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1. INTRODUCTION

Much attention was paid during the last decades (see, [1] and references
therein) to different processes of kind

(A1) s (N2) _E . 2 _ 2

a1(p1,01) +az(p2, 62) — jet;™ +jety™™, a12 =e>,v; (p1+p2)° =s>m;,

(1)

and d;, (\;) describe the polarization states of the initial and jet particles. Below

we choose §; = d2 = +1 without loss of generality (see Fig. 1). These processes
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Fig. 1. General diagram for the process

can be studied at high energy collisions of the initial particles in peripheral kine-
matics, i.e., small angles 6 of emission of jet particles to the direction of their
parent particle (center-of-mass (c.m.s.) frame of initial particles is implied), see
Fig.2. A remarkable property of nondecreasing of differential and total cross
sections on c.m.s. total energy +/s in this kinematics is commonly known [2].
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Fig. 2. Kinematics of quasiperipheral process




This property is the consequence of the presence of massless vector particle (pho-
ton) in the scattering channel state. The contributions of Feynman diagrams with
fermions as well as the interference of amplitudes of these kinds are suppressed
compared with photon exchange ones.

As the corresponding cross sections of the relevant QED processes are large
numerically, they provide an essential background when studying the effects of
weak and strong interactions. Besides, these processes can be used for monitoring
and calibration purposes.

Unfortunately, very small emission angles cannot be measured when using
in practice. So, we suggest considering the processes (1) in the so-called qua-
siperipheral (QP) kinematics which implies the values of emission angles to be
small compared with unity but much bigger than m/FE = 2m/./s, where m is
characteristic mass of jet’s constituents,

2m;
<O <1, ml <> <, g=-pi+Y_pia=—Y pitp (2)

NG

with pi1, pi2 — 4-momenta of particles from jet; , and ¢ the momentum of the
t-channel virtual photon. The QP kinematics provides the independence on energy
of differential cross sections but has accuracy of an order of 2 — the order of
contributions of neglected terms compared to ones considered.

Another important property of QP kinematics is the independence of spin
states of a; — jet; and ag — jet, blocks of a process. This is a reason why we can
put 01,2 = +1. This fact can be seen by using Gribov’s form of Green function
of exchanged photon with momentum g¢:

Juv 1

2
@ ?[Quu + g[Pmpzu + P21 )

which results in form of the amplitude

Ama » 8mais
M2 =—Zq—29;w(Q)J1”(Q)J2 (-0 = — 7 1%, )
where J!2 — currents associated with blocks 1 and 2 of Feynman diagram
(Fig. 1) and their light-cone projections (LP) defined as
1 1
P = ng’”pmu Py = ;JQ’”plw (%)

The LP factors ® do not depend on s in the limit s — oo.



At this stage, we introduce Sudakov’s parameterization of 4-momenta

=2
p4

pi1 = a;p2 +xip1 + Plit, E z; =1, o = =L,
STy

P

pj2 = y;ip2 + Bip1 + p1j2, > yi=1,  B= —S;,
J
g=ap2+Ppr+qi,  ¢Cr-G°,  pl=-Th

Yoba=4 Y Pe=-q0 (6)

Sudakov’s longitudinal parameters «, 3 of the exchanged photon with mo-
mentum ¢ are related with jet’s invariant mass squares

s1=(q+p1)’~—7°+ sa, so=(—q+p2)® ~ —q° — sp. @)

Here we use the on-mass shell condition p;; = p3, = 0, conservation law,
and introduce the Euclidean two-dimensional vectors (p;1p1,2) = 0.

We should like to note that the current conservation condition J'tg, =
J*q, = 0 leads to

1, . 1

1 1
—phJy = ——q I, —plJl=—
sz m Sa‘ﬂ ) Spl v

gqﬁﬁ“. (8)

This property of turning to zero of matrix elements at small ¢ we use as an
important check of calculations (see (4)).
The differential cross section can be written in terms of the Cheng—Wu impact

factors [3]:
a? d*q A A
do'(12) =— —(q 2)2 /dTl( 1) /dTQ( 2),

/ dr*) = / M) (g)2dT;, i =1,2, )

with
\ d®piy
ary = ()" [ @56 +a- Y r) [] 52 5o

&*p;
dry = (2r)* /d525(p2 —q¢-> pa) ][] %. (10)

Impact factors [ dr; do not depend on s. For the cases when a jet consists
of one, two or three particles we have

/ dr{" = or,



d?pyiday

ar?® — N S o 1
1 2(27T)2.’E1£L'2’ P11 +p21 q, T+ X2 )
d*p11d%Por dzq da L. .
drgg) = = ]5321 — z1+xetas =1, p11+pa1+ps = ¢q. (11)
4(27‘(’) T1X2T3

For conversion of the initial photon with momentum p; and chirality A to
the charged fermion—antifermion pair

(@) +v(p1, ) = e (g4) + e (¢, 0) (12)

we accept the description of chiral states of photon and lepton, developed in [4]:

A1) = Ny(G-dpprw—x — Prd—gewy),  (eM)2=0,  (le™) =1,
2 1+o
N»? - 5 51 = 2q+q*7 X+ = 2p1‘]i» We = 757 o= =*1.
e ? (13)

Chiral states of fermions are defined as u° = w_,u,v’ = w,v. Hereafter,
we will imply that chiral states of the subprocess (12) are defined as amplitudes
with a definite chiral state ®*“ of the initial photon () and one electron (o) from
pair. The LP factor of the photon ®* in the Born approximation has the form

-~ . D
oY = Nvfou(Q—)w—qwfww(qu), (14)

%" =N, fou(q-)

Note that in the combination po§ = p2§¢, we can consider 4-vector ¢ as a two-
dimensional one g, = q1 .

The property of the LP factors @ 2(§) — 0 at |g] — 0 is the consequence of
gauge invariance, as we have noted above.

The relevant impact factors are

/d7_m+i _ g/d2(f—d$— !
B ) wpro xpx-

Biiwovlgs),  fo=—ivira. (15)

=2
e= K si4a =1, G+i=q (16)
T4
The LP amplitudes @g‘i and the corresponding impact factors can be ob-
tained by application of the space reflection operator.
Let us consider the pair production process by photon on electron in the case
of definite chiral states of all the particles

Y(p1,A=+)+ e (p2,n) — et (g, F) + e (q—, %) + e (ph, ). (17)



Using the impact factor of electron-spectator in the lowest order of perturba-
tion theory (PT) with a single-particle jet e~ (p2, 1) + v*(—q) — e~ (ph)

P = a(p;)%wnu(pg), |®I1% =1, /dT2 =27, (18)

we obtain the cross section of pair photoproduction on electron with definite chiral
states of the initial photon and positron from the pair (it does not depend on the
chiral state of the spectator)

s+t Y= 2 .3 Yot Y=+ 2 3
dog, _dUBm _ 2o dog, _daBm 22«

di dD w2@%ygx] di  dl' m2@xex.’

d*qd®q_dx_
TiT_

dr = (19)

Also, we put here for consideration the process of single-photon emission at
high-energy electrons peripherical scattering

e (p2,m) +e (pr,o=+) = e (P, +) +v(k1, A= %) +e (p3,m)  (20)
with definite chiral states

eNk1) = Ni(pyprkiw_x — kipipriwn),

2
NP =——, wu=2pp,, x=2piki, X =2piki. (D
uxx
The LP factor of the electron ®¢°* is
e, 4+ i . D2 e, +— _ 1 P2 Al
LT = leou(pl)wfmq;ww(pl), Py = —leou(pl);qplww(pl).

(22)
The corresponding impact factors are

/dTe"H' _ g/d2E1 dz; q2 /dTe,+— _ g/d2E1 dzq q2(a')?
B - ) B - I
7r rx’ xx ™ zx' xx
(23)

where x1,x’ are the energy fractions of photon and the scattered electron from
the jet. From the conservation law and on-mass shell conditions we have

L e k3 1
ntd =1 pl+k=q¢ x=-=, X =—@pi-2k)> (24
X1 1T

The differential cross sections have the form

et+ e,—— 3 e t— e,—+ 3002
dog _ dog , 20 dog _ dog , _ 203 (x")

dr dl' @272y’ dr dr Er2xy’




 d%ky dad?

/!

dr (25)
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Our paper is organized in the following way. In Sec.2 we consider the
virtual (in the one-loop approximation) and soft real photon emission contribution
to the photon impact factor. In Sec.3 the similar calculations are presented for
the electron impact factor. In Sects.4 and 5 we consider the emission of an
additional hard photon in collinear and noncollinear kinematics. Some general
remarks are given in Conclusion. We discuss in particular the validity of the
structure function approach in the leading and next-to-leading approximations.
The relevant one-loop integrals are listed in Appendix A. Appendix B contains
the explicit expressions for nonleading contributions arizing from virtual and soft
real photon emission. These nonleading contributions expressed in terms of K-
factor turn out to be the quantities of an order of unity for typical experimental
conditions.

2. PHOTON IMPACT FACTOR: VIRTUAL AND SOFT PHOTON
CONTRIBUTION

All diagrams (see Figs.3 and 4) we can divide into several types, some of
which (Figs. 3, a, d, and 4, e, h) can be obtained by simple exchanges of chirality
and 4-momenta of particles:

Re[® 1 (Phon) ] = Re[®1 T (@4 0) (- — 44,0 — a0)l, (26)

Born Born

where 1 = XV, V, B — the self-energy, vertex, and box-type Feynman diagram
contribution.

Here, the low subscript describes the absorbtion of virtual photon by electron
(-) (Fig.3, a—d) or positron (+) line (Fig. 4, e—h).

Fig. 3. Photon impact factor diagram (I)

One class of RC to electron impact factor consists of the renormalized electron
mass operator and the vertex function with only one off-mass shell electron or
positron (see Figs.3, a,d and 4, f,g). Its contribution can be written in the
form [5]



Fig. 4. Photon impact factor diagram (II)

dra)?/? P2 p1— 4
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with the denominators (0), (2), (2), (q), (7) are defined below (see Appendix A).
After integration we obtain

_ [0 1 _ ﬁg A
L = —foNy—(I4 — —)U(Q—)?p1Q—w+U(Q+),

= 27 2
« 1, _ . . D2
LS = ol (1o = 5)ula-)dshr— w-v(ay)- (28)
After multiplying the relevant Born amplitude we obtain [6]
8a? 1
++ A S
20 5 (Phorn ) = T —0(@0) 5 — ). (29)

We should like to note that the XV contribution does not satisfy the gauge
condition (turning to zero as ¢ at small ¢'). We will see later that the total sum
satisfies the gauge condition.

The contribution of the vertex functions with a virtual photon can be written
in the form:



VAo
(I)_y

_ (4ma)*? / d'k a(g-)vu(d- — k)

1672

3>
a3

(G- — G — k)yu(p1 — d4)Ewv(gy)
in? (0)(2)(q)(—x+) ’

Y, o (47’(’0&)3/2

+HV 16772
/ d'k ulq — P (=dy +4 - k)22 (—G5 — k)yuw () 30)
im? 0)(2)(@)(—x-)
Using the list of integrals (see Appendix A for designations) we obtain
_ 1 1 x4+ +277 3772
2017 ()" = 2|04 2 & S X TE gl ~ 7?
++ (e — |1 1 x-+2¢° 3¢ 72Jos
207 (P5T)" = 2[5 or {_EL 1 o -t —l Jozq |
a=xy—q% a=x-—q°% 31)
The other contributions &7 (®5%)*, @I (@57)", LT (F)%

VLY (@fT)* are equal to zero. We remind that we work in the framework

of the unrenormalized field theory. The regularization procedure consists in the
2

replacement of ultraviolet cut-off logarithm L = In — as L — 2l — 9 (see [5)).

m
The most complicated case is the calculation of the box-type contribution. It
can be written down in the form (see Fig. 3, c and Fig. 4, h)

Ty =
_ (4ra)®? /(14_16“((1—)7“(@— — k)22 (G- — G — k)eM(—gy — k)y*wv(gy)
1672 12 0)(2)(2)(q) ’

Ao (47704)3/2
bor T 1672
/d‘*_k u(g- )y (4- — k)EMg- — pr — k)22 (=qy — k)y"wu(gy)
im? (0)(2)(2)(q) '
All the details about loop calculations and relevant integrals can be found in

Appendix A. It is worth mentioning that in the case of the box-type contribution
both chiral amplitudes A = +1, 0 = £1 are nonzero.

(32)



An additional real soft photon emission contribution to the LP factor has the
standard form

VA — YA ara( L= — Loy 33
soft B ﬂ-a(q_k‘ q+k)e( ) ( )

The corresponding contribution to the impact factor is

d’k i
/ m Z ‘(I)Zc;?t 7’|2‘UJ<AE<<5,Y. (34)
n

Here ¢, is the energy of the initial electron in c.m.s. The result is

VAo _ Xy (A)? 1o, 1. oxy =2
_ ¢ =D +1 S L R e
dr 7Td7'B [(l VRS nerx,) + 2lS S~ — =
A
A== L=mZ. 35
€y m

We use here the smallness of the angle between 3-momenta of pair components in
the center-of-mass frame. Smallness of emission angles provides the possibility
to perform angular integration in (34) in frame Sy which coinside with c.m.s.
frame [7].

After summing all contributions (27), (30), (32) and adding the soft photon
contribution we explicitly see the cancellation of an auxiliary parameter A and
squared large logarithm

v +E = = Yot
2[d7r) pox H AT sy ATy Hdr T =

- %dTgi[(ls —1)(AInA+3—2In(z,z_)) + KL (36)

Here, we can see that leading logarithm contribution (containing the factor
(Is—1)) is proportional to the Born cross section, so our calculation is in agreement
with the structure function approach predictions, namely the leading logarithm
contribution is exactly the A part of the evolution equation kernel (see (VI)). All
nonleading terms are gathered in the so-called K -factor.

Due ro gauge-invariance the right part of (36) including K-factor turns to
zero as ¢ 2 — 0. This fact provides an important check of our calculation.

The ngjv: is presented in the analytical form in Appendix B.

The contribution from emission of hard photon which eliminate the
A-dependence can be written as a sum of two parts, one from collinear and
the other from noncollinear kinematics. It will be considered below.



3. ELECTRON IMPACT FACTOR: VIRTUAL AND SOFT PHOTON
CONTRIBUTION

In the same way we calculate the electron impact factor. All diagrams (see
Figs.5 and 6) are divided into six types, the contribution of three of them to LP
(Fig. 5, ¢,d and Fig.6, f, h) can be obtained by a simple exchange

Re[®7 55 (R557)7] = Re[®5 00 (P5an) (01 — —p1,py — —p)), - B7)

i,contr Born f,contr Born

where the low subscripts correspond to interaction of virtual photon with the
initial (¢) or scattered (f) electron, and contr = XV, V,box — the self energy,
vertex, and box-type Feynman diagram contributions.

Fig. 6. Electron impact factor diagrams (II)

We take into account the contributions from self-energy (Fig. 5, a,b), vertex
(Fig. 6, e) and box-type (Fig.6, g) FD amplitudes

e+ (4’/TO[)3/2 —

|"@>
I\

WSV = 16W2(—_X)“(P/1) p (P1 — k1) x
A% v (pr — k1 — k)L — F)y. o1, X m 3. .5
— 2(=In &=—-2ln —+-)é
XU i 0).()e (). FAG T2 T jwrulpy),

(38)
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e+
q)i,V -

(4m)®/? /d“_kU(p’l)m(ﬁ’l—k)%( — k= Q)vu(pr — k1)e*w u(p)
)

1672 (— im? (0)e(2)e(q)e 7
eir _ (dma)’? /d4k a(py )y () — k)22 (9 — k — ) ywiu(pr)
é;box 1672 im?2 (0)e(D)e(2)e(q)e .

The first two contribute (see details in Appendix A)

200 (7 =
- 11 L3024 x+24%) x
= 2@y TP oL -~ — G, mis AT X
@5 I%{ sl T o t 5y 5 -5,
2005y (957" =
/

8a? 1
=X - e — el d=x - by =2 —in (39)

(In =

xx' m?Z 2

2

The contribution for other polarization can be obtained by substitution (37).
The soft photon contribution has the standard form (the energy of soft photon
does not exceed Acg)

2

e,+=+ P—‘r:t U m / 1 2 U 1 2 s T
deoft —d W[(lnm—l)(anX#—anA—lnx )+§ln W_an 33—(4?0)],

JAR s .

where A = —, ¢ is the energy of the initial electrons in c.m.s. frame. We can
€

express the contribution to electron impact factors with a definite chiral state:

2drigy +drf T Hdrits Hdrpr )+t E, =

’L box

e,+=+ a U e,+=+
=drg %[(lnm—l)(4lnA+3—21nx)+K ]. @1
Again here we can see the cancellation of the auxiliary «photon mass» parameter
A and agreement with the prediction of the structure function approach. The
K ;:}i is presented in the analytical form in Appendix B.

4. COLLINEAR KINEMATICS OF ADDITIONAL HARD PHOTON
EMISSION CONTRIBUTION
For appropriate consideration of RC to impact factors, we have to consider

additional hard collinear photon emission. It is convenient to distinguish the
collinear and noncollinear kinematics of emission of hard photon. For this aim

11



we introduce an auxiliary small parameter §p < 1. Collinear kinematics cor-
responds to the the case when the photon emission angle 6 to the direction of
motion of some charged particle (initial or final) do not exceed 6. Noncollinear
kinematics corresponds to large emission angles 6 > 6y. Chiral amplitudes in
noncollinear kinematics can be calculated using the methods developed by the
CALCUL collaboration [4]. The contribution from collinear kinematics can be
obtained using the quasi-real electron method developed in [8]. The total sum
does not depend on the parameter 6. Cancellation of the 6y dependence is some
check of our calculations. The nonleading contributions from additional hard
photon emission essentially depend on the experimental setup. We do include it
in the K -factors in the structure function picture of impact factors.

Using the quasi-real electron method [8] for contribution to photon impact
factor in collinear kinematics we obtain

1
_[1+a2 -
Pl / dL{ +9”(ls+r_+1neg—1)+1—at:}am;’“(Z—,qH

coll ™" or 2 |1—a_ _
z_(1+4A)
1
! dzy [1+ 32 2 - A 9+
— — I 62 —1)+1—i, |dry g, =
T e e R
o1 (14+A4)
(42)

where the first term in square brackets corresponds to the emission of hard
photon along electron and the second one — along positron from the pair created.

. . - T4
Besides, we use the notation £+ = — and

Z+
2iq. | 2B,z (1-
oo 20 2B (o) T g3
m? m? 20+(1—c,y)

the quantity c, is the cosine of the angle between pair momenta (the center-of-

mass frame of colliding beams is implied). The «shifted» photon impact factor

. 1 .
(conservation law reads as p; + ¢ = —q— + —q4+) i
z Z4

=2 =2
4+ 4q- axTLq " o ~ ~ A L1 I
dry (=) = =S -d?q di ., B +Eo =1, (= —§ +—0;.
B (Z+ — k) T + 7= 0+
(44)

A similar method can be applied to the problem of calculating a contribution
from the collinear kinematics of the photon emission for the impact factor of

12



electron. The result is

1-A
e « 1+ 22 e
drifir = — | de | 2l A A1 62 — 1) +1— 2 [drg T (12, 04+
2 1-— Z1
0
1 ! 2
o / - 1+(Z)U +l+In6g—1)+1 x/de*ﬁ 1’)
o D - 71 \lu n - - T y 9
21 29 ! 2 0 2 B D1 Z2p1
#(1+4) =7

(45)

where the first term in the square brackets describes the emission from the ini-
tial and the emission from the scattered electron. Here we use the following
designations:

2p1p) 2%/ (1 — ¢, 22 x!
lu:hl fnfl =In ’[’)(’L2 ), llzlnm, lgzh’lm,
(46)
c. is the cosine of the angle between the initial and the scattered electrons mo-
menta.
The «shifted» electron impact factor in the Born approximation (the conser-

. 1 .
vation law reads as z1p; +q = —p} + k1) is
22

1 aq? | zd’kdr, z’
dT€’+i o —pl) = — + , +_ 2 - _ (= 2’
B (P12, Zzpl) -~ P n ion (Z2)
= g
Z1 =~ zo(Plar — k1) z/ R 1
x==k, X'= —2— m+—=1, {=k+—p. @)
x 1T 29 22

The terms containing «large» logarithms I, — 1, [, — 1 will be included in
lepton nonsinglet structure functions in the Drell-Yan form of impact factors,
whereas the rest terms contribute to the relevant K-factors. So we can rewrite
these formulae in the term of structure function approach (chiral indices are
suppressed) for the electron impact factor

1
drecel! /dz1 [ (l 1)+ Kcou] dr¢(zipy, ph) + dT(f;ﬁnp+
0
; d
22 o
+ / 29 |: 27‘_ (l ) + Kcoll:| de’ (p1 _) + chfo’mpv (48)
0
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and for the photon impact factor we have

1
co dz_ T_ - q-
are = | —[P9<Z_>2 (1o~ 1)+ Kcof}dﬂz—,qnwnmp
0

1
d
# [ B - 1+ SR fartae )+ e,

m +

where
1+ 22
P, 1—-z—-A
() = - 0(1 = 2 = A),

and nonleading contributions equal (photon impact factor)

1
_ ! Zo T q—
cho)r’ﬂYp = 5= / Z—_PQ(Z__)dTg(Z__’qu) lnegv

q—

0
1 1
_ Z_ T_ ~
Kl =5 [ TR0 +1- - )arh (g,

1
d
drt :ﬁ/ = Py )dr (g, ) ez,
Z4 Z4 Z4
0

dz T q
Kty = =t py (=t —1—F)dr (g, =
2/ R ()~ 1= T (o 25,
Ty

and (electron impact factor)
1

drbe = —/dzlpg(zl)dTg(zlpl,p’l)lnﬁg,
2

comp

1
’L e 1 e
Ko =1 / d21 Py(z1) (1 + 1 — 20)d75 (z1p1, ),

coll —

comp

1
d /
drle = ﬁ/ﬁpa 47 (p1, L) n 62,
2 22

/

1 [dz x!
Ky —5/—2%( (2 +1- D)drg (o, L),

coll
2 Z2

x!
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(50)

(S

(52)



Terms with In 63 will be compensated with additional noncollinear photon emis-
sion.

5. NONCOLLINEAR HARD PHOTON EMISSION CONTRIBUTION

Contribution to the electron impact factor from the channel of the double
Compton scattering process

e(p1, M) +7°(q) = (k1 A1) + v(k2, A2) + e(pl, Ae),

with the emission of both the final electrons outside the narrow cone 6 > 6y can
be calculated using the chiral amplitude technique [4]. The result is

2, 12
evy o « Ae 2d kld kgdibjdxg
dry '\, = ﬁ|mxlxz| Whﬁ,p@m
o =1—x —x9, §=k1+ko+p), (54
with
4q 2u 4(2")2q u
|mi+|2 =T \m+ \2 = \mf |2 = \mif|27
X1X2X1X2 X1X2X1X2
+ 2 o ot At
mi_|“"=————TrpyBl_wip1B}_, (55)
me-| uBxixexixy b T
with
Bt = kip ks (o1 +0) 2 — P2 (3, — @) o+
A (p1+q)? s (ph—q)? s

P2
S

+ PPy + k)= (b1 — k2)B). (56)

It was explicitly shown [9] that the quantity Bif turns to zero as |¢’| — 0, whose
property is the consequence of gauge invariance implement for the virtual photon
with momentum gq.

For the aim of checking the 6y dependence cancellation for the sum of
collinear and noncollinear kinematic contributions we put below the limiting
expressions for \mj] |2 for the emission of real photon kinematics

91 > 903 91 - 903 92 > 907 (57)

15



with #; being the angle of emission of photon with momentum k; to the initial
or final electron momenta. These limiting values are

4@ (") + (1 — 21)?)
+ 2 + 2

m + |m 0= ,
(‘ | | | )Xl 0 X1 331(1_331)2X2X/2

(mt 2+ it Phmo= L2 (1= a2,
! X1 T1X2X5
(it P 4 P = 2L Ly y (10— a0y
X1 T1X2X2
44> /)3
(Im* >+ Im* )0 = —#[1 +(1—x2)%. (58)

X1 T1(1 — 22)?x2X5

At small emission angles we can express all the invariants in terms of angular
two-dimensional vectors in the plane transversal to the beams axis

- . 5 d’k 1
k1= Ex0q, ﬁ’l:EZL'/Q/, / ! :7T£U11I1—2+...;
X1 90
01>00
d*k d*9 1
/ g / S TS P (59)
X i (6, — )2 x! 05

‘51—5">90

One can be convinced explicitly in the absence of 6y dependence in the sum of
collinear kinematics and the summed on final-state hard photon chiral states of
noncollinear contributions to electron impact factor

AT rane = > (@750, +drist,, +drle ). (60)
/\1 /\2

Its value however depends essentially on the experimental photon detection setup.
Similar calculations of the photon impact factor in the noncollinear kinematics of
the emission of hard photon

Yk, Ay) +7(q) — e (g=, A=) + e (g4, —Aq) + (k1 M), (61)
51 =2q-q+, X+ = 2kq+, X1+ = 2kiq+

with chiral amplitudes defined as m;z A gives

d ete ™y a_3| Ay |2 dzq_d2q+daj+dm_
Txaa- = 92 M 1T T )
m=l-zy—x, §=¢ +G +k, (62)
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with

22 2 22 2
imt ‘2: 4q “s12% imt |2: 4G “s1x%
A X=X1-X+ X1+ A X=X1-X+X1+
(mE_(k, k1) |? = [mE (—ki, —k)[%,
4 A o
im* P = Tri AT wi g AT, (63)

5%X—X1—X+X1+

51 P R D2
= kjiki(—G+ = - —— ==
+—q)? +ha (e )s (- —q)? s

4 +k)d-. (64)

Again, the proportionality AT, ~ |q] at small |g] was demonstrated in [9].

To check the cancellation of the 6y dependence, we put the limiting values
of |m} A, |7 in the limit of emission angles close to the momentum directions of
one of the charged particles

T O N e R
(P4 P = a2 (1= 07
N N e R (e ] (©9)

One can be convinced in cancellation of 6y dependence in the sum of collinear
kinematics and the summed on hard photon chiral states of noncollinear contri-
butions to photon impact factor:

A me = AT535 T + drioil, + drb] (66)

comp comp*

The numerical value of d7’, , .. as well depends on experimental setup and will
not be considered here.
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6. DISCUSSION AND CONCLUSIONS

We have obtained that the impact factors of both electron and photon in LLA
can be written in the partonic form of the Drell-Yan process in terms of structure
functions for any chiral states of the initial and final particles

(drg +drsv + ZdThard )2 (g, q4) =

/dz_ /dZ+D )D('Z-‘r 1,)dr 'y,Acr(Q— Ty,

+ - Z4

x (14 [K%VM + K,

col

1 + Kcoll + Kr’lycol])

(d7p +d7sv + Y dmhara)” 7 (p1,p}) =

1 1
dZQ .’E/ o p/
:/d“/— 21, 1) D( 1,)d75 7 (zapy, L)
Z2 z2
0

2

x!

a e,o e
x (1+ ;[K g KU5+ chél + Kiconl)-

Here we suppress the chirality indices, and D is nonsinglet structure function of
fermion [6]

D(z,1) =6(z — 1) + %(z PO £ (67)

2
PW(z) = (5(1 —2)(2InA + §) +0(1—2z—A) Lte ) :
2 1—2 /A0

The explicit form of Kgy is presented in Appendix B for the definite chiral
states. The explicit form of K o is given above (see (51), (52)). The form
of Kol (after proper regularization compensating the divergent terms in limit
0o — 0) strongly depends on the details of experiment-tagging the additional hard
photon. The nonleading terms are free from infrared and collinear divergences
(do not depend on A, A and 6p).

The terms containing the vector product arise due to the nonzero imaginary
part of the LP amplitudes.

We can be convinced in validity of gauge-invariance check: the squares of
chiral amplitudes in the Born approximation as well as one-loop corrected ones
tend to zero as |g]? at small |q].

The electron impact factor has also contributions from pair production chan-
nels [9] which are not considered here.
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The accuracy of the formulae given above are determined by the omitted
terms (2)
m2 m? (o)’
Lo (2, )
s u m

APPENDIX A

Here we put the asymptotic expressions for part of scalar, vector and tensor
integrals corresponding to the absorption of virtual photon by electron from the
pair created in y(p1)vy*(¢) collisions.

We give first the scalar integrals with two, three, and four (different) denom-
1nators

(0) = k? — N2,

(2) = (q— — k) —m? +i0 = k* — 2q_k + 0,

(2) = (g4 — k)* =m? 410,

(@) = (1 — g+ — k)* —m® + 0. (69)

The loop momentum integrals with the denominator (7) = (¢ —p; —k)%2—m?
instead of (¢) = (p1 — ¢+ — k)2 — m?, including scalar, vector and tensor ones
can be obtained from the ones listed below by means of the replacement (26)

- — —q+, g+ — —q—, P1— —DP1, X+t — X5, (2)—(2), (9) — ().
(70)

So we can restrict ourselves by consideration only the integrals with denominators
(0), (2), (2), (9)-

We use the same conservation law, on-mass shell conditions and the kinematic
invariants as for the photon impact factor (12, 13)

s14+7 =X+ + X (71)

Two denominator scalar integrals are defined as

k1

The explicit expressions for them are

loo=L+1, Ing =L —1,+1, Iog =L —-14+1,
I =L+1, Is =L—Ls+1, IQqZL—l. (72)
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Here and below we use the notation
A2 2

S . .
L=ln—, lizln%, zq:m%,Lszlnm—g—mzls—m
2 Zd
L :m%, Li2z:—/%ln(l—x). (73)
0

Remind once more that we imply all the kinematic invariants to be greater
than electron mass squared s; ~ ¢2 ~ x+ > m? and present below the asymp-
totic expressions systematically omitting the terms of order m?/s; and similar
ones.

d'k
The tree denominator scalar integrals I;;;, = [ ——————~—~ are
=) =i 5w
1 272 1 472
Ippg=—5—[B+ 5|, Iz = o [+ 200 - — — (2L, +20)],
02q o, LT + 3 022 = g5 |" + 250 3 im(2ls + 20;)
1
Is :—7[52—12 2 4 9i zs],
22q 2(51 +q2) q s + 7+ 27
1 1 . X+
Iozg = ——— [lally = 14) + 50y = 14)? + 2021 = 3] (74)
02¢ Yi—q2 q(q +) 2(q +) 7
The four denominator integral I Ik —d4k has the form
022 = J ; 5
7 im2(0)(2)(2)(g)

1 o T2
Ippsg = . {zg — 20,1y — I 4 2Li21 + ;+

7r2 (72
+F+i7r(2l++ll—21n(l+8—)) . (75)
1

Now we describe the vector integrals

d*kk* ’ .
= [ —ard e ol (76)

with r = (i), (ijk), (ijkl), where i, j, k, 1 = (0), (2), (2), (q).
For the vector integrals, with two denominators we have (we put only nonzero
coefficients)

- 1 1 1 1
3= oy = =05, = 5 (L=l 5). abg = ey = 5(L =L+ 3).
1 1 1 1 3
- + 1 _ + _
op=ap=g(l-Latg).  eh =50, =3(2-3)
_ 1 1 1 1
agy = 5L =7, agé——§L+Z, (77)
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and the coefficients for the vector integrals with three denominators are

Ugoq = %(X-&-IOZ] + 2XT+l+ — W%lq), aé’éq = _a(l)zq - é(l"' _ lq),
oy = (e +2). )
O23q = %(Ls B lq)’ aj5, = —Ioq + %(Ls - lq)7

S1 1 281 N
aéiq:?lgiq‘Fz(_lq"'Q)—C—2(Ls—lq), C251+q2:X++X_.

(78)

Finally, the coefficient of the vector integral with 4 denominators has the form

a' = %(X+A+X_B—S1C)7 at = %<X+A—X—B+510)a

a = %(—X+A+X—B+Slc)a d:251X+X—7

A = Iyzq — o2, B = looq — Ir3g;

C = Inzq — Ipoz — x+1p224- (79)

We parameterized the second rank tensor integrals in the form

. d*k kK L
I = m—2% = [a?g +a,'pip + a0t Tarqr +a g+

+art (prgs + gep1) +ar” (Pra- +g-p1) +af " (grg- + q—q+)} W. (80)

The coefficients for tensor integral with four denominators are (we suppressed
the index 022¢)

o't = L(Ae-l-A?—Am), at™ :i(AQ‘i‘AG_AlO)a
X+ S1
al” = X% (Az + A7 — A10), a'l = X% (A1 - 51a1+)7
a = i(z‘ls - X+a17), att = 81—1(143 - X—GH)»
0t = (A — 42— xia™), (81)
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with

Alzaéq—aéw Aﬁ:a&q‘”%y

Ay = Ao, A; = a(lmq — xqal,

Az = aé%q - %%qa Ag = agp5 = Qg5 — X407,
Ay = a(lmq - aégq, Ag = aerq —alyy — x4at,

Ago = Iz (82)
One can verify that the checking relations

Ay =xra't +s10'7, Ag=x_a " +xiat, Ag=xsat+x_a""

(83)
for the above coefficients (82) are fulfilled.
The coefficients entering into the tensor integral Ij,, are
1 3 77 X+
S =L+ =+ =—I,— =1
%02 = +8+4aq a
- - I ixs
sy = —0g2g = % {T(H —lg) — 1}7
1
a(TzZ = aé%q = _aé;q = %(lq —13),
1, 3x4 (7% —4q%xy =33, | 7% —3x+
G2 = 2 [X+102q + a Iy + % lg+ 5 .
(84)
The coefficients entering into the tensor integral 152”2 are
o Yo orpy+3 att—a-— Lo o1 gs
ooz = 7 (L= 5)+§7 Qooz = Q22 = E( s— 1), a5 = T2, (85)
and the coefficients for the tensor integral I(’)g’q are
1 3 1+ 1 5
e A T S G
1 1
11
aOiq = E(_l—‘r + 2), a,g;{; = IOiq + E(3l+ - 1) (86)
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In the case of the tensor integral Igg; they have the form

r 72
=330t T el Gl = g )
iy = Lo + 5,0y~ ) 0y = el = L)
il =[5+ r-2h1y).
@23 = % - 3 — s1la3q + %Ls + 2‘722%@ :
1

2 _ (72)2 _ 4s. 72
3s1 —(7°) S14 lq:|- (87)

. 3s?
a%%q = 3 481 + q 2 + S%IQQq — Tng + 2%

[

The checking equations for the coefficients (87) could be obtained after multiply-
ing I}5 by 2(q+ +gq-)" or 2pY, using the relations 2k - (¢4 +¢-) = (2) — (2),
2p1 -k = (2) — (¢) — x and using the vector integrals (76). They have the form

g — 1- - = -
2055, + S1055, + Cagy, + 51095, = g — a5,

g ++ 1+ +— _ o+ o+
2a2§q + 510y, + Clgs, + s1a = gy — g,
11 1+ - _ 1 1
Cays, + 51045, + 81055, = g — Aoy (88)

Integrals for calculation of the electron impact factor with the denominators

(0)e =k — A2, (e = (p1 — k)2 — m? + 10,
(2)e = (p1 — k)> —m® +10,
(@)e = (p1 — k1 — k)* —m? +1i0 (89)

can be obtained from the cited above by the substitution

/d4_k 1,k kk
in2 (012q)e

d*k 1, k, kk
im2 (022q)

(90)
An additional set of relevant integrals for the electron impact factor can be
obtained by the substitution (37).

P(Q— _)pllanr — —P1,pP1 — _klaq — Q)/

APPENDIX B

The explicit expression for the photon K -factor are (the case of two different
polarization):

1

3 1 1 3 ll
2

_ 1 T
K3 = -3 In? f — 212 F lgslps + =lgslms 4+ ~lms + lgs + 5las =

3
1'% 2 am Ty 1
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7? 1 Ty = 2x4 — 2
+gL121+q——Li21—X—+——Li21—X— X=F+ — Xt — 251

51 7? 2 q? T 4a? s

X=T4+  (T4x- — 51)2) (1 2 m? ; q? : X*)
- “12 — lyslms + — — Li21 Li21 — &
(X+m_ ngxi 9"as q + 3 1 + 51 + L1 F D)

_|_

(lms - lqs) (Cl2$+ —2s17_X— dx_ — 81 — 2.13+X_ £U+X2,
— T+ 2 +

2 442 2a  2ay4 +

=2
—1In <1+q—
51

(81— 24 X— +2-X4)
2x+a4 222 x ¢

233+X— — 51 T o lms
)+ E
X+

! +3T_x+ —THX—

2 2
n lqs <X++81+2$+81X+ _ 2r_51 +X+_|_

c 222 c2 c
s? —251 + T4 X~ 3487+ 22 ; 1
I E 1 +X + X3 T 51 : +51X+ {J; _ —xi—l
X+C€ X+ 2z s1c 251G %x= \ 2
X424 2 | ~2 1 1 q?
-2 - (-
15,222 <w+x+ + 7" (z4x x+)) + 7o <4X 5T
1 1 1
X+T— — 55133_ - insl + in)@r), o1
]. ++ ]. 2 .CL'+ 3 ]. ]. . X—-
iKgV = _5 In Jf__ - Zlgg + lqslms + ilqslps + Z(lps + lqs) — Li21 — 5—2
3 7% 1 27T _Xs — (T_xy — 51)2
o T Ly Xy 2o — (@oxy —s)
2 51 2 2 2x2 oy
1, . 52 . X+ 2
§lqs — lgslps — Li21 + g + Li21 — 5—2 + ?

Z 4a? 2as1

lps — lgs lx(—281X+x+ +x_a?) Lt (4wy 81Xy — T4 87 —x_a?)
x
+

2
Ty

1

=2

(s1 —2_x4)? lys | 201514 + @2 52 TG+ 510+ oX-
2x_51 2c2 2cx— c

T_ 1 1

—(s1— §$—X+) 3

— X T |+ 7

2% X2

¢4+ q-]- ll’JrX— +s1 — T X+
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2 20 +1  xz_ s 1 961 — 4 2
51 ¢ X— X-C 37+ a

rpr— 2xisix+ + (X — 51)2 N 1 [2%s? ﬁ N 5
2 2cs1 7223\ 4a 4 T
3 L o X4
+ §S1$+ — 81 — T4 X+ — §$+81> - W7 92)
a=x+—§2, a=x--q¢% c=x4++x-
=2
ls=InL =X, =i (93)
S1 S1 81
The explicit expression for electron K -factor is
~ 3 =2 =2 / 72
S L R q—+—1 —+3ln—
2 U U
52 X/ 71.2
—2L121——+3L121———L21+————2
q U 4

1 q 2 / q,Q X/ 2
el Gl 1—1——L21—— Li2l + 2
(x’)2(><’)2<2 n? S-—InS-ln o —Li REIRE

g <d2 — 22" (—ux' + u® + xx') + (x/)2u2>

1 2 N2 ,..2 9
_7(‘“”*2%«—<w’)2u—3(x’)2x+ %) +M<l+q—>

2(x")2q 2 )77 -
l (z(zu+t2x+uwaf) 1 ;X —2u+27'u
— 7\2 + 5 - -
(z') c od
_ 1 lnx_’<x’(2d+x/u) _ x/(4X/ _ u) B d2(—2u - 3X) x/ux/>
)2 q2 X' 7 2y =
- ! llrl(j—2 ur z((x —u)’z — 2xuz’) B 2ux ! + (u? — x?)z?
(z')? u \ x(x')? 2 B o
[P e () 0 X\ X —u—a'(x —u) [P}, k-
+ 47'(' (.’E/)2 hl 7 — ln (j‘_Q X2 + 27‘_ (x/)2
(d(—Qy - 3%) 4 —2u+ X) o1
d2X Xd 9
where
d=x—-¢q? d=u+yx, c=u—q> 95)



For K g“f T we have

3 72 1 5 >2
KE’J+=—1n2x/——l +21 q ln&lnq—ﬁ—l &4-—1 X+_1nq_
2 u 2 u u
! — 9 2

3

—2L121+X +3L121—q——L121—§_“___

u 72 4 2
1 2 7\2 72 -2 ' ’
= el X1 @ om0 (X, XX
(X)? uouw 120 @ Ny T

u
— 2 ~
+ Li21 — % — Li21 — q_> (—u2x2 + 22" xd + (2")*x(—2u — )

21_2/ =2 2/ / —2 /
L X0 =20) “(Hﬁmq_)_ fX(_mz_X_an_(l_“_Q))
uc C u u u C u C

! 1 ! - —9 "2
- (- o) + Ty 2 (- e - HERGEED))

d 2 ud
72 _9 / 2u(l — (2)2) — va2 2,.2
_lnq_<x/ WTLIXJF(U( (2)?) = xx _uafl>
u X c cx
2

1 1 ’ ’ 2 5, N2 dz*u z?x?
—q_,—2<—§X+$U+3$X—2($)U—§(I)X— 5 +ucj’2' (96)
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