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Charge Asymmetry for Electron(Positron)—Proton Elastic Scattering

Charge asymmetry in electron(positron)—proton scattering arises from the inter-
ference of the Born amplitude and the box-type amplitude corresponding to two
virtual photons exchange. It can be extracted from electron—proton and positron—
proton scattering experiments in the same kinematical conditions. Considering the
virtual photon-Compton scattering tensor, which contributes to the box-type ampli-
tude, we separate proton and inelastic contributions in the intermediate state and
parametrize the proton form factors as the sum of a pure QED term and a strong
interaction term. Arguments, based on analyticity, are given in favor of cancellation
of contributions from proton strong interaction form factors and inelastic intermedi-
ate states in the box-type amplitudes. In the framework of this model, and assuming
a dipole character of form factors, numerical estimations are given for moderately
high energies.

The investigation has been performed at the Bogoliubov Laboratory of Theoretical
Physics, JINR.
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INTRODUCTION

Recently, a lot of attention was devoted to 2vy-exchange amplitude both in
scattering and annihilation channels [1-3], in connection with the experimental
data on electromagnetic proton form factors (FFs) [4].

Extraction of box-type (two-photon exchange amplitude (TPE)) contribution
to elastic electron—proton scattering amplitude is one of long-standing problems
of experimental physics. It can be obtained from electron—proton and positron—
proton scattering at the same kinematical conditions. A similar information about
TPE amplitude in the annihilation channel can be obtained from the measurement
of the forward-backward asymmetry in proton—antiproton production in electron—
positron annihilation (and the reversal process).

The theoretical description of TPE amplitude is strongly model-dependent.
Two reasons should be mentioned: the experimental knowledge of nucleon FFs
is restricted in a small kinematical region and the precision of the data is often
insufficient, and the contribution of the intermediate hadronic states can be only
calculated with large uncertainty.

A general approximation for proton electromagnetic form factors follows the
dipole approximation:
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where g is the anomalous magnetic moment of proton. However, recent exper-
iments [4] showed a deviation of the proton electric FF from this prescription,
when measured following the recoil polarization method, which is more pre-
cise than the traditional Rosenbluth separation. Such a deviation was tentatively
explained, advocating the presence of a two-photon contribution.

The motivation of this paper is to perform the calculation of charge-odd
correlation
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in the process of electron—proton scattering in the framework of an analytical
model (AM), free from uncertainties connected with inelastic hadronic state in
intermediate state of the TPE amplitude. In the framework of this model it is



possible to show that the effects due to strong-interaction FFs and those due to
the inelastic intermediate states almost completely compensate each other, within
an accuracy discussed below.

Our paper is organized as follows. In Secs.1 and 2 we consider the charge-
odd contribution of triangle and box-type diagram. In Sec.3 we describe the
procedure of numerical integration. In Sec.4 we present the results of numerical
integration for asymmetries and in Conclusions we estimate the accuracy of the
obtained results. The appendices contain the tables of four-fold integrals and
some details of calculations.

1. ANALYTICAL MODEL FORMULATION

In the analysis of the TPE amplitude we consider the electromagnetic inter-
actions in the lowest order of perturbation theory. Hadron electromagnetic FFs
are functions of one kinematical variable, > and the static value of the Dirac FF
of the proton (for Q2 = 0) is unity due to QED origin. Therefore we parametrize
the proton FFs in the form

Fi(¢?) =1+ Fi5(¢%), Fa(q®) = Fos(q®), Fi5(0) =0, Fos(0)=p. (3)

Let us discuss now the arguments in favor of a cancellation of the terms of
order of F2 with the contribution of the inelastic hadronic intermediate states, in
TPE amplitude.

The TPE amplitude contains the virtual photon-Compton scattering tensor.
It can be splitted in two terms, when only strong-interaction contributions to the
Compton amplitude are taken into account. One term (the elastic term) is the
generalization of the Born term with the strong-interaction FFs at the vertices of
the interaction of the virtual photons with the hadron. We suppose that the hadron
before and after the interaction with the photons remains unchanged. The second
term (inelastic) corresponds to inelastic channels formed by pions and nucleons
or similar hadronic states which can be excited in the intermediate state, between
the vertices of the virtual photon interaction with the hadron.

For this aim let us present the loop-momentum integration element in the
form

1
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where s = 2pp; is the total energy, s; = (k — p1)?, and sy = (k + p)? are
the invariant mass squares of the upper (electronic) part of the TPE Feynman
diagram and the lower (hadronic) ones; d?k, represents the integration on the
components of the loop momentum k, p; = k) p = 0 which are transversal to the
initial electron p; and proton p momenta.



We can consider the upper and lower block tensors to be both gauge invariant
(the factor 1/2 is introduced to avoid double counting and two Feynman diagrams
are included in each block). Therefore, the TPE amplitude can be written in the
form (we omit the factors corresponding to fermion spinors):
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where L, = v,(p1 — l%)vu, and H,, is the Compton tensor of proton. The
integration contour is drawn in Fig. 1, a: it starts from —oo — ¢0 and follows to
400 + 0, so that it belongs to the physical sheets of s and « channels [5].
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Fig. 1. Integration contour

In the physical sheet, the Compton amplitude has a pole, corresponding
to a single-proton state in the intermediate state and two cuts: the right one,
corresponding to the inelastic states in s channel, and the left one, starting at
sy < —9M? (M is the proton mass). Closing the integration contour to the
left and to the right side (see Fig. 1,a) it was shown (see [5]) that the following
relation holds:

Aleft = Aelastic + Ainelastic~ (6)

Comparing with the sum rule obtained in [5], here the Born amplitude con-
tribution is omitted, as well as only strong-interaction effects are considered here.
Omitting the left cut contribution Ay (our estimate shows that it can be in-
cluded in 10% error bar [5]), the effects of strong-interaction contributions to
the hadron FFs compensate the strong-interaction contributions arising from the
inelastic channels.

As an example, the Feynman amplitude at the origin of the left cut in the
so plane of virtual Compton scattering which contributes to the TPE blocks, is



drawn in Fig.2, a, underlying the proton propagators which correspond to real
3-proton u-channel intermediate state.

Its physical meaning is the interference of amplitudes of proton—antiproton
pair production in virtual photon—proton collisions due to the Fermi statistics
(see Fig.2,b). A rough estimate of the ratio of contributions of typical right-
hand cut Rygne to the left-hand cut Ryer; is the ratio of cross sections of pion
photoproduction to nucleon—antinucleon photoproduction cross section on proton:
Riet/ Ryight ~ (2Mmy)/(10M?) < 10%.
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Fig. 2. Compton scattering Feynman diagram illustrating the left cut (@) which is equivalent
to the u-channel discontinuity of the Feynman amplitude (). The gauge invariant set of
Compton subdiagrams is shown in (c)

This argument was shown to be exact in the framework of QED [5], where
a rather specific kinematics was considered: forward scattering amplitude at high
energies. The application to the case of nonforward TPE amplitude requires a
more rigorous proof, which is outside of the purpose of this paper. Here we
suggest to consider our approach as a model, the validity of which should be
experimentally verified.

For example, experiments measuring charge-odd observables in ep scattering
will be critical for verification of the validity of our model.

Proton FFs enter in the box amplitude in a form which can be schematically
written as

/ d*k 1+ Fo(k?) 1+ Fo(k?) -
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(k) = k=%, (k) = (k=q)*=A*, (e) = (k—p1)*—mZ, (p) = (k+p)*—M?,



where we extract the QED part and do not distinguish the Dirac and Pauli form
factors. This expression can be rearranged as
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According to our model assumption the first term Aj, in the right-hand side
(r.h.s.) of (9) is compensated by the inelastic intermediate hadron state contribu-
tion and so it will be omitted below. The next two terms in (8) do not contain
infrared (IR) singularities but contain the ultraviolet (UV) ones. The fourth term
in (8) suffers from both IR and UV divergences, the last one suffers only from
the IR divergences. Contributions of the last two terms can be calculated ana-
Iytically as well as they do not contain FFs uncertainties at the loop-momentum
integration. The explicit results for them are given below.

Keeping in mind the UV convergence of the initial amplitude, we extract the
UV cut-off A depending contribution containing In A%2/M? from the fourth term
in (8) and add it to the contribution of the 2nd and 3rd terms providing their
UV convergence. This procedure denoted in equation (9). Part of calculations
concerning pure QED contribution (the last term in this equation) was performed
in our paper [2].

The cross section of elastic ep scattering

e(p1) +p(p) — e(pr) + p(p') (10)
in the Born approximation in the laboratory frame (p = (M, 0,0,0)) has the form
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Here 6 — electron scattering angle and Fy = 1+ Fy,, Fo = F5; — the Dirac and
Pauli proton’s FFs.



Keeping in mind the representation in the form of Eq. (9), it will be conve-
nient to use another (equivalent) form of the Born cross section:
dO’B o dUBt dUBbox 0(2

a0~ do Q- M2p2t2(3t+3box), (13)

1 1
B, = 5(Fl2 — 1) (2tM? + 8% +u?) + 21 Fy — 7F3 (tM? + su) — §F2t2,
1 1
Biox = 5 F1(2tM* + 5% + u®) + St°F. (14)

The IR divergence from virtual photon emission contribution is, as usually,
canceled when summing with contribution from emission of soft real photons
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The quantity 62%¢ was considered in [2,7]:
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with A, AF — soft photon mass and its maximal energy in the laboratory frame.
Note that 624! does not have a definite symmetry under substitution
p < —p’;s < u due to the specific definition of soft photon in the laboratory
frame.
The virtual contribution to the cross section can be splitted in three terms
(according to Eq. (9)):
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The first term appears from the contribution of triangle-type diagram and can be
put in the form
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where P(s < u)f(s,u) = f(u,s) is the substitution operation and
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1 .
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The box-type contribution is parametrized as

d*k  tS.Z,
ay = (1—P(S‘_’“))/FW’

1 .
Z, = ZTTR%(ﬁ +k+ M)y,.

21

Some of the necessary integrals have been previously calculated in [6]. However,
for completeness, they are all given in Appendix A.

The finite part contribution (2nd and 3rd terms in r.h.s. of Eq. (9)) are
parametrized as

— (1—P(s o u d'k t [5.5p | SeSp] _ s,u)— Ayp(u, s
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In the integration over the four-vector £ in ay and a; enters the UV cut-off
parameter |k|? < A% To obtain Apg and Atgr in Eq. (9) the terms containing
In(A2/M?) are singled out from the contribution of the fourth term of r.h.s. (8)
and added to the contribution of the 2nd and 3rd terms in (8). So we can put in
(17) a; + ap + ay = ag + ap + apy, explicitly eliminating the cut-off parameter
dependence.




2. VIRTUAL AND SOFT-PHOTON EMISSION CONTRIBUTIONS
OF TRIANGLE-TYPE DIAGRAM

The interference of the Born amplitude with the part of TPE arising from the
fourth term from the r.h.s. of Eq. (9) with the corresponding part of soft photon
emission leads to

(kﬂ _doy daj?tft
dQ  dQ dQ

20° 1 2AE  , 1 1 1
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with
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Note that function Dy, in the r.h.s. of Eq. (24) changes the sign at substitution
s < u, in particular,

1
p:i—>—, Re{ln
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The last term in (24), which contains the cut-off parameter is necessary in order

to remove the A-dependence of ay.

3. VIRTUAL AND SOFT-PHOTON EMISSION CONTRIBUTIONS
OF QED BOX-TYPE DIAGRAM

The box-type contribution (last term in (9)) with corresponding part of soft-
photon emission is given by (the list of necessary loop-momentum integrals and
details of the calculation are given in Appendix A):
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and Fg is given in (47).
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4. INFRARED SINGULARITIES FREE CONTRIBUTIONS
OF BOX AMPLITUDES

In this section we use the following ansatz for nucleon FFs:

@\

Fi(¢?) =Fz(q2)/u=< — 2) : (30)
¢ — Q5

setting the parameter Q2 to 0.71 GeV2. This form permits us to carry on analytical

calculations. Note that this presctiption differs from those ones given above,

Eq. (1). Let us rewrite the expressions of Eq. (23) for ®,, as follows:
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with (here we use dipole approximation for FFs, Eq. 30)
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When integrating on the loop-momenta, the ®; and ®, terms give origin to UV
2

. o . A®
divergences of contributions containing Ly = In 2 in the form:
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with Dy, dy given in Appendix B, and
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The ®5 and ®3 terms contain IR divergences. However, in both regions where
IR divergences are present, i.e., k — 0, £k — ¢, the sum of the contributions
®5 4+ &3 converges. As for UV contributions, we note that the quantity

A2
afr ~ AR (s,u) — A} (u,8) —3(u—s)(Fy + F1)(Fy — 1)Ly, Ly =In 1z 69

is finite at the limit A — oo. It results in the replacement A2 = M?, Ly = 0. The
explicit expression for a s, in terms of three-fold integrals is given in Appendix B.
We note that UV divergences associated with ®5 are canceled due to the symmetry
F(s,t) = F(u,t).

The relevant contribution to the differential cross section can be written as

dor dopa afy
Yr _YB%p. pDp=_
aQ ~ A w7 7 T 2(By + Box) (30)

5. RESULTS AND DISCUSSION

The differential cross section with two-photon exchange and the relevant
soft-photon emission is given by

do B doBorn dor dop dop
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Our result for charge asymmetry (2) has the form
1. 2AFE E E
A% = Loty S 10 228 L D(22 )|, D(<=,0) = Dyps + D 38
T npn M + (Mv)v (Mv) tb+ I ( )
where Dyps denotes the analytical part
. 1 . p 1
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+ Bhox Inpln(47) + [1 — P(s < u)]x

X [A(s,t) In % 4 B(s,t) — 2(di Fy — dgFg)} } (39)

We note that charge asymmetry A°d9 is finite in zero electron mass limit, but
contains the soft-photon emission parameter AE/M.
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The function Dy, which can be calculated analytically and the function
Dy, Eq. (39), for which a numerical integration has been performed, have been
calculated for several values of angles and energies. Both contributions are larger
(in absolute value) at large E/M.

Ansatz (3) which reflects the possibility to separate the QED and the strong-
interaction contributions to FFs and that assumes Fqrp = 1 is useful as it
allows one to perform, at least partly, analytical calculations. However, it cannot
be considered exactly. A better parametrization of QED and strong interaction
contributions to FFs is

1 2
FI(Q@) = Fig(®) + Fia(e), Fig(®) = gyr
2 > _ @(GeV) w
P =aam * =g = om

Therefore, in order to find the global correction due to two-photon exchange,
one should weight the individual contributions Dy, and Dy, by the ratio of strong
and EM FFs. This can be done by multiplying Dy;s by the factor Fig(z). The
total contribution is therefore

D — D = Fig(x)(Duws + Dy).

Tabulated values of the numerical results are presnted in the Table. One can
see that the two-photon contribution to the asymmetry is of the order of percent,
keeping in mind the multiplicative factor a;/7. The behavior is smooth in the
considered kinematical ranges. Singularities are expected for § = 0 ¢ = 1, due to
symmetry properties of the 2+ exchange [1].

Numerical values of D as a function of E /M and 0, with dipole parametrization of the
form factors

E/M-0 30 60 90 120 150
1 1.16 | 0.58 | -0.72 | -1.29 | -1.81

371 | 1.19 | -0.22 | -0.96 | -1.61
423 | 1.54 | -0.15 | =097 | -1.73

2
3
4 446 | 1.86 | 032 | -0.62 | -1.35
5 452 | 243 | 1.12 | -0.13 | -0.99

Taking into account the factor /7, the corrections do not exceed 1%, in the
considered kinematical range.
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CONCLUSIONS

Charge asymmetry in electron—proton elastic scattering contains essential in-
formation on the contribution of 27 exchange to the reaction amplitude. This
amplitude can shed light on Compton scattering of virtual photons on proton.
It contains a part corresponding to proton intermediate state, which carries the
information on proton FFs. Another term corresponds to excited nucleon states
and inelastic states such as N7, N2x, NNN. Their theoretical investigation is
strongly model-dependent.

Our main assumption about the compensation of pure strong-interaction in-
duced contributions to FFs and inelastic channels allows us to avoid additional
uncertainty connected with inelastic channels.

Our choice of photon form factors (see Ref. (30)) is nonphysical one. The
physical case corresponds to

9%
(@5 —a*)?
The aim of the choice is the simplification of the analytical calculation.

The assumption about the possibility to omit A;,¢ in (9) was proved to hold
in the framework of QED, and for ep elastic scattering for the kinematics of
almost forward scattering. The application to large angle scattering requires, in
principle, a rigorous proof.

The parameterization of the NN *~* vertex is also approximated, since one
of the nucleons is off mass shell. Nevertheless, they can be estimated to be small
for Q2 < 5 GeV? and included in the sources of theoretical uncertainties. The
reliability of our assumption can be estimated from the ratio of cross sections
of pion and nucleon—antinucleon pair photoproduction. The uncertainty of our
results does not exceed 10%.

Another interesting question is if such a compensation is present for the
annihilation channel. The measurement of charge asymmetry is, in this case,
associated with polar angle odd contribution to the differential cross section.

Similar effects of charge and angular asymmetries can also be due to Z-boson
exchange, but such a contribution is small for moderate-high energy colliders. The
ratio of corresponding contributions can be evaluated as: ~ (wgy gas)/(aM32) <
5-1073 for s < 10 GeV? (gy (ga) is the vector(axial)-coupling constant of the
Z boson to fermion).

The analytical calculation of 2 amplitude with FFs encounters mathematical
difficulties. In Ref. [8] the results of the box amplitude with arbitrary FFs were
investigated. Similar attempt was done by A. Ilichev [9]. These works use
different approaches to include FFs, however the numerical results are close to
ours, and show that the two-photon contribution cannot be responsible for the
discrepancy in the recent FFs measurements.

1
Gg=—-Guy = 41)
1
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The other works [10] devote much attention to the excited intermediate states
as A and N* resonances, introducing additional uncertainties. In our approach,
excited states should not be included, as they correspond to poles in the second
physical sheet.

Our numerical results show that charge-odd correlations are of the order of
percent, in the kinematical region considered here. Such a value is expected to
be larger at larger ¢> values and could be measured in very precise experiments,
at present facilities.
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APPENDIX A
LIST OF NECESSARY INTEGRALS

We give here a list of scalar, vector and tensor-type loop-momentum integrals
with three denominators (k), (e), (p)

/d4k 1 ks ke

oo m v g7 Z
in2 (k)(e)(p) 1, 2p1p+ 3Pu,

ZaGuw + Zsp1uPrv + Zepuby + Zr(P1uPy + P1uPu)- 42)

Standard procedure of joining the denominators leads to integrals of the form

1 1
1.k, kK
dx/Qd/ LT , 43)
O/ ) YU | Tk =upa)? =22 — 21— y)PP

with p, = 2p1 — (1 — 2)p, p2 = m22? + M?(1 —2)? + s12(1 — x), 81 = —s — 0.
Further integration on loop momentum (see (37)) with A is the UV cut-off
parameter, leads to

oA, 1, M?
Zy = Q_S[Ls_iL —2Lzs+1n—)\2 (2Ls+ L) |,
M?
L = IHW7 LSZIH%—iW,
M? M?
Lis, = Lis(1+—)—irln(l+—),
S S
1 M?
Zy = “|L+(1+—)L,,
2 s{ + +s+M2) }
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1

Zy = _WLS’

Zy = iLA+§—mLs,

Zs = %{—1—%+L5(1—$)+L},
R PESTE {1 - syjﬂLs}

Integrals with denominators (k)(€)(p) can be obtained from those given above
by replacements p; — —p, p — —p’ with the same coefficients. Integrals with
denominators (k)(€)(p) can be obtained from those given above by replacements
p1 — —p}, p — p, and coefficients, which can be obtained from those mentioned
above by replacement s — wu.

Box-type integrals defined as

d*k 1:k, k k
Y;L;Iu:/~—7’ WEL L, =YaA + V3P,
bt i (0)(q)(e)(p) H T TETHT

I;w = }/49#1/ + }%A/LAIJ + YGP[LPL/ + Y7(P;LAV + PL/A[L) + }/SQ[LQV (44)
with

R, / /
Q:p12p17 P:pl_;_pl’ A:p_;p. (45)

Explicit expressions for Y}, are

2 —s—10. —t
Rt N Wi
VS MmO

1 T 9
Y, = _ﬁ[_i(F+FQ) - P (F—i—FA)],

Yo o |3 P+ Fa) - 2% + R,

~ 24| 2
1 T T 9
Y4—;{—i(F—G+Hp+HA+HQ)+HA(—§—P)—

— Ho (_% - AQ) +2Q%Y3(P? + 1) + P2Ga — A’Gg + 2Q2A2Y2} ;
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1

Ys = —
T Td

[PQ%H +2(P*)?(Ha — 2Q%*Y3 — Ga)+

2
n (TZ - 2P2A2> (Hg +2Q%> — Go)|,

il
}/6 R

== ~IA2(G — F— H, — 3Ha + 6QY3)+
.

2
2
+ <P2A2 + %) (Ha — 2Q%Y3 — Ga) — A?(Hg + 2Q%Ys — GQ)} ,

T

2
Yy = —— HH - A2§(HQ +2Q%> — Gg) + 2P2g(HA —2Q%Y3 — GA)] ,

1 1 1
+A%(Hg — 2Q%Y3 — Gg) — P?(Ha — 2Q%Y3 — GA)],
2

7= 2PA, d:P2A2—TZ, H=F—G+Hp+3Ha +6P%;.  (46)

The quantities entering here are

1

2.7
M?F, :—7{w2+m 47)Inz + Lis (—2¢/72) — Li (—)]
QR 4 /r(+7) (47) 2( ) 2 NG
11, 5 -t =2 1 —t
Fa t{an me 6}’ Ga 4M2(1+7)[ tro HM2]’
1 —s—1i0.  —t o [ —s—10
F=_—|21 In— —In® [ ——
23{ " Tvm e n( M2 >+
M M?
+21In% — + 2Liy <1+—>},
m S
1 —5—10
Hp = 1 . 47
Q S+M2n M?2 “7)

The explicit expression for the QED box-type Born amplitude (see Eq. (21)) is
ap(s,u) = Ap(s,u) — Ap(u, s) with

Ab(s,u) = (F1Pq — FQQq)FQ + (FlpA — FQQA)FA + (F1PG — F2QG)GQ+
+ (F1Py — FoQu)Hg + (FAPp — F5Qp)F + (F1 Py — FoQy)Yh,

16



with

1 st M?*  3s?
P, = g[MQ(s—u)—ﬁ—s(?)s—u)];Qq:g; PA=—4 —4-?;
t2 M2t tu M?t st
- . p,=—_ e
Qa g fe 1 g Qo=—F— %
M?t  su tM? sM?  s(s—wu)
Py = —— - Q@u=-——Pr=——+—1—;
st M?*ts  s(s® +u?) st?
Qr = — i Pyv=-—F———7—"3Qvr=—" (48)
APPENDIX B

The contributions from the uncrossed box-type Feynman amplitude, Ay, can
be written as the sum of terms associated to &1, $5, P53

1
Ap=Ap = 57 (B0 A +(Q0)tnAgs) , apr = (1= P(s < u))A;.

We follow the procedure described in Appendix C.
The ®5 and ®; terms are calculated by using the relation

k2—q2 (q_k)a
=1-2g, 1o 49
e “m )

in order to eliminate explicitly the divergence at K — ¢. For A;; we have

1
M? 3 By
Ap = t/d:cydy{G(s,t) {A (md_o _ 5) N d_o] _
0
A By i A Bz
_ 2.5y 2 i
2N (ypz) (do + dg>}+t/dxydyz dz{S <D1 + D%)
0

— 2N (2P) (D% + %) t(2z + yz)} (50)

with
S =tG(s,1)(22 +y2) + 2(2y — 2)[2t(s* + tM?)F, — 251> F})],

and
1 R R N . 1 oA
N(b) = ZTTPQW(M —b)vwp1y - ZTTRW(P +b+ M)y,
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and A, B given above (Eq. (32)). The expression for Ay, is

2

A
Apo = [ dzdyyz?dz {F(s,t) {(hﬂ Do~ g) — YL + ¢*(Qy) ~y2L2:| +
o

+ |- o+ oL 2 QUP L] M) + Mt} -

1 27 —
_2/dxdyy22dz { [—% + (12—2J2 - qQ(Qq)z2;73} q“ [Fa(2Po) + Fo(2Pg)] +

t|12z + z 1 _
+4 2 = {ﬁ ~ 20T 6‘12(Qq>z274] [M(2Po) + M (zPé)]} , (5
with J;, L; given in Appendix C and

1

. . A 1 . R
M(b) = ZTTpll'Yu(pl = b)wpryy - 3 TrRY (P + b+ M)[d, 7],

| 1 R o

M(b) = ZTrpﬁm(p’l + b)Yu P17y - ZTTR[q, Yl — b+ M)y,.
1, X 1 . R

Fo(b) = 1 PPy - ZTTRw(p + b+ M)[q,7.]—

1. 1 X .
- ZTrp’wﬂ(m —b)ywbrvn - 1By e [4,7] + (¢ —b)*F(s,t), (52)

and similar expression for F,.
The form of Ays is

1
Aps = /dxydy(z2)2dz><
0
x {=[H(zPy) + H(2P})|J5 + 6|G(2Po) + G(2P})|Ja} (53)
with

1, 1 . .
G(k) = ZTrp'm(m — k)vupryy - ZTTRW(p +k+ M)[G— k7],

1, . o o
G(k) = ZTrp’m(p’l + k)b - TrRlq — k, Yl —k+ M)y, (54)
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1. .
ZTrp’wwa%pm X

1
X {—ZTTRW%[ —b, ] + TTR%L(p+6+ M)[%,%]}

H(b) =

1. 1
- ZTTp/ﬂu(pl = )by TrRYuYe[os wl-

1 .
H(b) = ZTTP/{VM’VU’YVPYMX

1 L 1
x {—ZTTR[%W](JD’ = b+ M)y, — 7TrRIg —b, %]%%}

1 R . ~ . 1
+ ZTTpﬁm(pl’ + b)Y P17V - ZTTR[%V/L]%%. (55)

Infrared singularities (divergences of Ay, Ay3 at y — 0, 2 — 1 are mutually
compensated in the sum Ay.

APPENDIX C

Let us describe the procedure employed for compacting the denominators
and for the loop-momentum integration. Taking D(z) = az + bz, Z = 1 — z, the
Feynman prescription for compacting the denominators leads to

1 1 1
1 / dz= 1 _ 2zdz 1 [6zzdz
ab D(2)2" a2b D(z)?” a2b? D(z)‘“
0
1 1
1 322dz. 1 12z zdz 1 /30 22)%dz (56)
adh D(2)4" a3b2 D(z)? " 433 D(z)¢
0 0 0
Applying (56) to the set of denominators
(e) = k* — 2kpy, (&) = k? + 2kp), (p) = k* + 2kp,
(p) = k* = 2p'k, (k) = K2, (k) = (¢ — k), (Qr) = k* — Q3
one obtains
1 1
r / 2dxydy 1 / 2dxydy
(epk) ) [k = ypa)* — Dol*’ (epk) ) [(k = Py)? = Dof*”
1 1
1 / 2dzxydy ) 1 _ / 2dzxydy 57)
(epk) ) [(k = P§)? —Dol*"  (epQr) ) [(k — ypa)? — do®”
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with Dy = yzpi; do = y*p2+5Q3, Po = ypa+7q, P} = ypl,+7q, ps = Tp1—Tp,
pT = :Ep — xp. The following relation holds: P} = PP = 4p2 + 54,
p2 =p? = 72M? — sx7.

We do not develop further (explicitly) the denominators which contain (€)(p),
because the corresponding results can be obtained by those depending on (e)(p)
under replacement p, — p,-.

In a similar way one obtains

1 1
1 _ / 6yydzdy ] / 6yydxdydt
(epQ7) S [(k = ypa)? — do*’ keka (k= ypz)? — di]*’

0
di = Do + tyQ3;

1 1
1 _ / 24dxtdtyy’dy ] / 6ydydrzd
(kep@]) ) = ypa) = " i | = sm o
Dy = a+ 2Qp;
1
1 6ydydrz>dz 212 _
= = M = P —
(cpkh) / (k= zpo) —ap* “— 770 7
0
1
1 24ydyz?zdzdtdx _ 9
- = 5 D = t
(epkkQr) /[(k—zpo)2_p2]5’ 2 = a+ 2t
0
1
1 _/120ydydxtdt(zz)2dz (58)
(epkhQy) ) Tk—2R7—Da°

After replacing the loop momenta by £ — b — x, a symmetrical integration on
k is performed. For polynomials N (k) of order in k less than 3 one finds
N(k+b) = 2£2(b) + N(b). The application of the Wick rotation leads to

/ﬂ_ln/ﬁ_%. /diﬁ__i
w2—dPF d 2 ) w-dF " a2d

k2dk 1 dk 1
/(/@2—d)4 T 3d /(/@2—d)4 T 6d2’
K2dk 1 dr B 1
/ (k2 —d)p 1242’ / (K2 —d)5 — 12d%’
/ K2dk _ 1 / dk _ 1 (59)
(k% —d)b 30d3’ (k2 —d)S  20d%’
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with
_ d*k

dk = 2

im2 = "{zd’iz’ K= _Hgv Ke = '{(2) + H% + ’{g + 5225’
and x. — the Euclidean four-vector. Note that the integration of the Feynman

parameter ¢ can be provided explicitly, as it enters only in phase volume

1 1

dt 1 do dt 1
! /dt yQ2 nDO’ 2 /df Dodp’
0 0
/ d 1 d, D,
tdt tdo o
Ly = /—:—[m——w—],
S O A R 2 do
/ d D
_ t a+Dy
Ja = / D2~ 2a2D2’
0
/ d ; d D 2
tdt 1 tdt 1+ 2a
= _— = — = _— = 60
I3 / D3 2aD§"74 DI~ 642D} (60)
0 0
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