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V3ukos 10. H., X iigen6 ysp U., Yunkun K. E2-2006-148
Jlun Mux  chopmupos Hus 'Sy-gunporon
B pe kumsix pd — {pp}sn u pN — {pp}sm B 061 cru sHepruii nopsak [»B

Mex Hu3MbI OGp 30B HMS AMIPOTOHHBIX 'So-m p, {pp}s, B pe Kuum pd —
{pp}sn wuccienoB Hel mpu sHEprusx nporoHHoro mydk 0,5-2 [sB B KuHeM THKe,
OMM3KOM K yrpyromy pd-p ccesHHIO H 3 A. P ccM TpuB eM g pe KUud I €T B XHYIO
He3 BUCHMYI0O MH(OPM LU0 0 KopoTkozeictByomeM N N- U pd-B3 UMOIEHCTBUIX
U CYLIECTBEHHO JOINOJIHAET Pe3ylbT Thl HCCIENOB HUIl XOPOLIO M3BECTHBIX IPOLEC-
coB pd — dp u dp — p(0°)X. Pe kuust pd — {pp}sn cBI3 H C HOAIPOLIECC MU
7%d — pn u pN — {pp}sT NMOCPENCTBOM HCIHONB30B HUS JBYX P 3IHYHBIX U -
rp MM ogHonmoHHOro oomen (OIIO). B p MK X ®THX Mozenell HOIydeHo p 3yMHOe
corn cue ¢ A HHbIMU Huxe 1,0 ['9B. CxoncTBo B 2HEpreTnyecKoil 3 BUCUMOCTH I10IIe-
peuHbIX cedeHuii pe kuuit pd — {pp}sn U pd — dp ¥ M JIOCTH OTHOLUEHHS BBIXOJ
{pp}s-n p x meiirpoH M &~ 0,015 B KOHEYHOM COCTOSHHU €CTECTBEHHBIM O0p 30M
cnenywot u3z OIIO-mopneneit.

P Gor BommosneH B JI Gop Topuu siepHbix mpobiem um. B.II. [xkeneros
OUsIN.

Ipenpunt OGbeIUHEHHOTO UHCTUTYT SIIEPHBIX HccnenoB Huil. JyoH , 2006

Uzikov Yu. N., Haidenbauer J., Wilkin C. E2-2006-148
Dynamics of 1Sy Diproton Formation
in the pd — {pp}sn and pN — {pp}s7 Reactions in the GeV Region

Mechanisms for the production of 1Sy diproton pairs, {pp}s, in the pd — {pp}sn
reaction are studied at proton beam energies 0.5-2 GeV in kinematics similar to
those of backward elastic pd scattering. This reaction provides valuable independent
information on the short-range NN and pd interactions, which is complementary
to that investigated in the well-known pd — dp and dp — p(0°)X processes. The
pd — {pp}sn reaction is related to the subprocesses 7°d — pn and pN — {pp}sm
using two different one-pion exchange (OPE) diagrams. Within these models a
reasonable agreement is obtained with the data below 1 GeV. The similar energy
dependence of the pd — {pp}sn and pd — dp cross sections and the small ratio of
~ 0.015 in the production of {pp}, to deuteron final states follow naturally within
the OPE models.

The investigation has been performed at the Dzhelepov Laboratory of Nuclear
Problems, JINR.
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1. INTRODUCTION

There is a long-standing problem connected with understanding the mecha-
nism of proton—deuteron backward elastic scattering at energies above 0.5 GeV.
This can be formulated as follows. Except in the A-isobar region of 0.4—0.6 GeV,
the unpolarized differential cross section do/dQ)(pd — dp)g,,=180> can be ex-
plained qualitatively within the impulse approximation (IA) up to large nucleon
momenta in the deuteron ¢ ~ 1 GeV/c, whereas the experimental values of the
tensor analyzing power Thg are in strong contradiction to the IA calculations al-
ready for ¢ > 0.3 GeV/c [1-3]. Here IA means the one-nucleon exchange (ONE)
mechanism of Fig. 1, a which, if it dominated the unpolarized cross section, would
allow one to measure directly the high-momentum components in the deuteron
wave functions.
pp ('So)

Fig. 1. The one-nucleon exchange (ONE) mechanisms of the reactions: a) pd — dp,
b) dA — p(0°)X, and ¢) pd — {pp}sn

A very similar problem arises in the analysis of the inclusive disintegration
of the deuteron on nuclear targets, dA — p(0°)X, when the ONE mechanism of
Fig. 1, b is used to describe the process [4—6]. In contrast, the tensor polarization
too of the recoil deuteron in elastic electron—deuteron scattering follows very well
the IA predictions [7] up to very high transferred momenta ) = 1.3 GeV/c, i.e.,
at ¢ ~ Q/2 = 0.65 GeV/c, if realistic phenomenological NN potentials [8-10]
are used to describe the deuteron within the Schrodinger equation. Corrections
from meson-exchange currents are sizable, but do not change the picture quali-
tatively [11]. We must conclude that in exclusive and inclusive pd collisions at
high transferred momenta we are dealing, not only with the short-range structure
of the deuteron, but also with the specific dynamics of the pd interaction and that
these dynamics are entirely different from those in the ed — ed process.



The above contradictions, referred to as the T5g-puzzle, can be ascribed, in
part, to contributions from the excitation of nucleon isobars (A, N*) in the inter-
mediate state, which were neglected within the IA analysis [1-6]. For example,
the A-mechanism seems to dominate the large angle unpolarized pd — dp cross
section in the 0.4-0.6 GeV interval [12-14]. However, the spin structure of the
three-body forces related to the A-isobar is far from being well established [15].
This therefore leads to ambiguities in any explanation of 75y when the A-isobar
is included in the transition amplitude [12-14]. It was suggested that, in order
to clarify the role of the A-isobar, the pd — {pp}sn reaction should be stud-
ied [16-18]. Due to isospin invariance, the A-mechanism is suppressed by a
factor of nine in the pd — {pp}sn cross section as compared to that of pd — dp,
whereas the ONE mechanism does not suffer a similar suppression [19]. There-
fore, the comparison of the two reactions might allow one to get a clearer picture
of the relative importance of the ONE and A-contributions.

The unpolarized pd — {pp}sn differential cross section was measured for
large neutron c.m. angles with respect to an incident proton beam which had
laboratory kinetic energies in the range 0.6 — 1.9 GeV [20]. The predominance
of the 1S, state was guaranteed by selecting diproton events with excitation
energy F,, < 3MeV. An analysis of these data was performed within a model,
originally suggested to describe the pd — dp reaction [12], that included one-
nucleon exchange (ONE) (Fig. 1,c), single pN scattering, and double scattering
with the excitation of the A-isobar [21]. This showed that the contribution of
the ONE mechanism in the Born approximation is actually quite small for a
wide range of commonly used NN potentials. Only for a soft NN potential,
such as that of CD Bonn [10], and with absorptions taken into account in the
initial and final states, can a qualitative agreement with data be achieved [21].
In the other extreme, harder NN potentials, e.g., the Paris [22] or especially the
Reid soft core [23], generate intense high-momentum components in the NN
wave functions and therefore lead to very large ONE contributions that are in
strong disagreement with the pd — {pp}sn data [20]. This is the most interesting
observation resulting from the pd — {pp}sn analysis of Ref. [21].

On the experimental side, the next step towards unravelling the dynamics
of the pd — {pp}sn reaction will be the measurement of the deuteron tensor
analyzing power T5o [24]. On the theoretical front, an important task is to study
other mechanisms that are less sensitive to high NN momentum components
than the ONE mechanism. A new and independent analysis of the pd — {pp}sn
dynamics has been made possible through the recent publication of data on the
pp — {pp}sm reaction [25].

In this paper we analyze the mechanisms of the pd — {pp}sn reaction that
are connected with two-step processes involving the creation and absorption of
pions in the intermediate state. The one-pion exchange (OPE) triangle diagram
depicted in Fig. 2, a, and here denoted as OPE-I, was initially invoked to describe
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Fig. 2. The one-pion exchange (OPE) mechanisms considered for the reactions pd — dp
(a,c) and pd — {pp}sn (b,d,e): OPE-1 — a,b; OPE-Il — ¢,d, e

the large angle pd — dp reaction [26]. Here the pd — dp cross section was
connected to that for the pp — dnt subprocess at the same beam energy. The
predictions of the model were found to be in qualitative agreement with the
data on the energy dependence of the pd backward elastic scattering about 0.5—
1.0 GeV. An important role of the OPE mechanism, through the p{NN} — *He
subprocesses, was also found in the reaction p°He — 3Hep at 0.5-1 GeV [27].
To apply the analogous mechanism of Fig. 2,b to the pd — {pp}sn reaction
we need to know the amplitudes for both pp — {pp}7® and pn — {pp}s7—.
At present, however, only the unpolarized cross section for pp — {pp}7® was
measured at 0.8 GeV [25]. In the absence of data on 7~ production, we have to
make assumptions about the pN — {pp},m mechanism in order to add coherently
the contributions from the pp — {pp}s7° and pn — {pp}s7~ subprocesses. The
models used in the present analysis are depicted in Fig. 3. We show in Sec. 2 that
the results of the calculation within OPE-I depends strongly on the mechanism
assumed.

Such an ambiguity does not, however, appear for mechanisms with the 7%d —
pn subprocess (Fig. 2, d and e), which we refer to as OPE-II and discuss in Sec. 3.



Due to time-reversal invariance, the predictions of OPE-I and OPE-II would be
the same for the unpolarized pd — dp cross section, though this identity does
not extend to the analyzing powers. However, to avoid double-counting, one
should never consider together the diagrams in Fig. 2,a and c, since they can be
but different approximations to the same underlying physics. We finally consider
in Sec.4 the role of baryon (or Reggeon) exchange in these reactions, that is
motivated in part by the results of the recent measurement of the pp — {pp}sﬂ'o
reaction [25]. Numerical results for the different models and the comparison with
experiment are presented in Sec.5 and our conclusions — in Sec. 6.

2. THE OPE-1 MECHANISM

In the OPE-I approach to the pd — {pp}sn reaction, the subprocess pN —
{pp}s7 is invoked but, as shown in Fig. 2, b, there are contributions with either
0 (A”O) or 7~ meson (A™ ) in the intermediate state. The coherent sum of
these diagrams depends on the relative contribution of the terms with total isospin
T =0 and T =1 in the pion-production amplitude pN — {pp}.7.

Using the mechanisms depicted in Fig. 3, and assuming isospin invariance,
we obtain the following results for the deuteron breakup amplitude:

gd*{PP}sn + A;dé{pp}sn =
QAZZé{pp}Sn, A in 7N rescattering, Fig. 3, a,
0
= —A;;d%{pp}m, N or N* in 7N rescattering, Fig. 3, b, 2.1
3Agdé{pp}sn, T = 1/2 baryon exchange in ¢-channel, Fig. 3, c.

pp ('So) pr (1S,) pp (1S0)
P

0

Fig. 3. Possible mechanisms for the pp — {pp}s7" reaction: a) A-isobar excitation in
1

7N rescattering, b) mN rescattering in the 7' = 5 state (nucleon or N* in the s-channel),
)T = % baryon (N, N*) or Reggeon exchange (BRE) in the ¢-channel

The evaluation of the A(pd — {pp}sn) amplitude of Fig. 2,b can be per-
formed using a similar treatment to that of Ref. [28] for the OPE diagram in



pd — dp (Fig. 2,a). The resulting c.m.s. differential cross section has the form
do OPET

a Dt s P Ba
dQ

! Pi Gr{pp} Spd m72r E72L

x{ 1202 + 12/ |

4m*F2(k2)  (2.2)

(pd — {pp}sn)

do

30 P — {pp}s7°),

where frnn is the TN N coupling constant with f2 /47 = 0.0796; m, and m
are the masses of the pion and the nucleon, respectively; k. is the four-momentum
of the virtual pion; Fynn(k2) = (A%2—m?2)/(A? —k2) is the 7NN form factor;
E,, is the total energy of the final neutron in the laboratory system; p; and py
are c.m.s. momenta in the initial and final states of the reaction pd — {pp}sn,
respectively; s;; is the squared invariant mass, and g;; is the relative momentum
in the system j + ¢. It is assumed that the cross sections on the left- and right-
hand sides of Eq. (2.2) are to be taken at the same beam energy and the c.m.s.
production angle of the neutron and ¥ are both equal to 180°. The beam energy
for the reaction pp — {pp}sm determines uniquely the values s, g,, and Ir{pp}
in Eq. (2.2).

The coefficient C; (j = a, b, c) depends on the mechanism of the NN —
{pp}sm reaction. Using Eq. (2.1) we find for the mechanisms depicted in Fig. 3, a,
b and c, respectively, C, = 1, C, =4 and C. = 9. The transition form factors
Zp, are defined through

Zy = klpalFo(pr) — i®10(pr,dr),
Zy = &lpalFa(pr) - % {\/5@32(1?1»51) - \/5@12(191751)}» (2.3)
where
) = i [ i) e (<o rar 2.4
Su(pr, o) = it /0 ey us (1)1 + ) exp (—or)dr, (2.5)

and ug(r) and wug(r) are the S- and D-state components of the deuteron wave
function, respectively, normalized as

4 /Oo[ug(r) +ud(r)] r?dr = 1. (2.6)
0

In Egs.(2.4) and (2.5) j; is the spherical Bessel function. Kinematical variables
are defined as

2 T? m2 m T, _ Pa
1= (B, /m)? E Entm PITE m

) 2.7



where E,, p, and T,, = E,, — m are the total energy, three-momentum, and
kinetic energy of the final neutron in the rest frame of the initial deuteron.

For the pd — dp reaction, the sum of the OPE-I amplitudes with the 7° and
7+ mesons in the intermediate state is A;“;% dp+Ag;; dp = SA;“;% dp> Independent
of the model for pion production, as found also in Ref [29]. Using this result with
Eq. (2.1), and neglecting the difference between the masses of the deuteron and
diproton, there is a relation between the c.m.s. cross sections of the pd — {pp}sn

and pd — dp reactions within the OPE-I model:

deg OPE dg OPE
 (pd=ippkn) = Rrx oo (pd — dp). (2.8)
The factor R; depends on the mechanism of pion production depicted in Fig. 3
through

4
57"7 Flg 3, a,
=¢1
Ry o7 Fig. 3,b, (2.9)
r, Fig. 3,c,
where r is the ratio
d d
r= S~ (b | Sen — e, .10

The cross sections in Eq. (2.10) are to be taken at the same beam energy and
scattering angle.

3. THE OPE-II MECHANISM

In the OPE-II approach, the deuteron breakup is driven by the 7d — pN
subprocess. The contribution of the diagram of Fig. 2, ¢ to pd backward elastic
scattering, as well as to the pd — {pp}sn reaction, were not considered in
Refs. [26,28,29]. We therefore analyze these amplitudes in greater detail.

3.1. The pd — {pp}sn Reaction. For the deuteron breakup reaction pd —
{pp}sn, we consider the sum of the two diagrams shown in Fig. 2,d and e. The
ppm® vertex function is

A —pin®) = Y <y o - Ql, > (7@ )2mPen (), GD)

s

where o and 7 are the Pauli matrices for spin and isospin, respectively; X,
is the Pauli spinor with v; being the z-projection of the spin of the ith proton



(i = 1,p); ¢, is the isospin state of the pion, and Q is the three-momentum
defined as

Ep+m — JE,+m [ Ep+m
Ep+mpp

2m
3.2
E, mpp)v (3.2)

with p;, F; being the momentum and total energy of the ith proton.
The half-off-shell pp scattering amplitude is (see, for example, Ref. [17])

Avis (P1p2 = {ppYs) = Nppam? < 470V (1)l > =
= —4m® N,y (11 La[00) 4 / Jolar) Vi (r) ) (v) 2, (33)
0

where v; and v, are the z-projections of the initial protons spins. In Eq. (3.3)
¢1(;) (r) is the pp scattering wave function that is the solution of the Schrédinger
equation with the interaction potential V' (1Sy) for a c.m.s. momentum |k|. It
satisfies the following asymptotic boundary condition:
(-) sin(kr + 9)
o) - B

where 4 is the 1Sy phase shift*. The combinatorial factor Ny, = 2 takes into
account the identity of the two protons.

The amplitude for the triangle diagram in Fig. 2,d is given by the following
four-dimensional integral:

i d*p1dTy
Atrlangle _ /
i(2m)4 X
> AP (p — mOp1) AP (70d — pn) Ay, (pp — {ppls)
(2m)2(m2 — k2 —ie)(p?/2m — Ty — ie)(p3/2m — Ty — ig)’

(3.4)

(3.5)

viva

where T;, p;, v; are the kinetic energy, three-momentum and z-projection of the
spin of the intermediate ith proton (i = 1,2), respectively. Closing the contour
of integration in the lower-half 7T plane, and taking into account the residue at
the point 7 = p%/?m — ig, one finds from Eq. (3.5) that

Atriangle _ N, d3p1 1 1 00
= N | Gos (5v1512/00) x
150 %5)
A — 7o) AL (1 — pn) < G [V(*So)la > m
(m2 — k2 — i) (@ — K —ic)

(3.6)

*For simplicity of presentation, we omit here the Coulomb interaction, though this is taken into
account in the actual numerical calculations.



The pole diagram with an intermediate 7° meson depicted in Fig. 2, e leads
to the following amplitude:

AZm 0 A”le’” 04
APOIC(pd—> {pp}sn) _ P (p - T pl) A (7T —>pn)

mZ k2 i  GD

where v,, and v, are the spin-projections of two final protons being in the 'Sy
state. There is another pole diagram with an intermediate 7= meson but this
can be safely neglected here because it does not lead to low energy pp pairs.
Making the coherent sum of the triangle and the properly antisymmetrized pole
amplitudes, given, respectively, by Eq. (3.6) and Eq. (3.7), we find

A(pd = {ppon) = ATy g

= Nppm—QmeNN(ki) Z(%V1%V2|00)AK2”” (7°d — pn) x

s
vive

y / *p1 < xul(@ - Qlxw, > ¥ ()

3.8
2m)? mZ — kZ — iz 3-8)
We have used here the Lippmann—Schwinger equation
()L
—)* : m <y |V (*So)|q >
v (@) = (21)203) (g — k) - i [V(So)la > (3.9)

q? — k2% —ic

The integral over p; in Eq. (3.8) can be evaluated in the rest frame of the
final diproton, where p; = q, in a similar way to that for the pd — dp reaction in
Ref. [28]. With this in mind, the kinematic variables QQ and the pion propagator

are rewritten as
E,+m
= — R
Q= py {(p1 — pr1) + R},
_ Py Ty

m
— R=—-—— 3.10
prr E,/m’ E, Ep—|—mpp’ (3.10)
E T2 m2
k2 o 4 _ 2 52 52 _ p ™
My m {(pl pII) + II}? II (Ep/m)2 +Ep/m7

where E,,, p, and T}, = E, —m are the total energy, three-momentum and kinetic
energy of the initial proton in the rest frame of the final diproton.

The reaction pd — {pp}sn was measured in Ref. [20] with a cut-off in
the pp excitation energy of E* = 3MeV. Defining the corresponding maximum
relative momentum through ks = /m EDX, the c.m.s. differential cross section



becomes [17]

d 1 pf /kmax k2
d— =L dk——— x
ao. (pd — {pp}sn) = @5 p Jy sy 112

1
< / d [A(pd — {pp}an)®

The factor of 1/2 in front of the angular integration in Eq. (3.11) takes into
account the identity of two final protons.

We choose the reference frame where the final diproton is at rest and let the
quantization axis OZ lies along the direction of the initial proton p,. In this
frame only the longitudinal (¢ = 0) components of the vectors pyr and R are
nonzero. Thus the spin-averaged squared amplitude of the pd — {pp}sn reaction
can be written in the following factorized form:

(3.11)

f‘n'NN

[Avangle | Apole[2  — |Nm, S om Fov (k)

s

Q*=9 (=) 2 73
|| oo (@) A= P G2
where |A(70d — pn)|? is the spin-averaged squared amplitude of the 7°d — pn
reaction. This factorization is a consequence of the simple spin structure of the
diproton vertex pp — {pp}s.

For the 19 final state, | A(pd — {pp}sn)|? does not depend upon the direction
of the proton momentum k in the diproton rest frame, so that the integration over
dQy merely gives a 4m factor. The cross section can be finally written as

dog O L pr dpn Spn [ frnN 2
d _— _frdpn ?pn /T 2mF, L2
e R q,rds,,d[ N om ey (2)]
Kmax k2
dk 1 dr”). (3.13
X/O \/m| (p117 II)| dQ(an 7T) ( )

The form factor J,,, is defined through
d Ly
Jpp(p11,011) = / ( k Q -

27)3 k2 —m2 +ic ¥

E,+m m
_\/7}3 {RFO(p”"sH)—pr@ip(pu,én)}, (3.14)

Foz/ drrjo(pnr)exp(—éur)wk_ (r), (3.15)
0

P (prr,0r1) :i/ dr(0rrr + 1)j1(prrr) exp{—=drr} 1/’1(:)*(1')7 (3.16)
0

where the kinematic variables R, pys, d;; are determined by Eq. (3.10).



3.2. The pd — dp Reaction. The OPE-II diagram for the reaction pd — dp,
depicted in Fig. 2, c, includes two contributions corresponding to 7 (A™*) and
70 (A%) in the intermediate state. Using isospin invariance, the coherent sum of
these diagrams is equivalent to that with 7° multiplied by an isospin factor of 3:
AT+ AY =34°.

For the pn — d vertex one has

2 *
A (pn — d) = —4my/m (e + %) o (a), (3.17)

UplUn

where ¢ is the deuteron binding energy and ¢,7 "(q) is the deuteron wave
function in momentum space

G @) = Y (3 i [IMe)(LML1Ms|1N) Yoar, (@) ur(q), (3.18)
LMy Mg

with Clebsh—Gordan coefficients and spherical harmonics in standard notations
and uo(q) and ua(q) being, respectively, the S- and D-state components. This is
normalized as

1 &g o Y dg _
P [ et @l = [ i + o] e gk = 1.

The total pd — dp transition amplitude becomes

v\ T
AVZ/\ = 3fWILVNF7TNN(k72T)2m Z \/g(llu%yp%yl) X
T vi,V2, 14
d’q Q" v vav,
/ @B I m2 T (@A (n0d = pn), - (3.19)

where v, (v,) and A (\') are the spin projections of the initial (final) proton and
deuteron. The integral over the internal momentum of nucleon in the deuteron g
is evaluated in the rest frame of the final deuteron. It there takes the form

. d3q Qu (IDKIVZ (q)*
Tep.0) = / (2m)3 k2 — m2 + ie B

. E, +m m i o .
— \/7}% {R Fo(p, 9) zppcblL(p,é)}, (3.20)

where the quantization axis is chosen to lie along p,. The kinematical variables
Q. p and 0 come from Egs. (3.10) for the variables Q, pr; and &;7, with E,

pp and T}, being replaced, respectively, by the total energy Ep = ,/m?+ f)f,,

10



three-momentum Py, and kinetic energy Tp = Ep — m of the initial proton in
the rest frame of the final deuteron. The form factors F;, and ®;; are defined by
Egs. (2.4) and (2.5).

Finally, the c.m.s. pd — dp differential cross section is predicted to be

do OPE-II

dQ

2
(pd — dp) = 9[fﬂNN2\/ﬁFﬂNN(kfr)} Zpn Ipn
Lz Spd qrnd

<GP + 155 } o — dx). - G2
For backward proton—deuteron elastic scattering, the pn — dr® cross section is
also to be taken for a similar forward-going deuteron. One can find that Eq. (3.21)
coincides with Eq. (1) of Ref. [29]. Thus the OPE-II and OPE-I models give the
same formula for the unpolarized pd — dp cross section, as required.

On the basis of Egs. (3.13) and (3.21), we can find the following factor
relating the pd — {pp}sn and pd — dp differential cross sections to be compared
to that in Eq. (2.8):

m kmax k

R = 2772 0 /mg )

X | @ (prr,0r1)| /I@w 5,0)%  (3.22)

where the integrals ®¢,(p, ) and ® (psr, dy;) are determined by Eqgs. (2.5) and
(3.16), respectively. Approximating the integral in Eq. (3.22) by using the value
of the integrand at F,, = E7%* /2, one can rewrite the equation as

2 k3 ‘I’Bp pir,orr)|?
Ry~ o ol iy (3.23)
767 m |‘I’10(p, )|

In the derivation of R;; we have neglected the contribution of the deuteron
D-state component and the form factor F7,, which is included in the numerical
evaluations.

The origins of the different terms in Eq. (3.23) are easy to understand. To
obtain Eq. (3.21) from (3.13) one needs to make the following replacements:
Q) 1/11((_)(1“) — a(r)/+/m; (ii) multiply by the ratio of the isospin and com-
binatorial factors 9/ (N72,/2) = 9/2; (iii) multiply by the spin factor of three;
(iv) multiply by the factor 472, which arises from the difference between three-
and two-body phase spaces; (v) divide by the factor

Kmax k2 k?’
Ay ik ' (3:24)
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4. THE EXCHANGE OF BARYONS WITH T = % IN THE ¢-CHANNEL

The baryon exchange (BE) amplitude for pd — {pp}sn of Fig. 4,¢ can be
written as

AKNUW (d — pN*)AVpVN (pN* — {pp}S)

APE(pd n) = 4.1
(pd — {pp}n) = R —— RENCRY
VN
where mpy- is the mass of the exchanged baryon, t = (pg — pn)? is the

four-momentum transfer, and A, ,,(pN* — {pp}s) and AN""(d — pN*)
are the amplitudes of the subprocesses pN* — {pp}; and the vertex d —
pIN*, respectively. Whereas the case of one-nucleon exchange can be found in
Refs. [17,18,21], the formalism for N* with higher spins was studied in Ref. [30],
where a good fit to the cross section data on the pd — dp and pp — dr reactions
was obtained for beam energies T), > 1 GeV.

pp (1So) pp (So)

P p d p p d
RN i RN RN i RN i
p 20 n 70 d n d P
a b c d

Fig. 4. The exchange of baryons with isospin 7" = % (N, N*, and Reggeon) in the
t-channel of the pp — {pp}s7°, pn — dr°, pd — {pp}sn and pd — dp reactions

For our present purposes, the main features of the BE mechanism are (i) its

isospin structure with 7" = % in the t-channel, and (ii) the factorized residue of
the amplitude. The same features are present in the Reggeon mechanism, where

the transition amplitude is given by

As, 1) = F(t)(i)w(t) exp [~i7 (aN(t) - 1)} 42)
S0 2 2
where ay(t) is the nucleon Regge trajectory. The residues of the Regge am-
plitudes F(¢) can be factorized into products of terms coming from the upper
and lower vertices of Fig. 4. Therefore, within the baryon or Reggeon exchange
(BRE) model, one obtains the following relation between the c.m.s. cross sec-
tions:

do PRE (do/dQ) (pp — {pp}s7®) _ doPRE

T (pd — {pp}sn) = o /d0) (o — dn0) < a0 (pd — dp). (4.3)

Here the cross sections, within the BRE model of Fig. 4, are taken at the same
four-momentum transfer ¢ for all reactions and at s = s, ~ s, for the pn — dr"
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and pp — {pp}s7® and s = s, for the pd — {pp}sn and pd — dp reactions.
When deriving this relation we assume that the ¢-dependence of the vertices is
smooth. Formally, Eq. (4.3) coincides with Eq. (2.8) with R; = 1.

S. RESULTS AND DISCUSSION

5.1. The OPE-II Model. The results of our calculations are shown in Figs. 5
and 6. For the pd — dp differential cross section, the OPE-I and OPE-II ap-
proaches give identical results and they reproduce the observed shoulder in the
energy dependence in the T}, = 0.5 — 0.7 GeV region, which is caused by virtual
A-excitation [12-14,21,26]. At higher energies, 7, > 1 GeV, the OPE cross
section falls faster than the data. The calculated cross sections increase very
slowly with increasing cut-off parameter A in the TN N vertex.

The OPE-II model for pd — {pp}sn is in reasonable agreement with the
experimental data below 1 GeV, being best at about 0.8 GeV. It is interesting

L 10T E
< £
=
=
% 102 ? 3
'% [
10 F 4
1 o o -
10
102 F 3
1073 S T IR U
0.5 1 1.5 2 2.5 3
T,, GeV

Fig. 5. The differential cross sections for pd — dp at 6cm = 180° and pd — {pp}sn
averaged over O = 166° — 180° versus the proton beam energy compared with the
predictions of the OPE-II model for different values of the cut-off parameter: A = 1 GeV/c
(solid line), 0.8 (dashed-dotted line), 0.65 GeV/c (dashed line). The cross section of the
pn — dr° reaction is taken from the SAID SP96 solution [31]. Data for pd — {pp}sn
and pd — dp are those of Ref. [20] and [32-34], respectively
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do/d<2,,, ub/sr

ptd=(pp)+tn

1071 £

103 .
3
§ Tp, GeV

Fig. 6. Differential cross section for the pd — {pp}sn reaction [20]. The solid thick curve
shows the OPE-II results for A = 1 GeV/c. The predictions [21] of the ONE(DWBA)
mechanism with the CD Bonn potential are shown by the dashed (Born approximation) and
dotted (with distortions) curves. The coherent sum of the OPE-II and the ONE(DWBA)
is shown by the thin solid line

to note that at this energy and 6., = 180° the ONE mechanism vanishes due
to a repulsive core in the NIV interaction, as illustrated in Fig. 6 [21]. As a
result, double scattering with the excitation of the A(1232)-isobar was found to
be dominant in this region. Since pn — dn¥ is also A-dominated in this region,
the agreement between the OPE-II model and the pd — {pp}sn data seems largely
to confirm the results of Ref. [21]. Furthermore, at this kinematic point the ONE
amplitude changes sign, as does the ONE-OPE interference.

Outside this region, the ONE mechanism gives a sizable contribution [18,21],
which suggests that the disagreement between the data and the OPE-II model away
from T}, ~ 0.8 GeV may be connected with the ONE contribution. In Fig. 6 we
show the ONE (DWBA) contribution taken from Ref. [21] and its coherent sum
with the OPE contribution, with the relative sign being chosen to get the best
agreement with the data [20]*.

*We are implicitly assuming here that ONE is negligible in the physical 79d — pn amplitude.
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Above 1 GeV, the cross section for the pd — {pp}sn reaction calculated in
the OPE-II model falls faster than the data with increasing energy. In this model
the energy slope for both this and the pd — dp reaction is determined mainly
by the energy dependence of the cross section of the pn — dn reaction; other
kinematic factors and form factors are very smooth functions of the beam energy.
As a result, the ratio of diproton to deuteron formation is practically indepen-
dent of T,

As explained in Subsec.3.2, the strong preference for deuteron formation
within the OPE-II mechanism is the result of several considerations, including
spin—isospin, combinatorial, phase space factors as well as the ratio of form factors
in Eq. (3.22). For a maximum diproton excitation energy of Ej7* = 3MeV and
beam energy in the interval 0.6 — 1.9 GeV, Egs. (3.22), (3.23) predict a ratio of
Rrr = 0.016 — 0.013, which is in qualitative agreement with the experimental
value R**P = 0.010 — 0.011 [20].

In contrast to the OPE-II model, within the OPE-I formalism of Eq. (2.9) the
small magnitude of the ratio R; follows mainly from the small ratio of the cross
sections of the pp — {pp}s7° and pn — dr reactions, as seen from Ref. [25] at
0.8 GeV. Results within this approach will remain ambiguous until there is more
information on the pn — {pp}s7~ amplitude.

5.2. The OPE-I and BRE Models. At present the OPE-I approach can
only be compared with the pd — {pp}sn data at 0.8 GeV, where results on the
pp — {pp}s7° have recently appeared [25]. Assuming that the BRE mechanism
of Fig. 3, ¢ dominates the pN — {pp},m amplitude at this energy, we find from
Eq. (2.8) a value of the pd — {pp}sn differential cross section of 0.7ub/sr,
which is in good agreement with the data [20]. On the other hand, if the
A-isobar mechanism dominates pion production at 0.8 GeV [35], then the OPE-I
approach falls too low by the factor of two. Graphs with an intermediate N*, as
in Fig. 3, b, would make the underestimate the factor of nine.

If the BRE mechanism is indeed important for the pp — {pp}s7° reaction at
0.8 GeV, one should analyze the role of this mechanism also in the pn — dmY,
pd — {pp}sn and pd — dp reactions. Using the pp — {pp}sm° data [25]
and the SAID SP96 solution [31] for the pn — dn® reaction, we find from
Eq. (4.3) that the BRE model also predicts the same value of 0.7 ub/sr for the
pd — {pp}sn cross section. Within the Reggeon model, the small magnitude
of the pd — {pp}sn cross section, as compared to the pd — dp, should be
considered as a consequence of the relative sizes of the residue functions at the
pRn{pp} and pRyd vertices.

In order to get more insight into dynamics of the pd — {pp}sn and pp —
{pp}s7" reactions one has to discriminate between the BRE and the A-isobar
mechanism of the reaction pp — {pp}s7° at 0.8 GeV (and higher energies).
For this purpose it is important to measure the unpolarized cross section of the
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pn — {pp}sm~ reaction since
do do, _ 2, A-mechanism,
q™ ) q ) = . (5.1)
dQ dQ 1/2, T =1/2 exchange in the ¢-channel.

5.3. The Reggeon Mechanism and Constituent-Quark Counting Rules.
We have shown that the OPE-II model can explain the similarity in the energy
dependence of the pd — dp and pd — {pp}sn cross sections but underestimates
both of their overall values at T, = 1 —2 GeV. It was argued that this discrepancy
might be due to contributions from ONE or baryon (Reggeon) exchanges. If the
latter is true, it would mean that the effective degrees of freedom in these reactions
are non-nucleonic. In this connection it is interesting to check whether the
constituent-quark counting rules (CCR) [36,37] can be applied to these reactions.
A scaling behaviour related to the CCR was observed in the yd — pn reaction at
photon beam energy 1-4 GeV (see Refs. [38,39] and references therein). Recently
the CCR behaviour was found also in the pd — dp and dd — >Hp reactions in the
GeV energy region at large scattering angles [40]. This suggests that one might

L B B B B B
5 103 E ¥ E
E z
C:= %f@:«( 7
"\g 102 £ @:Q ptd—=d+p E
< 5 ©. 1
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[ 0. ]
10 & O -
E ®. 3
£ O '..Q B
Q. ]
. ]
°

1E © o O o -
] L E|
. z
I ptd=(pp)+n )
10 f-. E
102 £ E

103 . L L L TR N
0.5 1 1.5 2 2.5 3

T,, GeV

Fig. 7. Differential cross sections for the pd — dp and pd — {pp}sn reactions as shown in

Fig. 5. The dash-dotted lines give the results of fitting the data within the CCR approach

of Eq. (5.2), where the invariant cross section behaves as ((11—;’ = const - s 129
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usefully search for a similar CCR behaviour in the pd — dp and pd — {pp}n
reactions, at least in the region between the A(1232) and A(1920) resonances,
say, between 1 and 2 GeV.

According to the CCR hypothesis, the energy dependence of the invariant
cross sections can be parameterized as

do m do 1

= = = — f(fem), 5.2
P et () (5.2)

where the function f(6.,) does not depend on energy and n + 2 is the sum
of all active point-like constituents in the initial and final states. Our fit to the
data shown in Fig. 7 gives n = 12.9 for both the pd — {pp}sn and pd — dp
reactions, whereas CCR would suggest that n =3 +6 +3 +6 —2 = 16. One
would therefore require significant diquark configurations in order to get better
numerical agreement.

6. CONCLUSIONS

The present analysis shows that there are close connections between the
different reactions which lead to diproton formation in the final state in pd and pN
collisions. However, the actual relation depend on the reactions mechanisms. We
found that the predictions of the OPE-II model, which is based on the 70d — pn
subprocess, are quite close to the pp — {pp}sn deuteron breakup data. This
model allows us to explain the absolute value of the pd — {pp}sn cross section at
Ocm =~ 180° in the A-isobar region 0.6 — 0.9 GeV as well as its energy dependence.
It also describes the small value of the ratio R = do(pd — {pp}sn)/do(pd — dp)
in the whole interval 0.6 — 1.9 GeV of measurement reported in Ref. [20].

The agreement points to an important contribution coming from the A-isobar
below 1 GeV, which enters via the 7°d — pn subprocess but, on the other hand,
suggests that the ONE mechanism is relatively unimportant. To large extent,
these conclusions are compatible with the results of the previous analysis of this
reaction, performed on the basis of a different model [21]. The minor role found
for the ONE contribution sheds some light on the 7o puzzle, discussed in the
Introduction, which is entirely based on the assumption that the ONE mechanism
dominates the large momentum-transfer pd reactions.

There is as yet insufficient information to describe the pd — {pp}.n data
unambiguously within the OPE-I model. However, if we assume the dominance
of T = 1/2 exchange in the pN — {pp},m amplitude, as given, for example,
by baryon or Reggeon exchange, then a satisfactory description can be achieved.
Much of this ambiguity will be removed once data are available from the forth-
coming measurements of the cross sections for pp — {pp}s7° and pp — {pp}s7~
at 6. =~ 0° in the 1-2 GeV region [41].
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