also two-dimensional turbulence. The dependence of the
borderline dimension dc on the small parameters α1 and α2 was calculated, and
it was shown that this dependence is very simple and without radical increase or
decrease of dc near (α1, α2) = (0, 0). It can be shown that the same situation takes
place also in the weak anisotropy limit of the present model. These linear parts of
the β functions must also play the principal role in the case of unrestricted uniaxial
anisotropy if the parameters of the anisotropy α1 and α2 are small enough. It is
fulˇl comfortably in the square area α1×α2 = 〈−0.025, 0.025〉×〈−0.025, 0.025〉.
From this point of view the drastic dependence of dc on the parameter α2 in Fig. 1
of Ref. [13] is a little bit strange.

The third conclusion is not exact too. As was shown in Ref. [19], exactly
the parameters χ3 and α5 (the last one in related to the double expansion model)
play the crucial role in the determination of the IR stability of the ˇxed point.
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Fig. 2. The dependence of the borderline dimension dc on the parameter α2 for concrete
values of the parameter α1

Again, it can be shown that in the weak anisotropy limit of the model under
consideration the parameter χ3 alone plays the same role as the parameters χ3

and α5 in double expansion case. Even though that the value of the ˇxed point
for parameter χ3 is χ∗

3 = 0, namely the eigenvalue of the matrix of the ˇrst
derivatives related to this parameter is responsible for the very existence of the
borderline dimension dc ∈ (2, 3〉.

In Figs. 1 and 2 our results for the dc as a function of the anisotropy
parameters are presented. The difference between our results and those of
Ref. [13] can be seen immediately. Figs. 1 and 2 show that in three dimen-
sions the Kolmogorov scaling regime is unstable in the limit α1,2 → −1 and for
large enough values of parameter α1 together with negative or relatively small
positive values of the parameter α2. Our conclusion is the following: to destroy
stability of the Kolmogorov scaling regime in three-dimensional space by the uni-
axial anisotropy, which is in our model represented by the parameters α1 and α2,
it is necessary to apply anisotropy with rather speciˇc values of these parameters.

5. NUMERICAL METHODS

One possible way how to solve the problem of the IR ˇxed point of the
four differential RG equations (25) and (26), with β functions (23), and corre-
sponding integrals (34) of Appendix I is based on the analytical calculations of
the integrals. The integrands of (34) have the form of fractions of two poly-
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nomial Pi(x2)/Q(x2) (i = 1, . . . , 4), with different numerators Pi(x2) = bi(x2)
but with the same denominator Qi(x2) = (M1M2M3)3. It is possible to ex-
pand the expression 1/(M1M2M3)3 into a sum of partial fractions of the type
R(x2)/(a+x2)j , where R(x2) is a polynomial, a is, in general, complex function
of parameters χi, i = 1, 2, 3, and j = 1, 2, 3. Now using the following result (see,
e. g., Ref. [30]):

∫ 1

−1

dx
(1 − x2)

d−3
2 x2n

(a + x2)j
=

(1 + (−1)2n)Γ(d−1
2 )Γ(1

2 + n)
2ajΓ(d

2 + n)
2F1×

×
(

1,
1
2

+ n;
d

2
+ n;−1

a

)
, (29)

one can represent the integrals in the form of a combination of hypergeometric

functions 2F1(a, b; c; z) deˇned as 2F1(a, b; c; z) = 1+
ab

1!c
z+

a(a + 1)b(b + 1)
2!c(c + 1)

z2+

. . . Eq. (29) is held when Re[d] > 1 (Re[x] means the real part of x), Re[n] >
−1/2, and Arg[a] = π. In our case, these conditions are fulˇlled because
d ∈ (2, 3〉, n is 0 or positive integer, and it can be shown that the last condition
is also held.

By using of this representation of integrals (34) it is possible to ˇnd the IR
ˇxed point of differential equations (25) and (26) by solving of the system of
equations (27) together with the matrix of the ˇrst derivatives (28) to test the IR
stability of the ˇxed point. But this way is rather complicated and we shall not
use it here.

The most comfortable way how to ˇnd the IR ˇxed point of the system of
four differential RG equations (25) and (26) with (23) is to solve it numerically
using some appropriate numerical method. In what follows, we work with the
fourth-order RungeÄKutta method with the adaptive choice of the integration step.
It is convenient to transform the system of differential equations (25) and (26)
into an autonomic system by the substitution t = e−s. Using this transformation
one obtains

dḡ

ds
= −βg(ḡ, χ̄1, χ̄2, χ̄3; α1, α2, d) , (30)

dχ̄i

ds
= −βχi(ḡ, χ̄1, χ̄2, χ̄3; α1, α2, d) , i = 1, 2, 3, (31)

where s ∈ 〈0,∞). The initial conditions correspond to s = 0, and the IR ˇxed
point is found in the limit s → ∞. The ˇrst step for the variable s was taken as
Δs = 10−3. The initial values of the parameters can be chosen arbitrary but the
most convenient choice is to take them to be the ˇxed point of the 3D isotropic
model (see Ref. [13]).
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As was already discussed our differential equations are made of the linear
combinations of the following integrals:

I =
∫ 1

−1

dx
(1 − x2)

d−3
2 x2n

(M1M2M3)3
, (32)

where explicit forms of the functions Mi, i = 1, 2, 3 are given in Appendix I.
Therefore, the ˇrst step to solve the problem is the necessity to guarantee their
convergence within the interval x ∈ 〈−1, 1〉, i. e., to determine the allowed values
of the parameters χ1, χ2, χ3. That is why, let us ˇrst discuss the conditions
under which the integrals will be well deˇned.

Assume that one (or more) of the expressions Mi, (i = 1, 2, 3) (deˇned in
Appendix I) is vanished in respect to the variable x within the interval 〈−1, 1〉.
Let us denote as x1 the point in which one of the Mi is equal to zero. Then, from
the convergence point of view, the integral (32) is equivalent to the integral of the
type

∫ 1

−1 1/ (x − x1)
3
dx. Hence, if one of the expressions Mi, i = 1, 2, 3 vanish

in the interval 〈−1, 1〉 then the integrand will be nonintegrable. Thus, to guarantee
the convergence of the integrals, we are looking for such conditions on variables
χ1, χ2, χ3 which give nonzero values for Mi within the corresponding interval.
The necessary and sufˇcient conditions of the convergence of the integrals (32)
are as follows:

χ1 > −1 , χ2 > −1 , χ3 > −(
√

1 + χ1 +
√

1 + χ2)2. (33)

The detail proof of these conditions can be found in Appendix II. They are also
important in the numerical solution of our system of differential equations and
they must be tested on each step of the RungeÄKutta method.

An important question is related to the choice of a numerical method for
calculation of the integrals. It can be shown that the most appropriate method is
the using of the Chebyshev quadrature formula. The question of the number of
divisions of the integration interval is another important one. In our calculations,
we used the division to 1024 subintervals, which was found as the best choice
from the point of view of the accuracy and needed time of the calculation. On
the other hand, in Ref. [13], the division to the 128 subintervals was used. We
suppose that this fact could lead to the difference between our and their results
because the division to 128 subintervals can be not sufˇcient in some critical
situations.

To ˇnd the borderline dimension it is enough to use the bisection method.
Our results were calculated with the accuracy of 0.005. The same accuracy
was supposed in Ref. [13] but, as was already discussed, this accuracy was not
achieved even in the isotropic limit where exact result exists (see discussion in
the previous section).
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From numeric calculations point of view, the problem is rather time-consu-
ming, i. e., the calculations take relatively long time. Therefore, the question
of using of a modern computational methods arises. In what follows, we shall
analyze possible speed up of calculations based on the utilization of the parallel
programming methods using of the Message Passing Interface (MPI) (see, e. g.,
[31, 32]). Let us discuss this problem in more detail. First of all, we have
to calculate our system of differential equations at large number of points. For
example, Fig. 1 was obtained by using of results on the lattice of the size 16× 16
in the plane of anisotropy parameters α1 and α2, i. e., we had to repeat the
calculational procedure 256 times.

Suppose ˇrst that we have to calculate the borderline dimension dc for one
concrete value of the parameters α1 and α2. How can the MPI help in this
situation? To ˇnd the borderline dimension with a precision Δd when the start-
ing interval for d has the length l one has to carry out prescribed number of
calculations n. By using of the one-processor computer the best way how to ˇnd
the dc is to use the bisection method. In this case, the result is obtained after
n = �log2(l/Δd)� calculations (�x� means the smallest integer greater or equal
to x). On the other hand, in the case of the multiprocessor computer with m
processors, one can divide the interval into m + 1 subintervals and carry out the
calculations in m points of the division at the same time. Thus, the result is
obtained after n = �logm+1(l/Δd)� serial calculations (of course, in this case,
the total number of calculations is larger but the total time of the calculations
is shorter). Let us demonstrate it by an example. Suppose that l = 1 and
Δd = 0.005. The results are shown in Table 2. The table shows the effective
numbers of processors which are 1, 2, 3, 5, 14, and 199. If we suppose that the
calculations take the same time for all values of dimension d then n is directly
related to the time of calculation. For example, the calculation with three proces-
sors (the same holds also for four processors) is two times shorter than calculation
with one processor, see Table 2. On the other hand, the calculation takes the
same time for the computations with three, and four processors. The same is
held for the computers with number of processors from the intervals m = [5, 13],
m = [14, 198], and m = [199,∞). Therefore, our conclusion is the following:
if one needs to do only one computational process (in our case, it means to ˇnd
one borderline dimension dc for concrete value of the parameters of the model)
then it is appropriate to use the advantage of the parallel computing.

Table 2. The number of needed serial calculations n as a function of the number of
processors m

m 1 2 3, 4 5Ä13 14Ä198 � 199
n 8 5 4 3 2 1
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Now let us analyze the situation when one needs to calculate the borderline
dimension dc as a function of the anisotropy parameters (it is our case). Thus,
it is necessary to carry out two or more independent calculations for different
values of the parameters of the model. The simplest situation occurs when the
number of independent calculations are much more larger than the number of
processors. Because this is our case, we shall analyze it in detail. The situation
is shown in Fig. 3, where total number of computational processes N is shown
as a function of the number of processors m and of the desired precision Δd. It
is seen immediately that the most effective utilization of the processors is to give
to each processor to calculate independent borderline dimension dc alone.

Fig. 3. The dependence of the total number of calculational processes as a function of the
number of processors m and the precision Δd. The length of the initial interval is l = 1

We have analyzed two special cases, namely, the case with one independent
calculation, and the case with the large number of independent calculations. The
situation becomes more complicated when one needs to carry out the number of
calculations which is comparable to the number of processors. But each such
situation needs special analysis and we shall not analyze it here.

In concrete calculations we used advantage of the parallel programming. Our
situation is the case with a large number of independent calculations, therefore,
each processor has calculated borderline dimension for deˇned values of the
parameters of the model.
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CONCLUSION

By using of the ˇeld-theoretic RG method the in�uence of the uniaxial
anisotropy on the stability of the Kolmogorov scaling regime in fully developed
turbulence was investigated. The stability of the regime is deˇned by the very
existence of the IR stable ˇxed point. The ˇxed point was found numerically
by the solving of the corresponding differential RG equations. It was shown
that the earlier results obtained in Ref. [13] as well as their conclusions about
the dependence of the borderline dimension dc as a function of the anisotropy
parameters α1,2 are not precise enough. We have found that the stability of the
three-dimensional scaling regime is destroyed only in the case of rather large (in
the sense of the absolute value) and special values of the anisotropy parameters.
We have also analyzed the optimal way how to calculate the numerical problem
by using of the parallel programming methods.
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APPENDIX I

The explicit form of the functions ai, i = 1, . . . , 4 from the divergent parts
of the one-loop diagram of the model (see Sec. 2) is as follows:

ai =
1
4

∫ 1

−1

dx
(1 − x2)(d−3)/2

(M1M2M3)3
bi, i = 1, . . . , 4, (34)

with

b1 = c1,1 + 4M2M3x
2x2

1(c1,2 + c1,3)

+ M1x
2x1

(
c1,4 + M2M

2
3 r4x1c1,5 + M3

2 c1,6 − 2M2
2 M2

3 c1,7

)
, (35)

b2 = c2,1 − M2
1 M3

2 r1(c2,2 + c2,3) − 4M2M3x1(f3 + x1)c2,4−

− M1

(
− 2M3

3 r2
4w1x

2
1(f3 + x1)y4 + M3

2 (2x2
1c2,5 − 2f3c2,6 + d1M3r1r

2
4x1y7)+

+ 2M2
2M2

3 (2α2M3c2,7 + c2,8) + M2M
2
3 r4(c2,9 + c2,10)

)
, (36)
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b3 = c3,1 + M2
1 M3

2 r1c3,2 + 4M2M3(c3,3 + M2M3r4(c3,4 + x1c3,5)+

+ M2
2 (c3,6 + x1c3,7)) + M1

(
c3,8 − 2M2

2M2
3 (c3,9 + 2f3c3,10 + c3,11)+

+ M2M
2
3 r4(−x1c3,12 − 4f3c3,13) + M3

2 (−d1c3,14 + 2f3c3,15 − 2x2
1c3,16)

)
,

(37)

b4

2
= c4,1 − 2c4,2M

2
1M3

2 r1 + 2M2M3(−c4,7 + (c4,5 − c4,6d1)M2
2 +

+ (c4,3 − c4,4d1)M2M3r4) + M1

(
(d1(c4,10 + c4,11f1) + c4,9f2 + 3c4,8f3)M3

2 +

+ 2(d1(c4,20 + 2c4,19f1) + c4,18f2 + 3c4,17f3)M2
2 M2

3 +

+ (d1(c4,15 + 2c4,16f1) + c4,14f2 + 3c4,13f3)M2M
2
3 r4 − c4,12M

3
3 r2

4x1y4

)
,

(38)

where

c1,1 = 4M2
1 M3

2 r1x
2x1(−d1M3r4 + (−χ2M3 + r4(1 + 3M3))x1)

+ M3
1 M3

2 r1(d1M3(d−1 − 3x1) + 2(1 + 2M3)x2
1) ,

c1,2 = −M2
3 r2

4x1(r1 + α2x1) + M2
2 (−4α2M

2
3 +

+ r1r4(2M3 − r4(1 + w1)x1)) ,

c1,3 = M2M3r4(4α2M3x1 + r1(2M3 − r4(2 + w1)x1)) ,

c1,4 = −2M3
3 r2

4w1x
2
1(r1 + α2x1) ,

c1,5 = α2M3x1(4(w1 + h2x1) + r4y1) +
+ r1(4χ2M3x1 + r4(−4w1x1 + M3y1)) ,

c1,6 = d1M3(4α2M
2
3 + r1r4(−2M3 + r4x1))

− 2x1(8α2M
3
3 + r1r4(−4M2

3 + r4x1 − 2M3(1 + w1 − y2))) ,

c1,7 = d1r4(2α2M3x1 + r1(M3 − r4x1))
− 4x1(r1r4(M3 − y2) + α2M3(r4x1 + y2)) ,

c2,1 = 2M3
1 M3

2 r1(f3 − d1f1M3 + 2f3M3) ,

c2,2 = −4f3M3r4(−2 + 3x2) + d1M3r4(d−1 − 4f1 + 3f1x
2 − 5x1) ,

c2,3 = 4f3(−χ2M3 + r4)x1 + 4(−χ2M3 + r4 + 2M3r4)x2
1 ,

c2,4 = −4α2M2M
2
3 (M2 − r4x1)

− r4(M2r1(−2M1M3 + r4(M1 + M3 + M1w1)x1) + M2
3 r4x1y4) ,
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c2,5 = −4α2M
3
3 + r1r4(−r4(M3x4 + x1) + 2M3(1 + M3 + w1 + χ2x1)) ,

c2,6 = 4α2M
3
3 x2 + r1r4(r4(x2

1 + M3y3) − 2M3(M3x2 + x1(1 + y5))) ,

c2,7 = x2
1(−2χ2x1 + r4(x4 + x1))

+ f3(−2χ2x
2
1 + r4(1 + 4x4 + x1 − 2x2(3 + x1))) ,

c2,8 = 2f3r1r4(M3x2 + 2χ2x
2
1 − r4y3)

+ r4x1(2r1x1(M3 − r4x4 + 2χ2x1) + d1y6y7) ,

c2,9 = −2r1(−2χ2M3x
3
1 + r4(x2

1(M3x4 + 2w1(f3 + x1)) + f3M3y3)) ,

c2,10 = M3x1

(
α2(4f3w1x1 − 2r4x4x

2
1 − 2f3r4y3 + 4x2

1y5)

+y4(4f3χ2x1 + d1r4y7)
)

,

c3,1 = M3
1 M3

2 r1(−d1f1M3 + 2f3(1 + χ1 + 2M3) + 2χ1x
2
1) ,

c3,2 = −4(−χ2M3 + r4 + 3M3r4 + χ3M3x
2 − χ1r4x

2)x2
1

− d1(d−1M3r4 + f1M3r4(−2 + x2) + (−5M3r4 − 4χ3M3x
2 +

+ 4χ1r4x
2)x1)

+ 4f3(M3(−χ3x
2 + χ2x1) + r4(−3M3x1 + y8)) ,

c3,3 = −M2
3 r2

4x1y4(−d1χ1x
2x1 + f3y8 + x2

1y9) ,

c3,4 = f3(4α2M3x1y8 + r1(−r4x1(−2 − w1 + x2(2 + 2χ1 + w1 + w2)) +
+ 2M3y8)) ,

c3,5 = −d1x
2(2χ1(2α2M3x1 + r1(M3 − r4x1)) − r1r4x1w2)

+ x1(4α2M3x1y9 + r1(r4x1(w1 − x2w2 − 2y9) + 2M3y9)) ,

c3,6 = −f3(4α2M
2
3 y8 + r1r4(r4x1(−1 − w1 + x2(1 + χ1 + w1 + w2)) −

− 2M3y8)) ,

c3,7 = d1x
2(χ1(4α2M

2
3 + r1r4(−2M3 + r4x1)) + r1r

2
4x1w2)

+ x1(−4α2M
2
3 y9 + r1r4(r4x1(w1 − x2w2 − y9) + 2M3y9)) ,

c3,8 = −2M3
3 r2

4x1(f3(−w1x1 + x2w2) − x1(w1x1 + x2(d + x2)w2))y4 ,

c3,9 = 2x2
1

(
r1r4(3M3 − 2r4x3 + 2χ2x1 − 2χ3x

2x1)

+α2M3(−2(χ2 − χ3x
2)x1 + r4(2x3 + 3x1))

)
,

c3,10 = α2M3(2x1(χ3x
2 − χ2x1) + r4(2 + 4x4 + 3x1 − 2x2(4 + x1)))

+ r1r4(3M3 − 2M3x
2 − 2χ3x

2x1 + 2χ2x
2
1 − 2r4y10) ,

c3,11 = d1

(
x1(α2M3(r4(−x5 − 4x1) − 4χ3x

2x1) +

+ r1r4(−4M3 + r4x5 + 4χ3x
2x1)) + d−1M3r4y4 +

+ f1M3r4(−2 + x2)y4

)
,
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c3,12 = d1

(
α2M3x1(r4x5 + 4x2(χ3x1 + w2))

+r1(4χ3M3x
2x1 + r4(M3x5 − 4x2x1w2))

)
− 4x1

(
α2M3x1(−w1 + r4x3 − χ2x1 + χ3x

2x1 + x2w2)

+r1(M3(−χ2 + χ3x
2)x1 + r4(M3x3 + w1x1 − x2x1w2))

)
,

c3,13 = α2M3x1(w1x1 − r4y10 − x2(χ3x1 + w2))
− r1(χ3M3x

2x1 + r4(w1x
2
1 + M3y10 − x2x1w2)) + χ2M3x

2
1y4 ,

c3,14 = 2d−1M
2
3 (−2α2M3 + r1r4)

+ 2f1M
2
3 (−2α2M3 + r1r4)(−2 + x2) + x1

(
16α2M

3
3

+ r1r4(r4(M3x5 − 2χ1x
2x1) + 4M3(−2M3

+ x2(χ1 + χ3x1 + w2)))
)

,

c3,15 = 4α2M
3
3 (3 − 2x2) + r1r4

(
M2

3 (−6 + 4x2)

+2M3(χ1x
2 − x1 + χ3x

2x1 − w1x1 − χ2x
2
1 + r4y10 + x2w2) −

− r4x1y8

)
,

c3,16 = −12α2M
3
3 + r1r4

(
2M3(3M3 + w1 + χ2x1 − χ3x

2x1 − x2w2 − y9)

−r4(2M3x3 − x1y9)
)

,

c4,1 = M3
1 M3

2 (3f3χ1 + f2(1 + χ1 + 2M3))r1 ,

c4,2 = −3f3(2χ2M3 − χ3M3x
2 + r4(−5M3 + x8))

+ f2(M3(χ3x
2 + χ2x7) − r4(M3(−5 + 3x2) + x9))

+ d1(f1(M3(χ2 + χ3 − 2χ3x
2) + r4(−2M3 + x10)) + χ3M3x1 −

− χ1r4x1) ,

c4,3 = 3f3(4α2M3x8x1 + r1(2M3x8 + r4x1(2w1 − 2x8 − x2w2)))
+ f2(4α2M3x9x1 + r1(2M3x9 − r4x1(−2(2 + w1)
+ x2(2 + 2χ1 + w1 + w2)))) ,

c4,4 = x1(−2χ1(M3r1 + 2α2M3x1 − r1r4x1) + r1r4x1w2)
+ f1(4α2M3x10x1 + r1(2M3x10 + r4x1(2 + 2χ1 − 4χ1x

2 +
+ w1 + x2w2))) ,

c4,5 = 3f3(−4α2M
2
3 x8 + r1r4(2M3x8 − r4x1(−2w1 + x8 + x2w2)))

+ f2(−4α2M
2
3 x9 + r1r4(2M3x9 − r4x1(−2(1 + w1) +

+ x2(1 + χ1 + w1 + w2)))) ,
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c4,6 = x1(χ1(4α2M
2
3 + r1r4(−2M3 + r4x1)) + r1r

2
4x1w2)

+ f1(−4α2M
2
3x10 + r1r4(2M3x10 + r4x1(−x10 + w1 + x2w2))) ,

c4,7 = M2
3 r2

4x1(−d1f1x10 + 3f3x8 + f2x9 + d1χ1x1)y4 ,

c4,8 = 16α2M
3
3

+ r1r4(r4(M3x6 − x8x1) + 2M3(−4M3 − 2w1 + x8 − 2χ2x1 +
+ χ3x

2x1 + x2w2)) ,

c4,9 = −8α2M
3
3 x7 + r1r4

(
r4(−x9x1 + M3y13)

+2M3(χ1x
2 + (1 + 2M3 + w1)x7 + χ3x

2x1 − χ2y11 + x2w2)
)

,

c4,10 = r1r4(d−1M3r4 + x1(2χ1M3 − 5M3r4 + 2χ3M3x1 −
− χ1r4x1 + 2M3w2)) ,

c4,11 = −8α2M
3
3 + r1r4

(
4M2

3 − r4(x1 + χ1y12)

+2M3(2χ3x
4 − x10 + r4x11 + w1 + χ3x3 + χ2x1 + x2w2)

)
,

c4,12 = −6f3w1 + f2w1x7 + f2x
2w2 + 3f3x

2w2 + d1(x1w2 +
+ f1(w1 + x2w2)) ,

c4,13 = α2M3x1(−4w1 + r4x6 + 2x2(χ3x1 + w2))
+ r1(2χ3M3x

2x1 + r4(M3x6 + 4w1x1 − 2x2x1w2)) − 4χ2M3x1y4 ,

c4,14 = α2M3(−2w1y11 + r4x1y13 + 2x2x1(χ3x1 + w2))
+ r1(2χ3M3x

2x1 + r4(M3y13 − 2x1(w1x7 + x2w2))) − 2χ2M3y11y4 ,

c4,15 = d−1M3r4y4 − x1(r1r4(5M3 + 2x1w2) +
+ M3x1(5α2r4 − 2α2w2 − 2χ3y4)) ,

c4,16 = r1r4(M3x11 − x1(w1 + x2w2))
+ M3(α2r4x11x1 + α2w1x1 + α2y12w2 + χ2x1y4 + χ3y12y4) ,

c4,17 = r1r4(−4M3 + r4x6 − 4χ2x1 + 2χ3x
2x1)

− α2M3(r4x6 − 4χ2x1 + 4r4x1 + 2χ3x
2x1) ,

c4,18 = r1r4(2M3x7 + 2χ3x
2x1 − 2χ2y11 + r4y13)

− α2M3(2χ3x
2x1 + 2r4x2x1 − 2χ2y11 + r4y13) ,

c4,19 = r1r4(M3 + r4x11 + χ2x1 + χ3y12) −
− α2M3(r4x11 + χ2x1 − r4x1 + χ3y12) ,

c4,20 = (d−1r4 + x1(−5r4 + 2χ3x1))y6 ,
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and

M1 = 2(1 + χ1x
2) + (χ2 + x2χ3)(1 − x2) ,

M2 = 1 + χ1x
2 + (χ2 + x2χ3)(1 − x2) ,

M3 = 1 + χ1x
2 ,

r1 = 1 + α1x
2 ,

r4 = χ2 + χ3x
2 ,

f1 = x2d − 1 ,

f2 = −(d + 2)x4 + (d + 3)x2 − 1 ,

f3 = (d + 4)(d + 2)x4 − 6(d + 2)x2 + 3 ,

w1 = 1 + χ2 + χ3x
4 ,

w2 = χ1 − χ2 + χ3(1 − 2x2) ,

y1 = −3 + d + 8x2 ,

y2 = r4(1 − 2x2) − χ2(1 − x2) ,

y3 = 1 − 6x2 + 4x4 ,

y4 = r1 + α2x1 ,

y5 = w1 + χ2x1 ,

y6 = r1r4 − α2M3 ,

y7 = 1 − 3x2 + f1x1 ,

y8 = −1 + (1 + χ1)x2 ,

y9 = −1 + χ1x
2 ,

y10 = 1 − 4x2 + 2x4 ,

y11 = 2 − 3x2 + x4 ,

y12 = 1 − 3x2 + 2x4 ,

y13 = 3 − 12x2 + 4x4 ,

d1 = d + 1 ,

d−1 = d − 1 ,

x1 = 1 − x2 ,

x2 = 1 − 2x2 ,

x3 = 1 − 3x2 ,

x4 = 1 − 4x2 ,

x5 = 1 − 5x2 ,

x6 = 3 − 10x2 ,
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x7 = −2 + x2 ,

x8 = −2 + χ1x
2 ,

x9 = −2 + (1 + χ1)x2 ,

x10 = −1 + χ1(−1 + 2x2) ,

x11 = −3 + 5x2 .

APPENDIX II

In this Appendix we shall prove the necessary and sufˇcient conditions
needed for the convergence of integrals (32). First of all, we prove the fol-
lowing theorem:

Theorem 1: If the expressions Mi, (i = 1, 2, 3) (see Appendix I) are nonzero
at each point x ∈ 〈−1, 1〉 then they are positive on whole interval.

Proof: The expressions Mi, i = 1, 2, 3 are continuous functions in respect
to x on the interval x ∈ 〈−1, 1〉. On the other hand, M3(0) = 1 > 0. If one
supposes that there exists y ∈ 〈−1, 1〉 such that M3(y) < 0 then according to the
property of continuity there must exist a point at which the function is vanished.
But it is a contradiction with the assumption of the theorem. Thus, M3(x) > 0
for all x ∈ 〈−1, 1〉.

Because M2(1) = 1 + χ1 = M3(1) > 0, then using the same arguments we
come to the same conclusion, namely, M2(x) > 0 for all x ∈ 〈−1, 1〉. Finally,
because M1 = M2 + M3, then M1(x) is also positive for all x ∈ 〈−1, 1〉. This
is what we had to prove.

Now we are able to prove the necessary and sufˇcient conditions of the
convergence which are the contents of the following theorem.

Theorem 2: (Necessary and sufˇcient conditions of the convergence of
integrals (32)). Expressions Mi, (i = 1, 2, 3) are nonzero for each x ∈ 〈−1, 1〉 if
and only if the following conditions are fulˇlled:

i) χ1 ∈ (−1,∞);

ii) χ2 ∈ (−1,∞);

iii) χ3 ∈
(
−

(√
1 + χ1 +

√
1 + χ2

)2
,∞

)
.

Proof: First we shall prove the statement that if the expressions Mi are
nonzero for each x ∈ 〈−1, 1〉 then the conditions i), ii), and iii) are fulˇlled.

Suppose that the implication is not true, i. e., the expressions Mi are nonzero
and at the same time some of the conditions i), ii), and iii) are not fulˇlled. We
shall show in items a), b), and c) that when the conditions for parameters χ1, χ2,
χ3 are not held then one comes to a con�ict.
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a) Let us suppose that χ1 � −1. It is enough to take x̂ =
√
−1/χ1, and it is

evident that 0 <
√
−1/χ1 � 1, therefore x̂ ∈ (0, 1〉 ⊆ 〈−1, 1〉. But

M3(x̂) = M3

(√
− 1

χ1

)
= 1 + χ1

(√
− 1

χ1

)2

= 0,

which is in con�ict with assumption of the theorem.

b) Suppose that χ2 � −1, then M2(0) = 1 + χ2 � 0, and according to the
Theorem 1 it is in con�ict with the assumption of the theorem.

c) In the end, suppose that χ3 � −
(√

1 + χ1 +
√

1 + χ2

)2
. Therefore, χ3 +(√

1 + χ1 +
√

1 + χ2

)2 � 0. At the same time (as was already proven in
items a) and b)) χ1 > −1 and χ2 > −1.

Let us take

0 < x̂ =

√ √
1 + χ2√

1 + χ1 +
√

1 + χ2
< 1, x̂ ∈ (0, 1) ⊆ 〈−1, 1〉 .

Then

M2(x̂) =
(
1 + χ1x̂

2
)

+
(
χ2 + χ3x̂

2
) (

1 − x̂2
)

=

= 1 + χ1

√
1 + χ2√

1 + χ1 +
√

1 + χ2
+

+
(

χ2 + χ3

√
1 + χ2√

1 + χ1 +
√

1 + χ2

) (
1 −

√
1 + χ2√

1 + χ1 +
√

1 + χ2

)
,

and after some manipulations we have

M2(x) =

√
1 + χ1

√
1 + χ2

[(√
1 + χ1 +

√
1 + χ2

)2 + χ3

]
(√

1 + χ1 +
√

1 + χ2

)2 � 0,

and according to the Theorem 1 it is again in con�ict with the assumptions.

Now we have to prove the second part of the theorem, namely: If the
conditions i), ii), and iii) are fulˇlled then the expressions Mi, i = 1, 2, 3 are
nonzero for each x ∈ 〈−1, 1〉.

a) Suppose that the conditions i)Äiii) are fulˇlled and, at the same time,
there exists a point x̃ from the interval 〈−1, 1〉 such that M3(x̃, χ1) =
1 + χ1x̃

2 = 0. Because M3(0, χ1) = 1 then x̃ = 0, and

M3(x̃, χ1) = 1 + χ1x̃
2 = 0

(x̃�=0)⇒ χ1 = − 1
x̃2

⇒ χ1 � −1,
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which is in con�ict with assumption i). Thus, M3(x) > 0 for all x ∈
〈−1, 1〉.

b) As in the item a), suppose that conditions i)Äiii) are fulˇlled and at the same
time suppose the existence of x̃ ∈ 〈−1, 1〉 such that M2(x̃, χ1, χ2, χ3) = 0.
But M2(0, χ1, χ2, χ3) = 1+χ2 > 0 and M2(±1, χ1, χ2, χ3) = 1+χ1 > 0.
Thus, if M2(x̃, χ1, χ2, χ3) = 0, then x̃ = 0 ∧ x̃ = ±1. As a result
x̃2 ∈ (0, 1) . Then

M2(x̃, χ1, χ2, χ3) = 1 + χ1x̃
2 +

(
χ2 + χ3x̃

2
) (

1 − x̃2
)

=

= x̃2
(
1 − x̃2

) [
1 + χ1

1 − x̃2
+

1 + χ2

x̃2
+ χ3

]
= 0 .

Because x̃ = 0 ∧ x̃ = ±1 then

1 + χ1

1 − x̃2
+

1 + χ2

x̃2
+ χ3 = 0,

which is equivalent to

χ3 = −1 + χ1

1 − x̃2
− 1 + χ2

x̃2
.

Further, the maximum of the function f (t) = −1 + χ1

1 − t
− 1 + χ2

t
within

the interval t ∈ (0, 1) is obtained at the point t� =
√

1 + χ2√
1 + χ1 +

√
1 + χ2

and its value is

f(t�) = −
(√

1 + χ1 +
√

1 + χ2

)2

.

Therefore

χ3 � −
(√

1 + χ1 +
√

1 + χ2

)2

,

which is in con�ict with assumption iii). As a result M2(x) > 0 for every
x from the interval 〈−1, 1〉.

c) In the end, it is evident that

M1(x, χ1, χ2, χ3) = M2(x, χ1, χ2, χ3) + M3(x, χ1)

and according to a) and b) one obtains

M1(x, χ1, χ2, χ3) = M2(x, χ1, χ2, χ3) + M3(x, χ1) > 0

for all x ∈ 〈−1, 1〉. This is what we had to prove.
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