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Œ¥Ì ´¨§³Ò μ¡· §μ¢ ´¨Ö ¤¨¶·μÉμ´´ÒÌ 1S0-¶ ·, {pp}s, ¢ ·¥ ±Í¨¨ pd →
{pp}sn ¨¸¸²¥¤μ¢ ´Ò ¶·¨ Ô´¥·£¨ÖÌ ¶·μÉμ´´μ£μ ¶ÊÎ±  0,5Ä2 ƒÔ‚ ¢ ±¨´¥³ É¨±¥,
¡²¨§±μ° ± Ê¶·Ê£μ³Ê pd-· ¸¸¥Ö´¨Õ ´ § ¤. � ¸¸³ É·¨¢ ¥³ Ö ·¥ ±Í¨Ö ¤ ¥É ¢ ¦´ÊÕ
´¥§ ¢¨¸¨³ÊÕ ¨´Ëμ·³ Í¨Õ μ ±μ·μÉ±μ¤¥°¸É¢ÊÕÐ¥³ NN - ¨ pd-¢§ ¨³μ¤¥°¸É¢¨ÖÌ
¨ ¸ÊÐ¥¸É¢¥´´μ ¤μ¶μ²´Ö¥É ·¥§Ê²ÓÉ ÉÒ ¨¸¸²¥¤μ¢ ´¨° Ìμ·μÏμ ¨§¢¥¸É´ÒÌ ¶·μÍ¥¸-
¸μ¢ pd → dp ¨ dp → p(0◦)X . �¥ ±Í¨Ö pd → {pp}sn ¸¢Ö§ ´  ¸ ¶μ¤¶·μÍ¥¸¸ ³¨
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·¥Î´ÒÌ ¸¥Î¥´¨° ·¥ ±Í¨° pd → {pp}sn ¨ pd → dp ¨ ³ ²μ¸ÉÓ μÉ´μÏ¥´¨Ö ¢ÒÌμ¤ 
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Dynamics of 1S0 Diproton Formation
in the pd → {pp}sn and pN → {pp}sπ Reactions in the GeV Region

Mechanisms for the production of 1S0 diproton pairs, {pp}s, in the pd → {pp}sn
reaction are studied at proton beam energies 0.5Ä2 GeV in kinematics similar to
those of backward elastic pd scattering. This reaction provides valuable independent
information on the short-range NN and pd interactions, which is complementary
to that investigated in the well-known pd → dp and dp → p(0◦)X processes. The
pd → {pp}sn reaction is related to the subprocesses π0d → pn and pN → {pp}sπ
using two different one-pion exchange (OPE) diagrams. Within these models a
reasonable agreement is obtained with the data below 1 GeV. The similar energy
dependence of the pd → {pp}sn and pd → dp cross sections and the small ratio of
≈ 0.015 in the production of {pp}s to deuteron ˇnal states follow naturally within
the OPE models.

The investigation has been performed at the Dzhelepov Laboratory of Nuclear
Problems, JINR.
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1. INTRODUCTION

There is a long-standing problem connected with understanding the mecha-
nism of protonÄdeuteron backward elastic scattering at energies above 0.5 GeV.
This can be formulated as follows. Except in the Δ-isobar region of 0.4−0.6 GeV,
the unpolarized differential cross section dσ/dΩ(pd → dp)θcm=180◦ can be ex-
plained qualitatively within the impulse approximation (IA) up to large nucleon
momenta in the deuteron q ≈ 1 GeV/c, whereas the experimental values of the
tensor analyzing power T20 are in strong contradiction to the IA calculations al-
ready for q > 0.3 GeV/c [1Ä3]. Here IA means the one-nucleon exchange (ONE)
mechanism of Fig. 1, a which, if it dominated the unpolarized cross section, would
allow one to measure directly the high-momentum components in the deuteron
wave functions.

Fig. 1. The one-nucleon exchange (ONE) mechanisms of the reactions: a) pd → dp,
b) dA → p(0◦)X, and c) pd → {pp}sn

A very similar problem arises in the analysis of the inclusive disintegration
of the deuteron on nuclear targets, dA → p(0◦)X , when the ONE mechanism of
Fig. 1, b is used to describe the process [4Ä6]. In contrast, the tensor polarization
t20 of the recoil deuteron in elastic electronÄdeuteron scattering follows very well
the IA predictions [7] up to very high transferred momenta Q = 1.3 GeV/c, i.e.,
at q ∼ Q/2 = 0.65 GeV/c, if realistic phenomenological NN potentials [8Ä10]
are used to describe the deuteron within the Schréodinger equation. Corrections
from meson-exchange currents are sizable, but do not change the picture quali-
tatively [11]. We must conclude that in exclusive and inclusive pd collisions at
high transferred momenta we are dealing, not only with the short-range structure
of the deuteron, but also with the speciˇc dynamics of the pd interaction and that
these dynamics are entirely different from those in the ed → ed process.
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The above contradictions, referred to as the T20-puzzle, can be ascribed, in
part, to contributions from the excitation of nucleon isobars (Δ, N∗) in the inter-
mediate state, which were neglected within the IA analysis [1Ä6]. For example,
the Δ-mechanism seems to dominate the large angle unpolarized pd → dp cross
section in the 0.4Ä0.6 GeV interval [12Ä14]. However, the spin structure of the
three-body forces related to the Δ-isobar is far from being well established [15].
This therefore leads to ambiguities in any explanation of T20 when the Δ-isobar
is included in the transition amplitude [12Ä14]. It was suggested that, in order
to clarify the role of the Δ-isobar, the pd → {pp}sn reaction should be stud-
ied [16Ä18]. Due to isospin invariance, the Δ-mechanism is suppressed by a
factor of nine in the pd → {pp}sn cross section as compared to that of pd − dp,
whereas the ONE mechanism does not suffer a similar suppression [19]. There-
fore, the comparison of the two reactions might allow one to get a clearer picture
of the relative importance of the ONE and Δ-contributions.

The unpolarized pd → {pp}sn differential cross section was measured for
large neutron c.m. angles with respect to an incident proton beam which had
laboratory kinetic energies in the range 0.6 − 1.9 GeV [20]. The predominance
of the 1S0 state was guaranteed by selecting diproton events with excitation
energy Epp < 3MeV. An analysis of these data was performed within a model,
originally suggested to describe the pd → dp reaction [12], that included one-
nucleon exchange (ONE) (Fig. 1, c), single pN scattering, and double scattering
with the excitation of the Δ-isobar [21]. This showed that the contribution of
the ONE mechanism in the Born approximation is actually quite small for a
wide range of commonly used NN potentials. Only for a soft NN potential,
such as that of CD Bonn [10], and with absorptions taken into account in the
initial and ˇnal states, can a qualitative agreement with data be achieved [21].
In the other extreme, harder NN potentials, e.g., the Paris [22] or especially the
Reid soft core [23], generate intense high-momentum components in the NN
wave functions and therefore lead to very large ONE contributions that are in
strong disagreement with the pd → {pp}sn data [20]. This is the most interesting
observation resulting from the pd → {pp}sn analysis of Ref. [21].

On the experimental side, the next step towards unravelling the dynamics
of the pd → {pp}sn reaction will be the measurement of the deuteron tensor
analyzing power T20 [24]. On the theoretical front, an important task is to study
other mechanisms that are less sensitive to high NN momentum components
than the ONE mechanism. A new and independent analysis of the pd → {pp}sn
dynamics has been made possible through the recent publication of data on the
pp → {pp}sπ0 reaction [25].

In this paper we analyze the mechanisms of the pd → {pp}sn reaction that
are connected with two-step processes involving the creation and absorption of
pions in the intermediate state. The one-pion exchange (OPE) triangle diagram
depicted in Fig. 2, a, and here denoted as OPE-I, was initially invoked to describe
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Fig. 2. The one-pion exchange (OPE) mechanisms considered for the reactions pd → dp
(a, c) and pd → {pp}sn (b, d, e): OPE-I Å a, b; OPE-II Å c, d, e

the large angle pd → dp reaction [26]. Here the pd → dp cross section was
connected to that for the pp → dπ+ subprocess at the same beam energy. The
predictions of the model were found to be in qualitative agreement with the
data on the energy dependence of the pd backward elastic scattering about 0.5Ä
1.0 GeV. An important role of the OPE mechanism, through the p{NN} → 3He π
subprocesses, was also found in the reaction p 3He → 3Hep at 0.5Ä1 GeV [27].
To apply the analogous mechanism of Fig. 2, b to the pd → {pp}sn reaction
we need to know the amplitudes for both pp → {pp}sπ0 and pn → {pp}sπ−.
At present, however, only the unpolarized cross section for pp → {pp}sπ0 was
measured at 0.8 GeV [25]. In the absence of data on π− production, we have to
make assumptions about the pN → {pp}sπ mechanism in order to add coherently
the contributions from the pp → {pp}sπ0 and pn → {pp}sπ− subprocesses. The
models used in the present analysis are depicted in Fig. 3. We show in Sec. 2 that
the results of the calculation within OPE-I depends strongly on the mechanism
assumed.

Such an ambiguity does not, however, appear for mechanisms with the π0d →
pn subprocess (Fig. 2, d and e), which we refer to as OPE-II and discuss in Sec. 3.

3



Due to time-reversal invariance, the predictions of OPE-I and OPE-II would be
the same for the unpolarized pd → dp cross section, though this identity does
not extend to the analyzing powers. However, to avoid double-counting, one
should never consider together the diagrams in Fig. 2, a and c, since they can be
but different approximations to the same underlying physics. We ˇnally consider
in Sec. 4 the role of baryon (or Reggeon) exchange in these reactions, that is
motivated in part by the results of the recent measurement of the pp → {pp}sπ0

reaction [25]. Numerical results for the different models and the comparison with
experiment are presented in Sec. 5 and our conclusions Å in Sec. 6.

2. THE OPE-I MECHANISM

In the OPE-I approach to the pd → {pp}sn reaction, the subprocess pN →
{pp}sπ is invoked but, as shown in Fig. 2, b, there are contributions with either

π0 (Aπ0
) or π− meson (Aπ−

) in the intermediate state. The coherent sum of
these diagrams depends on the relative contribution of the terms with total isospin
T = 0 and T = 1 in the pion-production amplitude pN → {pp}sπ.

Using the mechanisms depicted in Fig. 3, and assuming isospin invariance,
we obtain the following results for the deuteron breakup amplitude:

Aπ0

pd→{pp}sn + Aπ−

pd→{pp}sn =

=

⎧⎪⎨
⎪⎩

2Aπ0

pd→{pp}sn, Δ in πN rescattering, Fig. 3, a,

−Aπ0

pd→{pp}sn, N or N∗ in πN rescattering, Fig. 3, b,

3Aπ0

pd→{pp}sn, T = 1/2 baryon exchange in t-channel, Fig. 3, c.

(2.1)

Fig. 3. Possible mechanisms for the pp → {pp}sπ0 reaction: a) Δ-isobar excitation in
πN rescattering, b) πN rescattering in the T = 1

2
state (nucleon or N∗ in the s-channel),

c) T = 1
2

baryon (N, N∗) or Reggeon exchange (BRE) in the t-channel

The evaluation of the A(pd → {pp}sn) amplitude of Fig. 2, b can be per-
formed using a similar treatment to that of Ref. [28] for the OPE diagram in

4



pd → dp (Fig. 2, a). The resulting c.m.s. differential cross section has the form

dσ

dΩ

OPE-I

(pd → {pp}sn) = Cj
pf

pi

qpp

qπ{pp}

spp

spd

f2
πNN

m2
π

En + m

E2
n

4m2F 2
π (k2

π) (2.2)

×
{
|Z0|2 + |Z2|2

} dσ

dΩ
(pp → {pp}sπ0),

where fπNN is the πNN coupling constant with f2
πNN/4π = 0.0796; mπ and m

are the masses of the pion and the nucleon, respectively; kπ is the four-momentum
of the virtual pion; FπNN (k2

π) = (Λ2 −m2
π)/(Λ2 − k2

π) is the πNN form factor;
En is the total energy of the ˇnal neutron in the laboratory system; pi and pf

are c.m.s. momenta in the initial and ˇnal states of the reaction pd → {pp}sn,
respectively; sij is the squared invariant mass, and qij is the relative momentum
in the system j + i. It is assumed that the cross sections on the left- and right-
hand sides of Eq. (2.2) are to be taken at the same beam energy and the c.m.s.
production angle of the neutron and π0 are both equal to 180◦. The beam energy
for the reaction pp → {pp}sπ determines uniquely the values spp, qpp and qπ{pp}
in Eq. (2.2).

The coefˇcient Cj (j = a, b, c) depends on the mechanism of the NN →
{pp}sπ reaction. Using Eq. (2.1) we ˇnd for the mechanisms depicted in Fig. 3, a,
b and c, respectively, Ca = 1, Cb = 4 and Cc = 9. The transition form factors
ZL are deˇned through

Z0 = κ|pn|F0(pI) − iΦ10(pI , δI),

Z2 = κ|pn|F2(pI) −
i√
5

[√
3Φ32(pI , δI) −

√
2Φ12(pI , δI)

]
, (2.3)

where

FL(pI) = iL
∫ ∞

0

jL(pIr)uL(r) exp (−δIr) r dr, (2.4)

ΦlL(pI , δI) = il
∫ ∞

0

jl(pIr)uL(r)(1 + δIr) exp (−δIr) dr, (2.5)

and u0(r) and u2(r) are the S- and D-state components of the deuteron wave
function, respectively, normalized as

4π

∫ ∞

0

[u2
0(r) + u2

2(r)] r
2dr = 1. (2.6)

In Eqs. (2.4) and (2.5) jl is the spherical Bessel function. Kinematical variables
are deˇned as

δ2
I =

T 2
n

(En/m)2
+

m2
π

En/m
, κ = − m

En

Tn

En + m
, pI =

pn

En/m
, (2.7)
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where En, pn and Tn = En − m are the total energy, three-momentum, and
kinetic energy of the ˇnal neutron in the rest frame of the initial deuteron.

For the pd → dp reaction, the sum of the OPE-I amplitudes with the π0 and
π+ mesons in the intermediate state is Aπ0

pd→dp+Aπ+

pd→dp = 3Aπ0

pd→dp, independent
of the model for pion production, as found also in Ref [29]. Using this result with
Eq. (2.1), and neglecting the difference between the masses of the deuteron and
diproton, there is a relation between the c.m.s. cross sections of the pd → {pp}sn
and pd → dp reactions within the OPE-I model:

dσ

dΩ

OPE-I

(pd → {pp}sn) = RI ×
dσ

dΩ

OPE-I

(pd → dp). (2.8)

The factor RI depends on the mechanism of pion production depicted in Fig. 3
through

RI =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4
9
r, Fig. 3, a,

1
9
r, Fig. 3, b,

r, Fig. 3, c,

(2.9)

where r is the ratio

r =
dσ

dΩ
(pp → {pp}sπ0)

/
dσ

dΩ
(pn → dπ0). (2.10)

The cross sections in Eq. (2.10) are to be taken at the same beam energy and
scattering angle.

3. THE OPE-II MECHANISM

In the OPE-II approach, the deuteron breakup is driven by the πd → pN
subprocess. The contribution of the diagram of Fig. 2, c to pd backward elastic
scattering, as well as to the pd → {pp}sn reaction, were not considered in
Refs. [26,28,29]. We therefore analyze these amplitudes in greater detail.

3.1. The pd → {pp}sn Reaction. For the deuteron breakup reaction pd →
{pp}sn, we consider the sum of the two diagrams shown in Fig. 2, d and e. The
ppπ0 vertex function is

Aν1
νp

(p → p1π
0) =

fπNN

mπ
< χν1 |σ ·Q|χνp > (τ · φπ)2mFπNN (k2

π), (3.1)

where σ and τ are the Pauli matrices for spin and isospin, respectively; χνi

is the Pauli spinor with νi being the z-projection of the spin of the ith proton
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(i = 1, p); φπ is the isospin state of the pion, and Q is the three-momentum
deˇned as

Q =

√
Ep + m

Ep1 + m
p1 −

√
Ep1 + m

Ep + m
pp ≈

√
Ep + m

Ep1 + m
(p1 −

2m

Ep + m
pp), (3.2)

with pi, Ei being the momentum and total energy of the ith proton.
The half-off-shell pp scattering amplitude is (see, for example, Ref. [17])

Aν1ν2(p1p2 → {pp}s) = Npp 4m2 < ψ
(−)
k |V (1S0)|q > =

= −4m2Npp(1
2ν1

1
2ν2|00) 4π

∫ ∞

0

j0(qr)Vs(r)ψ
(−)
k (r) r2dr, (3.3)

where ν1 and ν2 are the z-projections of the initial protons spins. In Eq. (3.3)

ψ
(−)
k (r) is the pp scattering wave function that is the solution of the Schréodinger

equation with the interaction potential V (1S0) for a c.m.s. momentum |k|. It
satisˇes the following asymptotic boundary condition:

ψ
(−)
k (r) → sin(kr + δ)

kr
, (3.4)

where δ is the 1S0 phase shift∗. The combinatorial factor Npp = 2 takes into
account the identity of the two protons.

The amplitude for the triangle diagram in Fig. 2, d is given by the following
four-dimensional integral:

Atriangle =
∫

d3p1dT1

i(2π)4
×

×
∑
ν1ν2

Aν1
νp

(p → π0p1)Aν2νn

λ (π0d → pn)Aν1ν2(pp → {pp}s)
(2m)2(m2

π − k2
π − iε)(p2

1/2m− T1 − iε)(p2
2/2m− T2 − iε)

, (3.5)

where Ti, pi, νi are the kinetic energy, three-momentum and z-projection of the
spin of the intermediate ith proton (i = 1, 2), respectively. Closing the contour
of integration in the lower-half T1 plane, and taking into account the residue at
the point T1 = p2

1/2m− iε, one ˇnds from Eq. (3.5) that

Atriangle = −Npp

∫
d3p1

(2π)3
∑
ν1ν2

(1
2ν1

1
2ν2|00) ×

×
Aν1

νp
(p → π0p1)Aν2νn

λ (π0d → pn) < ψ
(−)
k |V (1S0)|q > m

(m2
π − k2

π − iε)(q2 − k2 − iε)
. (3.6)

∗For simplicity of presentation, we omit here the Coulomb interaction, though this is taken into
account in the actual numerical calculations.
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The pole diagram with an intermediate π0 meson depicted in Fig. 2, e leads
to the following amplitude:

Apole(pd → {pp}sn) =
A

νp1
νp (p → π0p1)A

νp2νn

λ (π0d → pn)
m2

π − k2
π − iε

, (3.7)

where νp1 and νp2 are the spin-projections of two ˇnal protons being in the 1S0

state. There is another pole diagram with an intermediate π+ meson but this
can be safely neglected here because it does not lead to low energy pp pairs.
Making the coherent sum of the triangle and the properly antisymmetrized pole
amplitudes, given, respectively, by Eq. (3.6) and Eq. (3.7), we ˇnd

Aνn

νpλ(pd → {pp}sn) = Atriangle + Apole =

= Npp
fπNN

mπ
2mFπNN(k2

π)
∑
ν1ν2

(1
2ν1

1
2ν2|00)Aν2νn

λ (π0d → pn) ×

×
∫

d3p1

(2π)3
< χν1 |(σ ·Q)|χνp > Ψ(−)∗

k (q)
m2

π − k2
π − iε

. (3.8)

We have used here the LippmannÄSchwinger equation

ψ
(−)∗

k (q) = (2π)3δ(3)(q − k) − m < ψ
(−)
k |V (1S0)|q >

q2 − k2 − iε
. (3.9)

The integral over p1 in Eq. (3.8) can be evaluated in the rest frame of the
ˇnal diproton, where p1 = q, in a similar way to that for the pd → dp reaction in
Ref. [28]. With this in mind, the kinematic variables Q and the pion propagator
are rewritten as

Q =

√
Ep + m

2m
{(p1 − pII) + R} ,

pII =
pp

Ep/m
, R = − m

Ep

Tp

Ep + m
pp, (3.10)

k2 − m2
π = −Ep

m

{
(p1 − pII)2 + δ2

II

}
, δ2

II =
T 2

p

(Ep/m)2
+

m2
π

Ep/m
,

where Ep, pp and Tp = Ep−m are the total energy, three-momentum and kinetic
energy of the initial proton in the rest frame of the ˇnal diproton.

The reaction pd → {pp}sn was measured in Ref. [20] with a cut-off in
the pp excitation energy of Emax

pp = 3 MeV. Deˇning the corresponding maximum
relative momentum through kmax =

√
m Emax

pp , the c.m.s. differential cross section

8



becomes [17]

dσ

dΩn
(pd → {pp}sn) =

1
(4π)5

pf

pi

∫ kmax

0

dk
k2

spd

√
m2 + k2

×

×1
2

∫
dΩk |A(pd → {pp}sn)|2. (3.11)

The factor of 1/2 in front of the angular integration in Eq. (3.11) takes into
account the identity of two ˇnal protons.

We choose the reference frame where the ˇnal diproton is at rest and let the
quantization axis OZ lies along the direction of the initial proton pp. In this
frame only the longitudinal (μ = 0) components of the vectors pII and R are
nonzero. Thus the spin-averaged squared amplitude of the pd → {pp}sn reaction
can be written in the following factorized form:

|Atriangle + Apole|2 =
1
4
|Npp

fπNN

mπ
2m FπNN(k2

π)|2 ×

×
∣∣∣∫ dq

(2π)3
Qμ=0

k2
π − m2

π + iε
ψ

(−)∗

k (q)
∣∣∣2 |A(π0d → pn)|2, (3.12)

where |A(π0d → pn)|2 is the spin-averaged squared amplitude of the π0d → pn
reaction. This factorization is a consequence of the simple spin structure of the
diproton vertex pp → {pp}s.

For the 1S0 ˇnal state, |A(pd → {pp}sn)|2 does not depend upon the direction
of the proton momentum k in the diproton rest frame, so that the integration over
dΩk merely gives a 4π factor. The cross section can be ˇnally written as

dσ

dΩn

OPE-II

(pd → {pp}sn) =
1

3π2

pf

pi

qpn

qπd

spn

spd

[fπNN

mπ
2mFπNN(k2

π)
]2

×

×
∫ kmax

0

dk
k2

√
m2 + k2

|Jμ=0
pp (pII , δII)|2

dσ

dΩ
(pn → dπ0). (3.13)

The form factor Jpp is deˇned through

Jpp(pII , δII) =
∫

dq
(2π)3

Q
k2

π − m2
π + iε

ψ
(−)∗

k (q) =

=

√
Ep + m

2m

m

Ep

{
RF0(pII , δII) − ip̂p Φpp

k (pII , δII)
}

, (3.14)

F0 =
∫ ∞

0

dr r j0(pII r) exp (−δIIr) ψ
(−)∗

k (r), (3.15)

Φpp
k (pII , δII) = i

∫ ∞

0

dr(δIIr + 1)j1(pIIr) exp{−δIIr}ψ
(−)∗

k (r), (3.16)

where the kinematic variables R, pII , δII are determined by Eq. (3.10).
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3.2. The pd → dp Reaction. The OPE-II diagram for the reaction pd → dp,
depicted in Fig. 2, c, includes two contributions corresponding to π+ (A+) and
π0 (A0) in the intermediate state. Using isospin invariance, the coherent sum of
these diagrams is equivalent to that with π0 multiplied by an isospin factor of 3:
A+ + A0 = 3A0.

For the pn → d vertex one has

A
νpνn

λ′ (pn → d) = −4m
√

m

(
ε +

q2

m

)
ϕ

νpνn
∗

λ′ (q), (3.17)

where ε is the deuteron binding energy and ϕ
ν̃p ν̃n

λ′ (q) is the deuteron wave
function in momentum space

ϕ
ν̃pν̃n

λ′ (q) =
∑

L,ML,MS

(1
2 ν̃p

1
2 ν̃n|1MS)(LML1MS|1λ′)YLML(q̂)uL(q), (3.18)

with ClebshÄGordan coefˇcients and spherical harmonics in standard notations
and u0(q) and u2(q) being, respectively, the S- and D-state components. This is
normalized as

1
3

∑
ν̃1 ν̃2 λ′

∫
d3q

(2π)3
|ϕν̃1ν̃2

λ′ (q)|2 =
∫ ∞

0

[
u2

0(q) + u2
2(q)

]
q2 dq

(2π)3
= 1.

The total pd → dp transition amplitude becomes

A
ν′

pλ′

νpλ = 3
fπNN

mπ
FπNN (k2

π)2
√

m
∑

ν1,ν2,μ

√
3(1μ 1

2νp|12ν1) ×

×
∫

d3q

(2π)3
Q̃μ

k2 − m2
π + iε

ϕν1ν2
λ′ (q)A

ν2ν′
p

λ (π0d → pn), (3.19)

where νp (ν′
p) and λ (λ′) are the spin projections of the initial (ˇnal) proton and

deuteron. The integral over the internal momentum of nucleon in the deuteron q
is evaluated in the rest frame of the ˇnal deuteron. It there takes the form

Jμ
L(p̃, δ) =

∫
d3q

(2π)3
Q̃μ ϕν1ν2

λ (q)∗

k2 − m2
π + iε

=

=

√
Ep + m

2m

m

Ep

{
RμF0(p̃, δ) − ip̂μ

pΦ1L(p̃, δ̃)
}

, (3.20)

where the quantization axis is chosen to lie along pp. The kinematical variables
Q̃, p̃ and δ̃ come from Eqs. (3.10) for the variables Q, pII and δII , with Ep,

pp and Tp being replaced, respectively, by the total energy Ẽp =
√

m2 + p̃2
p,

10



three-momentum p̃p, and kinetic energy T̃p = Ẽp − m of the initial proton in
the rest frame of the ˇnal deuteron. The form factors FL and ΦlL are deˇned by
Eqs. (2.4) and (2.5).

Finally, the c.m.s. pd → dp differential cross section is predicted to be

dσ

dΩ

OPE−II

(pd → dp) = 9
[fπNN

mπ
2
√

mFπNN (k2
π)

]2 spn

spd

qpn

qπd
×

×
{
|Jμ=0

0 (p̃, δ̃)|2 + |Jμ=0
2 (p̃, δ̃)|2

} dσ

dΩ
(pn → dπ0). (3.21)

For backward protonÄdeuteron elastic scattering, the pn → dπ0 cross section is
also to be taken for a similar forward-going deuteron. One can ˇnd that Eq. (3.21)
coincides with Eq. (1) of Ref. [29]. Thus the OPE-II and OPE-I models give the
same formula for the unpolarized pd → dp cross section, as required.

On the basis of Eqs. (3.13) and (3.21), we can ˇnd the following factor
relating the pd → {pp}sn and pd → dp differential cross sections to be compared
to that in Eq. (2.8):

RII =
m

27π2

∫ kmax

0

dk
k2

√
m2 + k2

× |Φpp
k (pII , δII)|2

/
|Φd

10(p̃, δ̃)|2, (3.22)

where the integrals Φd
10(p̃, δ̃) and Φpp

k (pII , δII) are determined by Eqs. (2.5) and
(3.16), respectively. Approximating the integral in Eq. (3.22) by using the value
of the integrand at Epp = Emax

pp /2, one can rewrite the equation as

RII ≈ 2
27

k3
max

6π2m

|Φpp

k
(pII , δII)|2

|Φd
10(p̃, δ̃)|2

. (3.23)

In the derivation of RII we have neglected the contribution of the deuteron
D-state component and the form factor FL, which is included in the numerical
evaluations.

The origins of the different terms in Eq. (3.23) are easy to understand. To
obtain Eq. (3.21) from (3.13) one needs to make the following replacements:

(i) ψ
(−)
k (r) → ϕd(r)/

√
m; (ii) multiply by the ratio of the isospin and com-

binatorial factors 9/
(
N2

pp/2
)

= 9/2; (iii) multiply by the spin factor of three;
(iv) multiply by the factor 4π2, which arises from the difference between three-
and two-body phase spaces; (v) divide by the factor

∫ kmax

0

k2

√
m2 + k2

dk ≈ k3
max

3m
. (3.24)
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4. THE EXCHANGE OF BARYONS WITH T =
1
2

IN THE t -CHANNEL

The baryon exchange (BE) amplitude for pd → {pp}sn of Fig. 4, c can be
written as

ABE(pd → {pp}sn) =
∑
νN

AνN νn

λ (d → pN∗)AνpνN (pN∗ → {pp}s)
m2

N∗ − t − iε
, (4.1)

where mN∗ is the mass of the exchanged baryon, t = (pd − pn)2 is the
four-momentum transfer, and AνpνN (pN∗ → {pp}s) and AνN νn

λ (d → pN∗)
are the amplitudes of the subprocesses pN∗ → {pp}s and the vertex d →
pN∗, respectively. Whereas the case of one-nucleon exchange can be found in
Refs. [17,18,21], the formalism for N∗ with higher spins was studied in Ref. [30],
where a good ˇt to the cross section data on the pd → dp and pp → dπ+ reactions
was obtained for beam energies Tp > 1 GeV.

Fig. 4. The exchange of baryons with isospin T = 1
2

(N , N∗, and Reggeon) in the
t-channel of the pp → {pp}sπ0, pn → dπ0, pd → {pp}sn and pd → dp reactions

For our present purposes, the main features of the BE mechanism are (i) its
isospin structure with T = 1

2 in the t-channel, and (ii) the factorized residue of
the amplitude. The same features are present in the Reggeon mechanism, where
the transition amplitude is given by

A(s, t) = F (t)
( s

s0

)αN (t)

exp
[
−i

π

2

(
αN (t) − 1

2

)]
, (4.2)

where αN (t) is the nucleon Regge trajectory. The residues of the Regge am-
plitudes F (t) can be factorized into products of terms coming from the upper
and lower vertices of Fig. 4. Therefore, within the baryon or Reggeon exchange
(BRE) model, one obtains the following relation between the c.m.s. cross sec-
tions:

dσ

dΩ

BRE

(pd → {pp}sn) =
(dσ/dΩ)(pp → {pp}sπ0)

(dσ/dΩ)(pn → dπ0)
× dσ

dΩ

BRE

(pd → dp). (4.3)

Here the cross sections, within the BRE model of Fig. 4, are taken at the same
four-momentum transfer t for all reactions and at s = spp ≈ spn for the pn → dπ0
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and pp → {pp}sπ0 and s = spd for the pd → {pp}sn and pd → dp reactions.
When deriving this relation we assume that the t-dependence of the vertices is
smooth. Formally, Eq. (4.3) coincides with Eq. (2.8) with RI = 1.

5. RESULTS AND DISCUSSION

5.1. The OPE-II Model. The results of our calculations are shown in Figs. 5
and 6. For the pd → dp differential cross section, the OPE-I and OPE-II ap-
proaches give identical results and they reproduce the observed shoulder in the
energy dependence in the Tp = 0.5− 0.7 GeV region, which is caused by virtual
Δ-excitation [12Ä14, 21, 26]. At higher energies, Tp > 1 GeV, the OPE cross
section falls faster than the data. The calculated cross sections increase very
slowly with increasing cut-off parameter Λ in the πNN vertex.

The OPE-II model for pd → {pp}sn is in reasonable agreement with the
experimental data below 1 GeV, being best at about 0.8 GeV. It is interesting

Fig. 5. The differential cross sections for pd → dp at θcm = 180o and pd → {pp}sn
averaged over θcm = 166◦ − 180◦ versus the proton beam energy compared with the
predictions of the OPE-II model for different values of the cut-off parameter: Λ = 1 GeV/c
(solid line), 0.8 (dashed-dotted line), 0.65 GeV/c (dashed line). The cross section of the
pn → dπ0 reaction is taken from the SAID SP96 solution [31]. Data for pd → {pp}sn
and pd → dp are those of Ref. [20] and [32Ä34], respectively
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Fig. 6. Differential cross section for the pd → {pp}sn reaction [20]. The solid thick curve
shows the OPE-II results for Λ = 1 GeV/c. The predictions [21] of the ONE(DWBA)
mechanism with the CD Bonn potential are shown by the dashed (Born approximation) and
dotted (with distortions) curves. The coherent sum of the OPE-II and the ONE(DWBA)
is shown by the thin solid line

to note that at this energy and θcm = 180◦ the ONE mechanism vanishes due
to a repulsive core in the NN interaction, as illustrated in Fig. 6 [21]. As a
result, double scattering with the excitation of the Δ(1232)-isobar was found to
be dominant in this region. Since pn → dπ0 is also Δ-dominated in this region,
the agreement between the OPE-II model and the pd → {pp}sn data seems largely
to conˇrm the results of Ref. [21]. Furthermore, at this kinematic point the ONE
amplitude changes sign, as does the ONEÄOPE interference.

Outside this region, the ONE mechanism gives a sizable contribution [18,21],
which suggests that the disagreement between the data and the OPE-II model away
from Tp ≈ 0.8 GeV may be connected with the ONE contribution. In Fig. 6 we
show the ONE (DWBA) contribution taken from Ref. [21] and its coherent sum
with the OPE contribution, with the relative sign being chosen to get the best
agreement with the data [20]∗.

∗We are implicitly assuming here that ONE is negligible in the physical π0d → pn amplitude.
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Above 1 GeV, the cross section for the pd → {pp}sn reaction calculated in
the OPE-II model falls faster than the data with increasing energy. In this model
the energy slope for both this and the pd → dp reaction is determined mainly
by the energy dependence of the cross section of the pn → dπ0 reaction; other
kinematic factors and form factors are very smooth functions of the beam energy.
As a result, the ratio of diproton to deuteron formation is practically indepen-
dent of Tp.

As explained in Subsec. 3.2, the strong preference for deuteron formation
within the OPE-II mechanism is the result of several considerations, including
spinÄisospin, combinatorial, phase space factors as well as the ratio of form factors
in Eq. (3.22). For a maximum diproton excitation energy of Emax

pp = 3MeV and
beam energy in the interval 0.6 − 1.9 GeV, Eqs. (3.22), (3.23) predict a ratio of
RII ≈ 0.016 − 0.013, which is in qualitative agreement with the experimental
value Rexp = 0.010− 0.011 [20].

In contrast to the OPE-II model, within the OPE-I formalism of Eq. (2.9) the
small magnitude of the ratio RI follows mainly from the small ratio of the cross
sections of the pp → {pp}sπ0 and pn → dπ0 reactions, as seen from Ref. [25] at
0.8 GeV. Results within this approach will remain ambiguous until there is more
information on the pn → {pp}sπ− amplitude.

5.2. The OPE-I and BRE Models. At present the OPE-I approach can
only be compared with the pd → {pp}sn data at 0.8 GeV, where results on the
pp → {pp}sπ0 have recently appeared [25]. Assuming that the BRE mechanism
of Fig. 3, c dominates the pN → {pp}sπ amplitude at this energy, we ˇnd from
Eq. (2.8) a value of the pd → {pp}sn differential cross section of 0.7μb/sr,
which is in good agreement with the data [20]. On the other hand, if the
Δ-isobar mechanism dominates pion production at 0.8 GeV [35], then the OPE-I
approach falls too low by the factor of two. Graphs with an intermediate N∗, as
in Fig. 3, b, would make the underestimate the factor of nine.

If the BRE mechanism is indeed important for the pp → {pp}sπ0 reaction at
0.8 GeV, one should analyze the role of this mechanism also in the pn → dπ0,
pd → {pp}sn and pd → dp reactions. Using the pp → {pp}sπ0 data [25]
and the SAID SP96 solution [31] for the pn → dπ0 reaction, we ˇnd from
Eq. (4.3) that the BRE model also predicts the same value of 0.7 μb/sr for the
pd → {pp}sn cross section. Within the Reggeon model, the small magnitude
of the pd → {pp}sn cross section, as compared to the pd → dp, should be
considered as a consequence of the relative sizes of the residue functions at the
pRN{pp} and pRNd vertices.

In order to get more insight into dynamics of the pd → {pp}sn and pp →
{pp}sπ0 reactions one has to discriminate between the BRE and the Δ-isobar
mechanism of the reaction pp → {pp}sπ0 at 0.8 GeV (and higher energies).
For this purpose it is important to measure the unpolarized cross section of the
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pn → {pp}sπ− reaction since

dσ

dΩ
(π0)/

dσ

dΩ
(π−) =

{
2, Δ-mechanism,

1/2, T = 1/2 exchange in the t-channel.
(5.1)

5.3. The Reggeon Mechanism and Constituent-Quark Counting Rules.
We have shown that the OPE-II model can explain the similarity in the energy
dependence of the pd → dp and pd → {pp}sn cross sections but underestimates
both of their overall values at Tp = 1−2 GeV. It was argued that this discrepancy
might be due to contributions from ONE or baryon (Reggeon) exchanges. If the
latter is true, it would mean that the effective degrees of freedom in these reactions
are non-nucleonic. In this connection it is interesting to check whether the
constituent-quark counting rules (CCR) [36,37] can be applied to these reactions.
A scaling behaviour related to the CCR was observed in the γd → pn reaction at
photon beam energy 1Ä4 GeV (see Refs. [38,39] and references therein). Recently
the CCR behaviour was found also in the pd → dp and dd → 3Hp reactions in the
GeV energy region at large scattering angles [40]. This suggests that one might

Fig. 7. Differential cross sections for the pd → dp and pd → {pp}sn reactions as shown in
Fig. 5. The dash-dotted lines give the results of ˇtting the data within the CCR approach

of Eq. (5.2), where the invariant cross section behaves as dσ

dt
= const · s−12.9
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usefully search for a similar CCR behaviour in the pd → dp and pd → {pp}sn
reactions, at least in the region between the Δ(1232) and Δ(1920) resonances,
say, between 1 and 2 GeV.

According to the CCR hypothesis, the energy dependence of the invariant
cross sections can be parameterized as

dσ

dt
=

π

pipf

dσ

dΩcm
=

1
sn

f(θcm), (5.2)

where the function f(θcm) does not depend on energy and n + 2 is the sum
of all active point-like constituents in the initial and ˇnal states. Our ˇt to the
data shown in Fig. 7 gives n = 12.9 for both the pd → {pp}sn and pd → dp
reactions, whereas CCR would suggest that n = 3 + 6 + 3 + 6 − 2 = 16. One
would therefore require signiˇcant diquark conˇgurations in order to get better
numerical agreement.

6. CONCLUSIONS

The present analysis shows that there are close connections between the
different reactions which lead to diproton formation in the ˇnal state in pd and pN
collisions. However, the actual relation depend on the reactions mechanisms. We
found that the predictions of the OPE-II model, which is based on the π0d → pn
subprocess, are quite close to the pp → {pp}sn deuteron breakup data. This
model allows us to explain the absolute value of the pd → {pp}sn cross section at
θcm ≈ 180◦ in the Δ-isobar region 0.6 Ä 0.9 GeV as well as its energy dependence.
It also describes the small value of the ratio R = dσ(pd → {pp}sn)/dσ(pd → dp)
in the whole interval 0.6 Ä 1.9 GeV of measurement reported in Ref. [20].

The agreement points to an important contribution coming from the Δ-isobar
below 1 GeV, which enters via the π0d → pn subprocess but, on the other hand,
suggests that the ONE mechanism is relatively unimportant. To large extent,
these conclusions are compatible with the results of the previous analysis of this
reaction, performed on the basis of a different model [21]. The minor role found
for the ONE contribution sheds some light on the T20 puzzle, discussed in the
Introduction, which is entirely based on the assumption that the ONE mechanism
dominates the large momentum-transfer pd reactions.

There is as yet insufˇcient information to describe the pd → {pp}sn data
unambiguously within the OPE-I model. However, if we assume the dominance
of T = 1/2 exchange in the pN → {pp}sπ amplitude, as given, for example,
by baryon or Reggeon exchange, then a satisfactory description can be achieved.
Much of this ambiguity will be removed once data are available from the forth-
coming measurements of the cross sections for pp → {pp}sπ0 and pp → {pp}sπ−

at θcm ≈ 0◦ in the 1Ä2 GeV region [41].
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