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Diagrammatic Theory for Anderson Impurity Model

A diagrammatic theory around atomic limit is proposed for the normal and superconducting
states of the Anderson impurity model. The impurity electrons have strong Coulomb repulsion
between them. This interaction is the main parameter of the theory. The new method is based
on the ordinary Wick theorem for conduction electrons and generalized Wick theorem for
strongly correlated impurity electrons.

For the mean value of evolution operator the linked cluster theorem is proved and the
Dyson-type equations for one-particle propagators of conduction and impurity electrons in the
normal and superconducting states of the system have been established.

The behavior of the impurity electron spectral function has been studied. The structure of
the resonances and their properties are analyzed.

We have proved that the thermodynamic potential of this strongly correlated system can be
presented, after introduction of special integration by the constant of hybridization strength,
as the functional of the full Green function of conduction electrons and its mass operator.
The stationary property of this potential related to the changes of the mass operator has been
demonstrated as well.

The investigation has been performed at the Bogoliubov Laboratory of Theoretical Physics,
JINR.
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1. INTRODUCTION

The study of strongly correlated electron systems becomes in the last decade
one of the most active ˇelds of condensed matter physics. One of the impor-
tant models of strongly correlated electrons is the single-site or impurity model
introduced by Anderson [1] in 1961 and discussed intensively in a lot of pa-
pers [2Ä15]. It is a model for a system of free conduction electrons that interact
with the system of a local spin, treated as just another electron of d- or f -shell
of an impurity atom. The impurity electrons are strongly correlated because of
strong Coulomb repulsion and they undergo the exchange and hybridization with
conduction electrons. This model has some properties similar to those of Kondo
model having more interesting physics [16Ä18]. It has the application for heavy
fermion systems where the local impurity orbital is the f -orbital. Investigations
of Anderson impurity model have used intensively the methods and results ob-
tained for Kondo model by Nagaoka [18] and other authors [19, 20]. All the cited
papers are based on the method of equations of motion (EOM) for retarded and
advanced quantum Green's functions proposed by Bogoliubov and Tiablikov [21]
and developed in the papers [22Ä24].

The ˇrst attempt to develop the diagrammatic theory for this problem was
realized in the paper [25]. These authors used the expansion by cumulants
for averages of products of Hubbard transfer operators and their algebra. With
introduction of dynamical mean ˇeld theory the interest in Anderson impurity
model has increased because inˇnite-dimensional lattice models can be mapped
onto effective impurity models together with a self-consistency condition [26, 27].

The Hamiltonian of the model is written as

H = H0 + Hint,

H0 = Hc
0 + Hf

0 ,

Hc
0 =

∑
kσ

ε(k) C+
kσCkσ.

Hf
0 = εf

∑
σ

f+
σ fσ + Unf

↑nf
↓ ,

Hint =
1√
N

∑
kσ

(
Vkσf+

σ Ckσ + V ∗
kσC+

kσfσ

)
,

nf
σ = f+

σ fσ,

(1)
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where Ckσ(C+
kσ) and fσ(f+

σ ) Å annihilation (creation) operators of conduction
and impurity electrons with spin σ, correspondingly; ε(k) is the kinetic energy
of the conduction band state (k, σ); εf is the local energy of f electrons, U
is the on-site Coulomb repulsion of the impurity electrons and N is the num-
ber of lattice sites. Hint is the hybridization interaction between conduction
and localized electrons. Summation over k will be changed to an integral over
the energy ε(k) with the density of state ρ0(ε) of conduction electrons, and the
matrix elements will be considered as the function of energy V (ε). Because
of the hybridization term of the Hamiltonian down and up spins of conduc-
tion electrons come and go in the local orbital and there is no appearance of
spin 
ip process. Thus the important parameters of the Anderson model are
the band width W , the conduction density of states ρ0(ε), the local site energy
εf and the on-site Coulomb interaction U . The electron energies are evalu-
ated from the chemical potential μ of the system: ε(k) = ξ(k) − μ, εf =
εf − μ. There is also an energy parameter Γ(ε) associated with the hybridization
term

Γ(ε) =
π

N

∑
k

V 2
k δ(ε − ε(k)) = πV2(ε)ρ0(ε). (2)

This function is assumed to be a constant, independent of energy. The term in the
Hamiltonian involving U comes from on-site Coulomb interaction between two
impurity electrons. U is far to large to be treated by perturbation theory. It must
be included in H0 which is noninteracting Hamiltonian. The existence of this
term invalidates Wick's theorem for local electrons. Therefore, ˇrst of all, we
formulate the generalized Wick's theorem (GWT) for local electrons, preserving
the ordinary Wick theorem for conduction electrons. Our GWT really is the
identity which determines the irreducible Green's functions or Kubo cumulants.
Such deˇnitions have already been used by us for discussing the properties of
one-band Hubbard model [28Ä30] and for the formulation of the new diagram
technique for it [31Ä34].

In Sec. 2, we start by introducing the ˇnite temperature Green's functions for
the conduction and impurity electrons in the interaction representation. We then
formulate the generalized Wick theorem and in Secs. 3 and 4 provide explicit
examples of diagram calculation for thermodynamical potential and full propaga-
tors. The results for symmetrical model are analyzed in Sec. 5 and the spectral
function is investigated in Sec. 6. In Sec. 7 the thermodynamic potential of the
system is expressed as the functional of the full one-particle propagator of con-
duction electrons and its mass operator. This expression, obtained only for the
normal state of the system, has the stationary property about the changes of the
mass operator. In Sec. 8 there are the conclusions.
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2. DIAGRAMMATICAL THEORY

The Matsubara renormalized Green's functions of conduction and impurity
electrons in interaction representation are deˇned by

G(k,σ, τ | k′, σ,′ τ ′) = −
〈
TCkσ(τ)Ck′σ′(τ ′)U(β)

〉c

0
,

g(σ, τ | σ′, τ ′) = −
〈
Tfσ(τ)fσ′(τ ′)U(β)

〉c

0
.

(3)

Besides them, there are also anomalous Green's functions deˇned as

F (k,σ, τ | −k, − σ′, τ ′) = − 〈TCkσ(τ)C−k′−σ′(τ ′)U(β)〉c0 ,

F (−k, − σ, τ | k′, σ′, τ ′) = −
〈
TC−k−σ(τ)Ck′σ′(τ ′)U(β)

〉c

0
, (4)

f(σ, τ | −σ′, τ ′) = −〈Tfσ(τ)f−σ′ (τ ′)U(β)〉c0 ,

f(−σ, τ | σ′, τ ′) = −
〈
Tf−σ(τ)fσ′(τ ′)U(β)

〉c

0
,

if the system is in superconducting state. Here τ and τ ′ stand for imaginary time
with 0 < τ < β, β Å inverse temperature and T is the chronological ordering
operator. The evolution operator U(β) is given by

U(β) = T exp (−
β∫

0

Hint(τ)dτ) =

=
∞∑

n=0

(−1)n

n!

β∫
0

dτ1...

β∫
0

dτnT (Hint(τ1)...Hint(τn)). (5)

The statistical averaging is carried out in (3) and (4) with respect to the zero-order
density matrix of the conduction and impurity electrons

e−βH0

Tre−βH0
=

e−βHc
0

Tre−βHc
0
× e−βHf

0

Tre−βHf
0

. (6)

The thermodynamic perturbation theory in Hint requires an adequate gener-
alization for calculation of the statistical averages of the T -products of localized
f -electron operators. This necessity appears since f electrons are not free. The
Hamiltonian H0 can be diagonalized by using the algebra of Hubbard [28Ä30]
transfer operators χmn = |m >< n| when the | m > with m = −1,0,1,2 enu-
merates four states of the impurity atom: | 0 > is the empty or vacuum state
with energy E0 = 0, the | 1 > and | −1 > or |↑> and |↓> are the states with
one particle with energy Eσ = εf and spin σ = ±1 and the state | 2 >=|↑↓>
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contains two f electrons with opposite spins and the energy E2 = U + 2εf . By
using the relation

fσ = χ0σ + σχσ2, (7)

we obtain the diagonalized form of the impurity Hamiltonian

Hf
0 =

2∑
n=−1

Enχnn,
2∑

n=−1

χnn = 1. (8)

In zero order approximation, when we neglect the process of hybridization of
the conduction and impurity electrons, the corresponding Green's functions have
the form (ω ≡ ωn = (2n + 1)π/β)

G0
σσ′ (k,k′ | iω) = δσσ′δkk′

1
iω − ε(k)

,

g0
σσ′ = δσσ′g0

σ(iω) =
1 − nσ

λσ(iω)
+

nσ

λσ(iω)
,

(9)

where (σ = −σ)

λσ(iω) = iω + E0 − Eσ,

λσ(iω) = iω + Eσ − E2,

Z0 = e−βE0 + e−βEσ + e−βEσ + e−βE2,

nσ =
e−βEσ + e−βE2

Z0
,

1 − nσ =
e−βE0 + e−βEσ

Z0
.

For the higher orders in the perturbation expansion, in the case of f electrons,
we use the identity which corresponds to our generalized Wick's theorem (GWT)
for the normal state of the system:

〈
Tf1f2f3f4

〉
0

=
〈
Tf1f4

〉
0

〈
Tf2f3

〉
0
−

−
〈
Tf1f3

〉
0

〈
Tf2f4

〉
0

+
〈
Tf1f2f3f4

〉ir

0
(10)

or

g0
2(1, 2|3, 4) = g0(1|4)g0(2|3) − g0(1|3)g0(2|4) + g

(0)ir
2 (1, 2|3, 4), (11)

where n stands for (σn, τn). The generalization for more complicate averages
of type g0

n(1, ..., n | n + 1, ..., 2n) = (−1)n
〈
Tf1...fnfn+1...f2n

〉
0

is straightfor-
ward, namely the right-hand part of this quantity will contain n! term of ordinary
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Wick type (chain diagrams) and also the different products of irreducible func-
tions with the same total number of operators. The full irreducible function in
g0

n(1, ..., n|n + 1, ..., 2n) also appears. For example, g0
3(123|456) contains the

contribution of 3! = 6 terms of ordinary Wick kind, then appear 9 terms of the

form g0(1|4)g(0)ir
2 (23|56) and the last term is g

(0)ir
3 (123|456). The total number

of terms is 16. In the case of g0
4(1234|5678) there are 4! = 24 terms of ordinary

Wick kind, the 72 terms of the type g0(1|5)g0(2|6)g(0)ir
2 (34|78), then 18 terms of

type g
(0)ir
2 (12|56)g(0)ir

2 (34|78), then 16 terms of the form g0(1|5)g(0)ir
3 (234|678)

and ˇnally one form g
(0)ir
4 (1234|5678). The total number of terms is 131. The

signs of all these contributions can be easy determined by commutation rules.
Thus the deˇnition of the irreducible Green's functions or Kubo cumulants comes
naturally from our GWT. In the absence of Coulomb repulsion U all these ir-
reducible functions are equal to zero. When U �= 0 they contain all the spin,
charge and pairing 
uctuations produced by the strong correlations. These deˇ-
nitions are the simpliˇcation of that ones for Hubbard and other lattice models.

The calculation of the simplest irreducible functions, for example g
(0)ir
2 (12|34),

is rather cumbersome but straightforward. It is necessary to ˇnd the values of
chronological averages for 4! = 24 different orders of τ1, τ2, τ3 and τ4 times and
then to determine their Fourier representation

g
(0)ir
2 [σ1, τ1; σ2, τ2|σ3, τ3; σ4, τ4] =

=
1
β4

∑
ω1ω2ω3ω4

exp(−iω1τ1 − iω2τ2 + iω3τ3 + iω4τ4)×

× g
(0)ir
2 [σ1, iω1; σ2, iω2|σ3, iω3; σ4, iω4]. (12)

The Fourier representation conserves the frequencies

g
(0)ir
2 [σ1, iω1; σ2, iω2|σ3, iω3; σ4, iω4] = βδ(ω1 + ω2 − ω3 − ω4)×

× g̃
(0)ir
2 [σ1, iω1; σ2, iω2|σ3, iω3; σ4, iω1 + iω2 − iω3]. (13)

There is also the spin conservation σ1 + σ2 = σ3 + σ4. Thus we have the rules
to deal with chronological averages of thermodynamic perturbation theory.

3. THERMODYNAMIC POTENTIAL

First of all, we can determine the thermodynamic potential F of the system

F = F0 −
1
β

ln 〈U(β)〉0 ,

F0 = − 1
β

ln Z0 −
2
β

∑
k

ln [1 + exp (−βε(k))] ,
(14)
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where Z0 is the partition function of the free impurity atom, and the other term
is the contribution from conduction electrons. The diagrams which determine the
thermodynamic potential have not the external lines and are named vacuum.

In Fig. 1 the simplest vacuum connected diagrams of the normal state are
shown. In the diagrams we shall depict the process of hybridization of C and
f electrons. The zero order propagators of conduction and impurity electrons
are represented by their solid and dashed lines, correspondingly. These lines
connect the crosses which depict the impurity states. To crosses are attached two
arrows, one of which is ingoing and the other one is outgoing. They depict the
annihilation and creation operators, correspondingly. The index n means (σn, τn)
for impurity and (kn, σn, τn) Å for conduction electrons. The rectangles with

2n crosses depict the irreducible g
(0)ir
n Green's functions of f electrons.

Fig. 1. The simplest connected vacuum diagrams in normal state. The diagram a) is of
the second and b), c) of the fourth order of the theory. Here V n = Vn/

√
N

Besides the vacuum diagrams of the fourth order shown in Fig. 1, b and
Fig. 1, c, there is also one disconnected diagram composed from two diagrams of
Fig. 1, a type and containing additional factor 1/2!. Such a situation is repeated
in high order of perturbation theory and permits us to formulate linked cluster
theorem. It has the form

〈U(β)〉0 = exp 〈U(β)〉c0 , (15)

where 〈U(β)〉c0 contains only connected diagrams and is equal to zero when
hybridization is absent. If we admit the existence of the pairing mechanism of
conduction electrons, thanks the hybridization, the pairing mechanism appears also
for impurity electrons. This mechanism results in appearance of the anomalous
propagators of both kinds of electrons.

Figure 2 shows some of the simplest connected anomalous vacuum diagrams.
The anomalous propagators are depicted by the thin (solid and dashed) lines with
two opposite directions at the end of them.
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Fig. 2. The simplest vacuum anomalous diagrams. The diagrams a) and b) are of the
second and c), d) and e) of the fourth order of perturbation theory

4. RENORMALIZED PROPAGATORS

Now we shall consider the diagrammatical analysis of the perturbation series
for renormalized propagators (3) and (4). The simplest contributions to such
series are represented in Figs. 3Ä6. All such diagrams contain two external points
with attached arrows determined by the arguments of Green's functions and their
kind. At the inner points of diagrams is supposed summation on σn,kn, and
integration on τn.

In the same second order approximation of perturbation theory the diagrams
for impurity electron propagators contain new diagrammatical elements namely
the irreducible two particle Green's functions. These functions can also be normal
or anomalous. The process of their renormalization will be not considered by us,
supposing the necessity of renormalization only for the propagators.

In Fig. 5 the diagrams for impurity electron normal propagator are shown.
The last two irreducible Green's functions of Fig. 5 are anomalous because

they contain nonequal number of annihilation and creation f operators enumerated
in the left and right parts about the vertical bare, correspondingly. Thanks the
summation of the inˇnite series diagrams, the renormalized normal and anomalous

7



V ∗
2

NG(2)(k, σ, τ | k′, σ′, τ ′) =
k, σ, τ k′, σ′, τ ′21

G0

k, σ, τ
−

2

f0
F

0

k′, σ′, τ ′
− F

0
F 0

g0

G0

k, σ, τ 2 k′, σ′, τ ′

g0

V ∗
1

V1

V2

V ∗
1 V ∗

2

1 1

G0

− F 0 f
0

G0

1 2

V1 V2

k, σ, τ k′, σ′, τ ′

Fig. 3. The second order perturbation theory contribution for conduction electron normal
propagator

g0
G0

V ∗
2

NF (2)(k, σ, τ | −k′,−σ′, τ ′) =
k, σ, τ −k′,−σ′, τ ′21

F 0

k, σ, τ
+

2

f0
G0

−k′,−σ′, τ ′
+ G0F 0

G0

k, σ, τ 2 −k′,−σ′, τ ′

g0

V ∗
1

V1

V2

V ∗
1 V ∗

2

1 1

− F 0 f
0

F 0

1 2

V1 V2

k, σ, τ −k′,−σ′, τ ′

Fig. 4. The second order perturbation theory contribution for conduction electron anom-
alous propagator

σ, τ

V2

=
σ, τ σ′, τ ′21

g0

σ, τ
−

2

F 0 f
0

σ′, τ ′
− f

0
f0

G0

g0

2 σ′, τ ′
G0

V1

V ∗
1

V ∗
2

V1 V2

1

g0

− f0
F

0 g0

1 2

V ∗
1 V ∗

2

σ, τ σ′, τ ′

1

1 1 1
2 2 2

στ στ στσ′τ ′ σ′τ ′ σ′τ ′

G0 F 0(1 | 2)
F

0
(1 | 2)

Ng(2)(σ, τ | σ′, τ ′)

g
(0)ir
2 (στ ;σ1τ1 | σ2τ2; σ

′τ ′) g
(0)ir
2 (στ | σ1τ1; σ2τ2; σ

′τ ′) g
(0)ir
2 (στ ;σ1τ1; σ2τ2 | σ′τ ′)

−− −
V ∗

1 V2 V1 V2
V ∗

1 V ∗
2

Fig. 5. The second order perturbation contribution for the impurity electron normal prop-
agator
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propagators appear, and now it is necessary to put equal to zero the source of

electron pairs and simultaneously the bare f0 and f
0

together with anomalous
irreducible Green's functions. The corresponding contributions to the anomalous
impurity electron function fσσ′ (τ − τ ′) are depicted in Fig. 6.

σ, τ

V2

=
σ, τ −σ′, τ ′21

g0

σ, τ
+

2

G0 f0

−σ′, τ ′
+ g0f0

F 0

g0

2 −σ′, τ ′
G0

V1

V ∗
1

V2

V1 V ∗
2

1

g0

− f0
F

0 f0

1 2

V ∗
1 V ∗

2

σ, τ −σ′, τ ′

1

1 1 1
2 2 2

−σ′τ ′ στ −σ′τ ′
στ −σ′τ ′ στ

G0 F
0
(1 | 2)

F 0(1 | 2)

Nf
(2)

σ,σ′(τ − τ ′)

g
(0)ir
2 (στ,−σ′τ ′, σ1τ1 | σ2τ2) g

(0)ir
2 (στ, σ1τ1, σ2τ2,−σ′τ ′ |) g

(0)ir
2 (στ,−σ′τ ′ | σ1τ1, σ2τ2)

V1V2
V ∗

1 V2 −1
2

V ∗
1 V ∗

2
−1

2−

Fig. 6. Anomalous impurity electron Green's function in the second order perturbation
theory

The ˇnal equations for the renormalized functions are more convenient to
write down in the Fourier representation

G(k,σ, τ |k′, σ′, τ ′) =
1
β

∑
ω

Gσσ′ (k,k′| iω) exp
[
−iω(τ − τ

′
)
]
,

F (k,σ, τ | − k′,−σ′, τ ′) =
1
β

∑
ω

Fσσ′(k,−k′| iω) exp
[
−iω(τ − τ

′
)
]
.

The complete equations for the conduction electron propagators have the
form:

Gσσ′ (k,k′| iω) = δkk′δσσ′G0
σ(k| iω)+

+
V ∗
k Vk′

N
(G0

σ(k|iω)gσσ′ (iω)G0
σ′(k′|iω)−

− G0
σ(k|iω)fσσ′(iω)F

0

σ′σ′ (−k′|iω)) − F0
σσ(k|iω)gσ′σ(−iω)F

0

σ′σ′(−k|iω)−
− F 0

σσ(k|iω)fσσ′(iω)G0
σ′(k′|iω)), (16)
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Fσσ′(k,−k′| iω) = F0
σσ(k| iω)δkk′δσσ′+

+
V ∗
k Vk′

N
(G0

σ(k|iω)gσσ′ (iω)F0
σ′σ′(k′|iω)+

+ G0
σ(k|iω)fσσ′(iω)G0

σ′(−k′| − iω) + F0
σσ(k|iω)gσ′σ(−iω)G0

σ′(−k′| − iω)−
− F 0

σσ(k|iω)fσσ′(iω)F0
σ′σ′(k′|iω)). (17)

These renormalized propagators are expressed through the full propagators g, f
and f of impurity electrons.

= Λ +

− Λ

Y
σ′τ ′

σ′τ ′ σ′τ ′

στ σ′τ ′
σ′τ ′στ σ′τ ′

στ

−
στ

Y

g g

g

G0

G0F 0

F
0

ff

1 2

21 1 2

1 2

V 1

V
∗
1

V
∗
1

V
∗
2

V
∗
2

V 2V 1 V 2

Λ

στ

στ

−

Fig. 7. Dyson-type equation for the normal propagator of impurity electrons. Double
dashed lines depict full electron propagators. The arrows on them distinguish the normal
and anomalous ones. The squares with attached arrows depict the correlated functions. On
double repeated indices 1 and 2 is supposed summation by σn and kn and integration by τn

V
∗
1

= +

σ′τ ′

σ′τ ′ στ

+

G0

G0F
0

F 0

1 2

21 1 2

1 2

V
∗
1

V 1

V 1

V 2

V
∗
2V

∗
2

στ

+ Λ

f

Y
σ′τ ′ στ

Y

Y

στ

Λ

στ

g g

V 2

σ′τ ′

f

σ′τ ′

σ′τ ′στ

−
f

Fig. 8. Dyson-type equation for one of anomalous Green's functions of f electrons
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Now it is necessary to obtain the corresponding equations for the full impurity
electron propagators. Because the subsystem of f electrons is strongly correlated
we have to introduce the correlation functions Zσσ′ , Yσσ′ and Y σσ′ which are
represented by strong connected diagrams with irreducible Green's functions [31Ä
35]. The process of renormalization of f -electron propagators is shown in Figs. 7
and 8, where the double dashed lines depict the full f -electron functions and the
rectangles represent the correlation functions Λσσ′ = g0

σσ′ +Zσσ′ , Yσσ′ and Y σσ .
The second equation we shall depict for anomalous propagator f of the impurity
electrons (see Fig. 8).

In both these equations the bare conduction electron propagators G0
σ(k|iω),

F 0
σσ(k|iω) and F

0

σσ(−k|iω) play the role of mass operators for the f -electron
propagators. It is easy to see that these functions participate in above equa-
tions being averaged on the Brillouin cell with matrix elements of hybridization.
Therefore we deˇne the new quantities:

1
N

∑
k1k2

V ∗
k2

Vk1G0(k1, σ1, τ1|k2, σ2, τ2) =

=
1
N

∑
k1

|Vk1 |2G0
σ1σ2

(k|τ1 − τ2) ≡ δσ1σ2G
0
σ1

(τ1 − τ2),

1
N

∑
k1k2

V ∗
k1

V ∗
k2

F
0
(k1, σ1, τ1|k2, σ2, τ2) =

=
1
N

∑
k1

|Vk1 |2F
0

σ1σ2
(−k1|τ1 − τ2) ≡ δσ1σ2F

0

σ1σ1
(τ1 − τ2),

1
N

∑
k1k2

Vk1Vk2F 0(k1, σ1, τ1|k2, σ2, τ2) =

=
1
N

∑
k1

|Vk1 |2F 0
σ1σ2

(k1|τ1 − τ2) ≡ δσ1σ2F
0
σ1σ1

(τ1 − τ2). (18)

These deˇnitions give us the possibility to simplify the structure of equations for
the f -electron propagators. By using these average bare propagators G0

σ , F 0
σσ

and F
0

σσ and the Fourier representation for τ -variables we obtain

gσ(iω) =
Λσ(iω) − G0

σ(−iω)[Λσ(iω)Λσ(−iω) + Yσσ(iω)Y σσ(iω)]
dσ(iω)

, (19)

fσσ(iω) =

=
Y σσ(iω) + F

0

σσ(iω)(Λσ(iω)Λσ(−iω) + Yσσ(iω)Y σσ(iω))
dσ(iω)

, (20)
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fσσ(iω) =

=
{Yσσ(iω) + F 0

σσ(iω)[(Λσ(iω)Λσ(−iω) + Yσσ(iω)Y σσ(iω)]}
dσ(iω)

, (21)

dσ(iω) = (1 − Λσ(iω)G0
σ(iω))(1 − Λσ(−iω)G0

σ(−iω)) + Y σσ(iω)F 0
σσ(iω)+

+ Yσσ(iω)F
0

σσ(iω) + F
0

σσ(iω)F 0
σσ(iω)[Yσσ(iω)Y σσ(iω) + Λσ(iω)Λσ(−iω)]+

+ G0
σ(−iω)G0

σ(iω)Yσσ(iω)Y σσ(iω). (22)

In the previous part of the paper we supposed the existence of pairing poten-
tial of conduction electrons with order parameter Δ and with the bare propagators:

G0
σ(k|iω) =

iω + ε(k)
(iω)2 − E2(k)

;

F 0
σσ(k|iω) = F

0

σσ(−k|iω) =
Δ

(iω)2 − E2(k)
;

E(k) =
√

ε2(k) + Δ2.

(23)

Now we shall discuss the case when the pairing potential is absent and the super-
conducting state appears simultaneously with both subsystems as a consequence
of the broken symmetry and phase transition. In this more simple case the
renormalized conduction electron propagators have the form

Gσσ′ (k,k′|iω) =

= δkk′δσσ′G0
σ(k|iω) +

V∗
kVk′

N
G0

σ(k|iω)gσσ′(iω)G0
σ′(k′|iω), (24)

Fσσ′(k,−k|iω) =
V∗

kVk

N
G0

σ(k|iω)fσσ′(iω)G0
σ′(−k| − iω), (25)

G0
σ(k|iω) = (iω − ε(k))−1. (26)

The renormalized propagators of impurity electron in this case are:

gσ(iω) =

=
Λσ(iω) − G0

σ(−iω)[Λσ(iω)Λσ(−iω) + Yσσ(iω)Y σσ(iω)]
dσ(iω)

, (27)

fσσ(iω) =
Y σσ(iω)
dσ(iω)

; fσσ(iω) =
Yσσ(iω)
dσ(iω)

, (28)

12



dσ(iω) = (1 − Λσ(iω)G0
σ(iω))(1 − Λσ(−iω)G0

σ(−iω))+

+ Gσ(−iω)G0
σ(iω)Yσσ(iω)Y σσ(iω). (29)

Equation (24) has been established many years ago in the paper of Anderson [1]
by using the equations of motion of conduction electron operators. In this equation
the propagator gσ(iω) has the role of t-matrix for non-spin-
ip scattering. By
setting k = k′ in Gσ(k,k′|iω)

Gσ(k,k|iω) =
1

iω − ε(k)
+

|Vk|2gσ(iω)
N(iω − ε(k))2

(30)

and considering the Lehmann spectral representation it is possible to conclude
that the discontinuity of gσ(E) across the real axis is pure imaginary [8]

gσ(E + iδ) = [gσ(E − iδ)]∗. (31)

Green's function gσ(iω) has been known till now in approximate form as a
result of special decoupling mechanism used for equations of motion of quantum
Green's functions. As is known, in such a decoupling approximation some com-
binations of operators are taken off the average value of product of operators and
are replaced by their average values. After that truncation the Green's functions
of low order remain. This approximation has been proposed by Bogoliubov, Tiab-
likov, Zubarev and Tserkovnikov [21Ä24] and used by other authors [2Ä14,18].
The hybridization of conduction and impurity electrons causes the appearance of
mixed Green's functions:

Gm(k, σ, τ |σ′, τ ′) = −
〈
TCkσ(τ)fσ′(τ ′)U(β)

〉c

0
,

Fm(k, σ, τ |σ′, τ ′) = −〈TCkσ(τ)fσ′(τ ′)U(β)〉c0 , (32)

Fm(−k, σ, τ |σ′, τ ′) = −
〈
TC−kσ(τ)fσ′(τ ′)U(β)

〉c

0
,

and also

Gm(σ, τ |k, σ′, τ ′) = −
〈
Tfσ(τ)Ckσ′(τ ′)U(β)

〉c

0
,

Fm(σ, τ | − k, σ′, τ ′) = −〈Tfσ(τ)C−kσ′(τ ′)U(β)〉c0 , (33)

F
m

(σ, τ |k, σ′, τ ′) = −
〈
Tfσ(τ)Ckσ′(τ ′)U(β)

〉c

0
.

Let Gmσσ′ (k|iω), Fmσσ′(k|iω) and Fmσσ′(k|iω) be the Fourier representation of
the ˇrst group of Green's functions and Gm

σσ′ (k|iω), Fm
σσ′(−k|iω) and F

m

σσ′(k|iω)
of the second group.
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In the presence of superconducting pairing of conduction electrons we obtain
the following results:

Gmσσ′ (k|iω) =
V ∗
k√
N

[
G0

σ(k|iω)gσσ′ (iω) − F0
σσ(k|iω)fσσ′(iω)

]
,

Fmσσ′(k|iω) =
V ∗
k√
N

[
G0

σ(k|iω)fσσ′ (iω) + F0
σσ′(k|iω)gσ′σ(−iω)

]
, (34)

Fmσσ′(−k|iω) =
V ∗
k√
N

[
G0

σ(−k| − iω)fσσ′(iω) + F
0

σσ(−k|iω)gσσ′(iω)
]
.

For the second group of mixed propagators we have

Gm
σσ′ (k|iω) =

Vk√
N

[
gσσ′ (iω)G0

σ′(k|iω) − fσσ′(iω)F
0

σ′σ′(−k|iω)
]
,

Fm
σσ′(−k|iω) =

Vk√
N

[
gσσ′(iω)F 0

σ′σ′(k|iω) + fσσ′(iω)G0
σ′(−k|iω)

]
, (35)

F
m

σσ′(k|iω) =
Vk√
N

[
fσσ′ (iω)G0

σ′(k|iω) + gσσ′(−iω)F
0

σ′σ′ (−k|iω)
]
.

Now we multiply the system of operators (33) by V ∗
k /

√
N , and after summing

over k, use the deˇnitions (18) and supposing the paramagnetic phase of the
system. Then we obtain

Gm
σ (iω) =

1√
N

∑
k

V ∗
k Gm

σ (k|iω) = gσ(iω)G0
σ(iω) − fσσ′(iω)F

0

σσ(iω),

Fm
σσ(iω) =

1√
N

∑
k

V ∗
k Fm

σσ(−k|iω) =

= gσ(iω)F 0
σσ(iω) + fσσ(iω)G0

σ(−iω), (36)

F
m

σσ(iω) =
1√
N

∑
k

V ∗
k F

m

σσ(k|iω) = gσ(−iω)F
0

σσ(iω) + fσσ(iω)G0
σ(iω).

When the superconducting state is established in the both f and c subsystems,
simultaneously, and the bare anomalous Green's functions of conduction electrons
are equal to zero, the above equations become more simple:

Gm
σ (iω) = gσ(iω)G0

σ(iω),
Fm

σσ(iω) = fσσ(iω)G0
σ(−iω), (37)

F
m

σσ(iω) = fσσ(iω)G0
σ(iω).
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For the second group of mixed functions in the same conditions we obtain

Gmσ(iω) = G0
σ(iω)gσ(iω),

Fmσσ(iω) = G0
σ(iω)fσσ(iω), (38)

Fmσσ(iω) = G0
σ(−iω)fσσ(iω).

Further we shall restrict ourselves only to consider the case of a paramagnetic
system in the normal state. The equations for corresponding Green's functions of
conduction and impurity electrons became:

Gσ(k,k′|iω) = δkk′G0
σ(k|iω) +

VkV∗
k′

N
G0

σ(k|iω)gσ(iω)G0
σ(k′|iω),

gσ(iω) =
Λσ(iω)

1 − Λσ(iω)G0
σ(iω)

, Λσ(iω) = g0
σ(iω) + Zσ(iω), (39)

where

G0
σ(iω) =

1
N

∑
k

|Vk|2G0
σ(k|iω) =

∫
dε

V2(ε)ρ0(ε)
iω − ε

.

Here ρ0(ε) is the density of states of the bare conduction band and matrix
element of hybridization Vk is supposed to be dependent on the energy. Equa-
tions (39) are exact, but for correlation function Zσ(iω) doesn't exist an exact
Dyson-type equation and only approximate expressions can be available (see
Fig. 9 in this paper). The diagrams of Fig. 10, b type are omitted in this investi-
gation. Our main approximation comes to the summation of the ladder diagrams
which will be enough to obtain the leading contributions of the spin and charge

uctuations. This approximation has used only the simplest irreducible Green's

function g
(0)ir
2 which is iterated many times. It has the form:

Zσσ′ (τ − τ
′
) = −

∑
k1k2σ1σ2

β∫
0

dτ1

β∫
0

dτ2g
(0)ir
2 [σ, τ ; σ1, τ1|σ2, τ2; σ′, τ ′]

1
N

V ∗
k1

Vk2Gσ2σ1(k2, τ2|k1, τ1), (40)

or in Fourier representation

Zσσ′ (iω) = − 1
β

∑
ω1

∑
σ1σ2

∑
k1k2

g̃
(0)ir
2 [σ, iω; σ1, iω1|σ2, iω1; σ′, iω]

1
N

V ∗
k1

Vk2Gσ2σ1(k1,k2|iω1). (41)
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στ σ′τ ′

G(k2σ2τ2 | k1σ1τ1)

V 2V
∗
1

g
(0)ir
2 (στ ;σ1τ1 | σ2τ2; σ

′τ ′)Zσσ′(τ − τ ′) =

Yσσ′(τ − τ ′) =

Y σσ′(τ − τ ′) =

21

21

1 2

F (k1σ1τ1 | −k2σ2τ2)

σ′τ ′ στ

σ′τ ′ στ

V 1 V 2

V
∗
1 V

∗
2

−
2
1−

−1

−
2
1−

F (−k1σ1τ1 | k2σ2τ2)

g
(0)ir
2 (σ1τ1; σ2τ2 | στ ; σ′τ ′)

g
(0)ir
2 (στ ;σ′τ ′ | σ1τ1; σ2τ2)

Fig. 9. Schematic representation of the main approximations for the correlated functions.
The solid double lines with arrows depict the renormalized one-particle Green's functions
of conduction electrons. The rectangles depict the irreducible Green's functions of impurity
electrons

Here we take into account the conservation law of the frequencies:

g
(0)ir
2 [σ, iω; σ1, iω1|σ1, iω1; σ′, iω′] =

= βδ(ω − ω′)g̃(0)ir
2 [σ, iω; σ1, iω1|σ2, iω1; σ′, iω]. (42)

In paramagnetic phase we have more simple equation (σ′ = σ):

Zσ(iω) = − 1
β

∑
ω1

∑
σ1

g̃
(0)ir
2 [σ, iω; σ1, iω1|σ1, iω1; σ, iω]Gσ1(iω1), (43)
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Fig. 10. Examples of the simplest ladder diagram for g function

where

Gσ(iω) =
1
N

∑
k1k2

V ∗
k1

Vk2Gσ(k1,k2|iω). (44)

On the base of equations (9) and (39) the last function (44) can be presented in
the form:

Gσ(iω) = G0
σ(iω) + [G0

σ(iω)]2gσ(iω) =
G0

σ(iω)
1 − Λσ(iω)G0

σ(iω)
. (45)

By using the deˇnition (39) of correlation function of normal state Λσ(iω)
and approximation (43) for function Zσ(iω), we obtain the ˇnal integral equ-
ation for Λσ:

Λσ(iω) = g(0)
σ (iω) − 1

β

∑
ω1

∑
σ1

g̃
(0)ir
2

[σ, iω; σ1, iω1|σ1,iω1; σ, iω]
G0

σ1
(iω1)

1 − Λσ1(iω1)G0
σ1

(iω1)
. (46)

In the following Section of this paper we shall discuss the simplest case of
symmetric impurity Anderson model with the condition 2εf + U = 0.
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5. SYMMETRIC MODEL

In the simplest case of symmetric impurity Anderson model when εf =
−U/2 < 0 and εf + U = U/2 > 0 we have more simple equations:

g0
σ(iω) =

iω

(iω)2 − (U/2)2
,

Z0 = 2(1 + exp (−βεf )) = 2(1 + exp (βU/2)), (47)

nσ = 1/2,

and the antisymmetry property of zero order impurity Green's function g0
σ(−iω) =

−g0
σ(iω) takes place.
Additionally we assume the evenness of the matrix element V (ε) and of the

bare density of state ρ0(ε). In this case the function G0
σ(iω) is also antisymmetric

G0
σ(−iω) = −G0

σ(iω).
Thanks to these antisymmetry properties, we may look for an antisymmetric

solution
Λσ(−iω) = −Λσ(iω) (48)

of equation (46). Analytical continuation of these functions have the property of
oddness of their real parts and evenness of imaginary parts

g0
σ(E + iδ) = −g0

σ(−E − iδ),
G0

σ(E + iδ) = −G0
σ(−E − iδ), (49)

Λ0
σ(E + iδ) = −Λ0

σ(−E − iδ),

where

G0
σ(E + iδ) = I(E) − iΓ(E),

I(E) = P

∫ |V (ε)|2ρ0(ε)dε

E − ε
, (50)

Γ(E) = π|V (E)|2ρ0(E).

I(E) is the principal part of the integral. This function is antisymmetric. Γ(E)
is the band width of the virtual level and an even function of energy. The sym-
metric impurity Anderson model has the advantage to be of a simple form for
the irreducible two particles Green's functions in different spin and frequency
channels. In this special case we have [31, 32]

g̃
(0)ir
2 [σ, iω; σ, iω1|σ, iω1; σ, iω] =

β(U/2)2(1 − δωω1)
[(iω)2 − (U/2)2][(iω1)2 − (U/2)2]

, (51)
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g̃
(0)ir
2 [σ, iω; σ, iω1|σ, iω1; σ, iω] =

=
U

2

{
βU

2
(1 − exp (βU/2))

(1 + exp (βU/2))[ω2 + (U/2)2][ω2
1 + (U/2)2]

−

− βUδ(ω − ω1) exp (βU/2)
(1 + exp (βU/2))[ω2 + (U/2)2][ω2

1 + (U/2)2]
+

+
βUδ(ω + ω1)

(1 + exp (βU/2))[ω2 + (U/2)2][ω2
1 + (U/2)2]

−

− 2
[ω2 + (U/2)2][ω2

1 + (U/2)2]
+ 4(U/2)2[

1
[ω2 + (U/2)2][ω2

1 + (U/2)2]2
+

+
1

[ω2 + (U/2)2]2[ω2
1 + (U/2)2]

]}
. (52)

Now we come back to equation (46) and note that thanks the antisymmetry
property (48) of Λσ(iω) only those terms of equations (51) and (52) which contain
Kronecker δ-symbols give the nonzero contribution in the right-hand part of it.

The result of summation has the form:

Λσ(iω) =
iω

(iω)2 − (U/2)2
+

3(U/2)2

[(iω)2 − (U/2)2]2
G0

σ(iω)
[1 − Λσ(iω)G0

σ(iω)]
. (53)

We notice that the scattering channel with opposite spins (52) gives in equa-
tion (53) the twise contribution in comparison with parallel spin channel (51)
and both of them are added together giving the factor 3 in the right-hand part
of equation (53). There are two solutions of equation (53) and we take that of
them which has the correct asymptotic behavior λσ(iω) → 1

iω when |ω| tends to
inˇnity. This solution has the form:

Λσ(iω) =
1

2G0
σ(iω)[(iω)2 − (U/2)2]

{
[(iω)2 − (U/2)2 + iωG0

σ(iω)]−

−[(iω)2 − (U/2)2 − iωG0
σ(iω)]

√
1 − 12Q(iω)

}
, (54)

where

Q(iω) =
(

(U/2)G0
σ(iω)

(iω)2 − (U/2)2 − iωG0
σ(iω)

)2

. (55)

We have used that branch of square root which gives one when Q(iω) tends to
zero. On the basis of equations (39) we obtain the renormalized impurity electron
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propagator

g(iω) =

=
2[g0(iω)[G0(iω)]−1 + 3Q(iω)(g0(iω) − [G0(iω)]−1)2]

[[G0(iω)]−1 − g0(iω)][1 +
√

1 − 12Q(iω) + 6Q(iω)(g0(iω)G0(iω) − 1)]
.

(56)

In the last equations the spin index σ is omitted because it is not signiˇcant.
Equation (56) has been obtained by taking into account the spin and charge

uctuations contained in the correlation function Zσ(iω).

The spectral function of the impurity electrons is equal to

Af (E) = −2Img (E + iδ) , (57)

where g(E + iδ) with δ = +0 is the analytical continuation of the Matsubara to
retarded Green's function. In absence of the correlation function Zσ(iω) instead
of equation (56) a more simple form appears

gI
σ(iω) =

g0
σ(iω)

1 − g0
σ(iω)G0

σ(iω)
=

1
[g0

σ(iω)]−1 − G0
σ(iω)

, (58)

which can be named as Hubbard I approximation. This equation contains the
zero order Green's function g0(iω) determined by equation (47) and averaged by
hybridization conduction electron function G0

σ(iω) of equation (50).
Analytical continuation of equation (58) gives

gI
σ(E + iδ) =

1
E − (U/2)2E−1 − I(E) + iΓ(E)

. (59)

We shall compare our renormalized spectral function (57) with more simple bare
quantity A0

f (E):

A0
f (E) = −2Img0(E + iδ) =

2πδ(E − (U/2)2E−1) = π

(
δ(E − U

2
) + δ(E +

U

2
)
)

, (60)

and the value AI
f (E) obtained in Hubbard I approximation:

AI
f (E) = −2ImgI(E + iδ) =

2Γ(E)
(E − (U/2)2E−1 − I(E))2 + Γ2(E)

. (61)

Here the odd I(E) and even Γ(E) functions are determined by equation (50).
Two resonances of equation (60) situated at energies E = ±U

2 have not the
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width. After some interactions taken into account by Hubbard I approximation a
new spectral function (61) appears. It has two resonances with shifted values of
energies E = ±E0 determined by the presence of function I(E):

E0 −
(U/2)2

E0
− I(E0) = 0. (62)

These resonances are broadened by the presence of the function Γ(E), which
is the width of the virtual level. This function Γ(E) determines the height and
width of both resonances. Near the new values of resonance energies ±E0 we
can approximate (61) with more simple Lorentzian forms:

2Γ
ψ2(E ∓ E0)2 + Γ2

, (63)

where

ψ = 1 +
(

U

2E0

)2

− I ′(E0), (64)

and E0 is determined by equation (62).
Both approximations (60) and (61) give the zero value of spectral functions

on the Fermi surface, where E = 0. The correctness of the result has to be
veriˇed by the sum rule

∞∫
−∞

Af (E)dE = 2π. (65)

Equation (60) fulˇls this condition. If we omit for the simplicity function
I(E) in equation (61) we can verify also the fulˇllment of this condition for
equation (61), but not for its approximations (63), because the parameter ψ is not
equal to two. Some details connected with the choice of the density states can be
found in Appendix.

In the next Section we use equations (55) and (56) to obtain more complete
spectral function of impurity electrons and to verify the existence of the resonance
at zero energy.

6. RENORMALIZED SPECTRAL FUNCTION

Analytical continuation of equations (55) and (56) which are necessary to
calculate the spectral function have the form

g(E + iδ) = [[G0(E + iδ)]−1 − g0(E + iδ)]−1×

× 2[g0(E + iδ)[G0(E + iδ)]−1+ 3Q(E + iδ)(g0(E + iδ) − [G0(E + iδ)]−1)2][
1 +

√
1 − 12Q(E + iδ) + 6Q(E + iδ)(g0(E + iδ)G0(E + iδ) − 1)

] ,

(66)
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Q(E + iδ) =
(

UG0(E + iδ)/2
E2 − (U/2)2 − EG0(E + iδ)

)2

. (67)

First of all, we shall analyze the behavior of the renormalized Green's function
on the Fermi surface for E = 0. Near the value of the energy E = 0 we can
approximate the quantity Q(E + iδ) by the expression

Q(E + iδ) |E=0= −
(

2Γ(0)
U

)2

, (68)

and supposing the smallness of the parameter 2Γ/U we can approximate equa-
tion (66) by more simple one:

g(E + iδ) � 6Q(E + iδ)
G0(E + iδ)[1 +

√
1 − 12Q(E + iδ) − 6Q(E + iδ)]

. (69)

For little values of energy we have

g(E + iδ) � 6 (2Γ/U)2

Γ2(E) + E2I ′(0)2

[
−EI ′(0) + i(Γ(E) + I ′(0)2E2/Γ(0))

][
1 +

√
1 + 12 (2Γ/U)2 + 6 (2Γ/U)2

] .

The spectral function of impurity electrons in the region of little values of
energy E is different from zero and has the form

Af (E) � 12 (2Γ/U)2 /Γ(0)[
1 + 6 (2Γ/U)2 +

√
1 + 12 (2Γ/U)2

] . (70)

In Appendix the values of the quantity I ′(0) equal to 4ρ(0)V 2(0)/W or
πV 2(0)ρ(0)/D for two different models of density of states are cited. The
result (70) differs essentially from the zero value obtained in such more simple
approximations for Af (E) as A0

f (E) and AI
f (E). Thus we have established the

existence of two resonances at energies E = ±E0 determined by (62) and the
peculiarity E = 0. We can ˇnd the corrections to the spectral function Af (E)
at two resonances E = ±E0. With this end in view, we determine the quantity
Q for E = E0

Q(E + iδ) = − (I(E0) − iΓ(E0))
2

(
U

2E0Γ(E0)

)2

,

where we suppose that the value E0 is inside the edges of the band width. After
some calculations made with the supposition that the quantities I(E0)/Γ(E0) and
UI(E0)/2E0Γ(E0) are large and superior in number to one, we obtain

Af (E0) =
1√

3 (1 + 3(U/2E0)2)
4E0

UI(E0)
.
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This quantity essentially differs from the value AI
f (E0) = 2/Γ(E0) being con-

siderable less. Thus the process of renormalization of the impurity electron
propagator results in the appearance of the peculiarity at E = 0 and to diminution
of two resonances situated at E = ±E0.

The full spectral function can be calculated on the basis of equations (66)
and (67). In Fig. 11 the results of numerical investigation of the full spectral
function are presented for different values of theory parameters. For comparison
in this ˇgure the result obtained in Hubbard I approximation is also presented. As
can be seen from Fig. 11, there are two sharp resonance peaks near the energies
E = ±E0 and smooth behavior near E = 0. The distance between peaks is
determined by parameter U and the height and width of peaks are determined by
parameter Γ.

Fig. 11. Spectral function Af (E) × W for different values of the theory parameters as
function of energy E/W in the Hubbard I approximation (case a) and in our ladder
approximation (cases b and c). In the cases a and b: U = 1 eV, W = 2 eV, Γ =
0.1 eV and in case c: U = 1.5 eV, W = 2 eV, Γ = 0.15 eV
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7. THE STATIONARY PROPERTY OF THERMODYNAMIC POTENTIAL
IN THE NORMAL STATE

The full one-particle Matsubara Green's functions of conduction and localized
electrons in interaction representation are deˇned in Sec. 2.

In this Section we deˇne the local operator for conduction electrons in the
form

bσ =
1√
N

∑
k

VkCkσ. (71)

The corresponding full conduction electron Green's function has the form

Gσσ′ (τ − τ ′) = −
〈
Tbσ(τ)bσ′(τ ′)U(β)

〉c

0
, (72)

where U(β) is the evolution operator (5).
Because the matrix element of hybridization Vk is absorbed by local operator

bσ it is convenient to introduce a new parameter λ, which will be associated to
each vertex of the diagrams. In such a way the order of perturbation theory will
be determined by λ and not by the matrix element Vk of hybridization which can
be present even in zero order Green's function. In the last stage of the calculation
λ will be put equal to one.

In zero order of perturbation theory the Fourier representation for the con-
duction electrons is determined by the formulae

G0
σσ′ (iω) = δσσ′G0

σ(iω),

G0
σ(iω) =

1
N

∑
k

|Vk|2
iω − ε(k)

.
(73)

The presence in the deˇnition of zero order Green's function G0
σ of the

square of matrix element of hybridization is the consequence of our equation (71)
but not of the perturbation. The thermodynamical perturbation theory gives us
in the normal state the results for one-particle Green's functions presented in
Figs. 12 and 13. The double solid and dashed lines depict the renormalized and
the thin lines the bar propagators of conduction and impurity electrons. The lines
connect the crosses which depict the impurity states. To crosses are attached two
arrows one of which is ingoing and the other one is outgoing. They depict the
annihilation and creation of the electrons, correspondingly. The crosses are the
vertices of the diagrams and a λ multiplier is attached to each of them. The
index n means (σn, τn). The summation on the index σn and the integration
on the τn are intended. The rectangles with 2n indices and crosses depict the

irreducible g
(0)ir
n [1, ..., n | n+1, ..., 2n] Green's functions. The sign of diagrams is

determined by the parity (even or odd) of the permutation of the Fermi operators

24



necessary to obtain the diagram. Using Feynman's rules, it is possible to establish
the next equation for the diagrams shown in Fig. 12:

Gσσ′ (τ − τ
′
|λ) = G0

σσ′ (τ − τ
′
)+

∑
σ1σ2

β∫
0

dτ1

β∫
0

dτ2G
0
σσ1

(τ − τ1)λgσ1σ2(τ1 − τ2|λ)λG0
σ2σ′(τ2 − τ

′
). (74)

On the basis of the diagrams depicted in Fig. 13, it is possible to establish
the following Dyson-type equation for gσσ′ :

−1

−1

−1 −1
σ′τ ′63

G0

g
(0)ir
2 [3, 4|5, 6]

G0λ4
54

G0 g0λ λ G0

1 2στ

στ σ′τ ′
=

G0

στ σ′τ ′
+

στ σ′τ ′1 2

G0 G0g0λ λG

σ′τ ′61
g

(0)ir
2 [1, 2|5, 6]

G0G0 λ4
52

στ

G0 g0
G0
43

σ′τ ′41
g

(0)ir
2 [1, 2|3, 4]

G0G0 λ4
32

στ

G0

41
g

(0)ir
2 [1, 2|3, 4]

G0G0 λ4
32

στ σ′τ ′6

g0
G0λ λ

5

g
(0)ir
3 [1, 2, 3|4, 5, 6]

+
4 5 σ′τ ′

G0λλ G0 λ g0

6στ

λ λG0

1 2 3

g0 G0 λ g0

G0

+

−

λλ

στ
+

λ λG0 G0

2 3 4

λ G0

σ′τ ′

g0 λ g0

1

σ′τ ′

3 4G0

λ6
2 5

1 G06G0
−1

2
+...

G0

στ

+

Fig. 12. Diagrams of the ˇrst six orders of perturbation theory for the conduction electron
propagator. The thin solid lines represent the conduction electron propagator and dashed
lines Å the impurity electron propagators of zero order. Double line represents the full
propagator

gσσ′(τ − τ
′ |λ) = Λσσ′(τ − τ

′ |λ)+

∑
σ1σ2

β∫
0

dτ1

β∫
0

dτ2Λσσ1(τ − τ1)λG0
σ1σ2

(τ1 − τ2)λgσ2σ′(τ2 − τ
′
), (75)
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=
στ σ′τ ′

g0g

στ σ′τ ′ +
στ σ′τ ′

g0 g0
G0λ λ

1 2
+

στ
+

σ′τ ′
G0G0λ λ λ λg0 g0 g0

1 2 3 4
−

G0

2

4

6

σ′τ ′
λ3

5

G0

G0

3
g

(0)ir
2 [4, 5|6, σ′τ ′]

στ

+1 λ3

1

g
(0)ir
2 [στ, 1|2, 3]

G0

σ′τ ′

2

στ

−1 λ2
1

g
(0)ir
2 [στ, 1|2, σ′τ ′]

G0

+

στ σ′τ ′

−1

2 λ4
1

2

4

3G0

g
(0)ir
3 [στ, 1, 2|3, 4, σ′τ ′]

+ ...

Fig. 13. Some diagrams for impurity electron propagator gσσ′(τ − τ ′). The last three
diagrams contain the correlation contributions. Two of them are strong connected and the
last one is weak connected

where

Λσσ′(τ − τ
′ |λ) = g0

σσ′ (τ − τ
′
) + Zσσ′ (τ − τ

′ |λ). (76)

Here Zσσ′ is the new correlation function which contains an inˇnite sum of the
irreducible Green's functions. As was underlined above, this function contains
all spin, charge and pairing 
uctuations and is the main element of our diagram
technique.

Diagram representation of the correlation function Λσσ′ (τ − τ
′ |λ) is depicted

in Fig. 14.
The series expansion of the full propagator Gσσ′ (τ − τ ′) can give us more

detailed representation of this quantity.
By using the Fourier representation of Matsubara functions on the base of

equations (74) and (75), we have

Gσ(iω|λ) =
G0

σ(iω)
1 − Λσ(iω|λ)G0

σ(iω)λ2
, (77)

gσ(iω|λ) =
Λσ(iω|λ)

1 − Λσ(iω|λ)G0
σ(iω)λ2

. (78)
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Λσσ′(τ − τ ′|λ) =
g0

στ σ′τ ′ −

σ′τ ′

4

3

G

στ

λ4
1

2 G

2

g
(0)ir
2 [στ, 1|2, σ′τ ′]

σ′τ ′στ

λ2
1

G

−1 −1

2

σ′τ ′

5

4

6

G

−1

6

g
(0)ir
4 [στ, 1, 2, 3|4, 5, 6, σ′τ ′]

στ

2

3

λ61

G

G

−1

2 στ

2

3

λ3
1

g
(0)ir
2 [στ, 1|2, 3]

...

G

4

6

σ′τ ′
λ3

5

g
(0)ir
2 [4, 5|6, σ′τ ′]

+

G

G

g
(0)ir
3 [στ, 1, 2|3, 4, σ′τ ′]

Fig. 14. Diagram representation of the correlation function Λσσ′ . Double solid lines depict

the renormalized conduction electron propagators Gσσ′(τ − τ
′ |λ). The arguments of

irreducible functions are supposed arranged in the clock wise direction

Equation (77) for conduction electron propagator is the Dyson one with mass
operator determined by the correlation function of impurity electrons:

Σσ(iω|λ) = λ2Λσ(iω|λ). (79)

When λ is equal to one these quantities coincide.
Equation (78) for impurity electrons is of Dyson type and coincides, for

λ = 1, with other equations obtained for strongly correlated electrons [31Ä35].
In equations (77), (78) the parameter λ can be taken equal to one and can be
omitted.

The thermodynamic potential of our strongly correlated system are deˇned
in Sec. 3

In Fig. 15 some of the simplest vacuum diagrams in the normal phase of
the system are depicted. The ˇrst three diagrams are of chain type and are
originated from the ordinary Wick contributions. The last three diagrams contain
the correlation functions and are determined by the new contributions of GWT.
The factor 1

n , where n is the perturbation theory order, present in these diagrams
makes it difˇcult to carry out the summation over n. As is usual in such cases [36],
we employ a trick, that of integrating over the interacting strength λ. The result
of this procedure is depicted in Fig. 16. Now we shall use the diagrams of the
conduction electron propagator Gσ depicted in Fig. 12 and these of Λσ from
Fig. 14 to combine them in such a way to obtain the vacuum diagrams of Fig. 16.
Either diagrams of Fig. 16 of the n order of perturbation theory can be considered
as the product of the contribution of order n1 from Gσ and of the contribution
of order n2 from Λσ with the condition that n1 + n2 = n. There are in general
case different possibilities to arrange such a contribution and the number of these
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= −1

2
g0

λ2 −1

3
λ6

G0

G0G0

g0g0

g0

+

+1

〈U(β)〉c0 −1 1 2

3

4
λ6

2

3

5

4

G0

G0

+...

62
+

1

6

G0

g
(0)ir
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+
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1
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1
λ6
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Fig. 15. Connected vacuum diagrams of the second, fourth and sixth orders of perturbation
theory

=2
λ∫

0

dλ′

λ′ {〈U(β)〉c0 −1

1
λ′6 +−1

1
λ′4

+
2

2
λ′4

−1

1
λ′2

+
3

1
λ′6

G0

}+...+
3

6
λ′6

Fig. 16. The result of integration over the interacting strength of the vacuum diagrams

possibilities is determined by the numerator of the fraction before the diagrams of
Fig. 16. The denominator of this fraction is determined from Fig. 15. Therefore,
we obtain

〈U(β)〉c0 = (−2)
∑
σ1σ2

β∫
0

dτ1

β∫
0

dτ2

λ∫
0

dλ′

λ′ Gσ1σ2(τ1−τ2|λ′)Σσ2σ1(τ2−τ1|λ′) =

= (−2)
∑

σ

∑
ω

λ∫
0

dλ′

λ′ Gσ(iω|λ′)Σσ(iω|λ′). (80)
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The thermodynamical potential becomes equal to

F = F0 +
2
β

∑
σ

∑
ω

λ∫
0

dλ′

λ′ Gσ(iω|λ′)Σσ(iω|λ′). (81)

From this equation we obtain

λ
∂F

∂λ
=

2
β

∑
σ

∑
ω

Gσ(iω|λ)Σσ(iω|λ). (82)

Expression (81) for thermodynamical potential contains additional integration over
the interaction strength λ and is awkward because of it. As was proved for non-
correlated many-electron system by Luttinger and Ward [36], this expression can
be transformed into a much more convenient formula.

We consider the following expression:

Y = − 1
β

∑
σ

∑
ω

exp(iω0+){ln[G0
σ(iω)Σσ(iω|λ) − 1]+

Gσ(iω|λ)Σσ(iω|λ)} + Y ′, (83)

which is the generalization of the LuttingerÄWard equation for strongly correlated
systems. Here Y ′ is the sum of closed linked skeleton diagrams with full Gσ

function as a contribution of conduction electron lines.
In Fig. 17 some of simplest skeleton diagrams are depicted. These diagrams

depend on the interaction strength λ not only through the factors in front of each
diagram but also through the full Green's function Gσ(iω|λ).

=Y ′ λ2 − 1

2
λ4 − 1

6
λ6

1

β

∑
σ

∑
ω
{

− 1

8
λ8 − 1

24
λ8 ...+ }

Fig. 17. Closed linked skeleton diagrams. The double solid lines correspond to full
propagators Gσ(iω|λ) of conduction electrons. The rectangles correspond to the correlation
functions of the correlated electrons
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From equations (77), (79) and (83) we obtain

∂Y

∂Σσ(iω|λ)
= − 1

β
Σσ(iω|λ) G2

σ(iω|λ) +
∂Y ′

∂Σσ(iω|λ)
, (84)

where, from Figs. 14, 17 and deˇnition (79), it follows that

∂Y ′

∂Gσ(iω|λ)
=

λ2

β
Λσ(iω|λ) =

Σσ(iω|λ)
β

. (85)

As a result, we obtain the stationary property with respect to changes of the
mass operator:

∂Y

∂Σσ(iω|λ)
= 0. (86)

Now we shall ˇnd the quantity
∂Y

∂λ
. By the stationary property of Y we can

ignore the dependence of Σσ and Gσ on λ and take into account only the explicit
dependence of λ in Y ′, depicted in Fig. 17. From this ˇgure it is easy to obtain

λ
∂Y

∂λ
|Σ= λ

∂Y ′

∂λ
|Σ=

2
β

∑
σ

∑
ω

Gσ(iω|λ)Σσ(iω|λ). (87)

From equations (82) and (87) we obtain

λ
∂F

∂λ
= λ

∂Y

∂λ
. (88)

The consequence of this equation is the solution

F (λ) = Y (λ) + const. (89)

For λ = 0, we have Y (0) = 0 and F (o) = F0. Therefore, const = F0.
The ˇnal result has the form

F = F0 + Y. (90)

8. CONCLUSIONS

We discuss the Anderson impurity model and take into account the strong
electronic correlations of the impurity electrons by elaborating the suitable di-
agram technique. We have established a linked cluster theorem derived from
a generalized Wick theorem and then we have derived the expression for the
renormalized propagators, both for normal and anomalous conduction and the
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impurity electrons. The impurity full propagator is expressed via a correla-
tion function Zσ(iω).

The special approximation for the correlation function Zσ(iω) has been ob-
tained which gives the possibility to close the system of equations and to ˇnd
the solution for renormalized function gσ(iω). This Matsubara Green's function
has been continued analytically to obtain the retarded one. Spectral function of
impurity electrons for the symmetric model is obtained, and the structure of reso-
nances and their properties are analyzed. Two of the resonances of this function at
E = ±E0 (Fig. 11), correspond to the energies of quantum transitions of single-
site impurity, and the smooth behavior was found at the energy E = 0. The
details of the spectral function renormalization are based on the properties of real
I(E) and imaginary Γ(E) parts of function G0

σ(iω), which is the conduction band
electron Green function averaged by the hybridization interaction. The values of
these functions and the values of energies ±E0 are discussed in Appendix. In
particular, we have shown that going beyond the Hubbard I approximation, some
spectral weight is transferred from the resonances E = ±E0 to energy E = 0.
The peculiarity at E = 0 is the novel result of our analysis, and although our ap-
proximation does not yet yield the resonance at zero energy, could be relevant to
understand some physical properties of realistic systems, e.g., spin susceptibility,
and the magnetotransport of dilute magnetic alloys or quantum dots.

The thermodynamic potential of a strongly correlated system described by
the Anderson impurity model has been calculated in the normal phase. Within
our diagrammatic technique we ˇrst obtained an exact expression for the ther-
modynamic potential as a product of the full propagator Gσ of the conduction
electrons and its mass operator Σσ, then a LuttingerÄWard-type [48] of identity
based on the stationary property of the potential was established. The expression
for the thermodynamic potential so obtained could be very useful to calculate in
a systematic way all thermodynamic quantities (e.g., speciˇc heat) of strongly
correlated electron systems.

Appendix

SIMPLE EXAMPLES OF DENSITY OF STATE

We can demonstrate some simple examples of the choice of the density
of states and of the corresponding functions I(E) and Γ(E). For simplicity
the energy dependence of the matrix element of hybridization V (ε) is supposed
smooth and can be neglected. One example of density of states has been proposed
in the paper [3]. In this paper the following equations are used:

ρ0(ε) = ρ0(0) (1 − (ε/W )2), |ε| < W,

I(ε) = ρ0(0)V 2(0)[2ε/W +
(
ε2/W 2 − 1

)
ln |(ε − W )/(ε + W )| , (A.1)

Γ(ε) = πV 2(ε)ρ0(ε).

31



where 2W is the conduction band width. For little value of energy we have
I(ε) = I ′(0)ε with

I ′(0) = 4ρ0(0)V 2(0)/W, (A.2)

and for E → ±∞ function I(E) tends to zero as 1/E. In the case (A1)
equation (62) takes the form (x0 = E0/W ):

x0 − a2/x0 − bϕ(x0) = 0, (A.3)

where

ϕ(x) = 2x + (x2 − 1) ln
∣∣∣∣x − 1
x + 1

∣∣∣∣ ;

a = U/2W ; b = ρ(0)V 2/W.

We note that the functions ρ0(ε) and Γ(ε) exist only inside the edges of the
conduction electron band |E| < W whereas the function I(ε) and the solution of
equation (A2) can exist also for |E| > W . Therefore we have to ˇnd the solution
of (A2) with x < 1 and consider the conditions for the values of parameters a
and b compatible with this requirement.

Another simple example of the density of state is one with Lorentzian
shape [16]

ρ0(ε) = 2D/(E2 + D2), (A.4)

with chemical potential placed at the ε = 0. This choice has the advantage of not
introducing band edges. It has the parameter D as an effective band width:

I(E) = 2πV 2(0)E/(E2 + D2),

Γ(E) = πρ0(0)V 2(0) = 2πV 2(0)/D.
(A.5)

In this case instead of equation (A3) we have other values of parameters a and b
and other form of function ϕ(x):

x − a2/x − bx/(1 + x2) = 0,

a = U/2D; b = 2πV 2(0)/D2.
(A.6)

Equation (A6) has two solutions ±x0 with

x0 =
[√

(1 − a2 + b)2 + 4a2 + a2 + b − 1
]1/2

/
√

2. (A.7)

The value of parameter I ′(0) is equal to 2πV 2(0)/D2 = πV 2(0)ρ0(0)/D.
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