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INTRODUCTION

In [1] H. Behforooz introduced integro cubic splines, and the accuracy of this
type of splines was shown by numerical experiments. Motivation of construction
of such splines was also explained in [1] by numerous practical applications. To
construct the integro cubic splines proposed in [1], besides two end conditions,
also one additional/or third end condition is needed that seems to be unnatu-
rally. He pointed out that to construct the integro cubic splines in terms of the
second derivative with any end conditions, one had to solve a system of linear
equations with a full matrix of higher order. In this paper we show that using
B-representation of cubic splines one can overcome the difficulties arising in
H. Behforooz’s approaches. We also prove that the unique integro cubic spline
exists under the appropriate given end condition and the algorithm of constructing
of such a spline leads to solving a tridiagonal system. Approximation properties
of the splines constructed using B-representation are also considered.

1. PRELIMINARIES

Suppose that the interval [a, b] is partitioned by the following k£ + 1 equally
spaced points:
a=x9<x1 < - <xp_1 <T =D, (1.1)

such that z; = a + th, for i = 0,1,...,k with h = (b — a)/k. Assume that the
function values y; = y(z;) are not given but integrals of y = y(x) are known on
k intervals [x;_1, ;] and they are equal to

/ @)z = T, i = 1(1)k. (12)

The cubic splines S(z) € C?[a, b] are called integro cubic ones [1], if

Zq

/ S(x)dx = / y(x)de =1;, i=1(1)k. (1.3)

i—1



For simplicity, we will use the notations: y; = y(x;), S; = S(x;), m; = s (x;)
and M; = S (z;). If we use the first derivative representation of S(x) € C?[a, b],
then it is easy to show that conditions (1.3) lead to

h2(mi_1 —my;) + 6h(S;_1 + S;) = 12I;, i = 1(1)k, (1.4)

h2(mi — mi+1) + 6h(Sl + Si+1) = 12]i+1, 1= O(l)k‘ — 1. (15)

From (1.4), (1.5) and from the well-known consistency relations

3
mi—1 +4m; + mip = E(Si+1 =8i—1), i=1(1)k-1, (1.6)

it follows that [1]

mi—1 + 10m; + miy = ;L_z(-[i+1 —IZ‘), 1= 1(1)]€—1 (1.7)
In order to construct the cubic spline S using Eq. (1.7) and solve it for k + 1
unknowns mg, my, ..., mg, we need (as usual) two additional equations. Suppose
that y'(a) = « and y'(b) = 3 are given. Then, by setting mo = « and my = [,
we can solve easily the following (k — 1) by (k — 1) linear tridiagonal equations
to obtain a unique set of solutions for mi, me, ..., mg_1:

10my +me = b1 — o
mi—1 + 10m; +miy1 = biy, 1= 2(1)]4; -2, (1.8)
mg—1 + 10my = br_1 — 3,

1
where b; = ﬁ(fiﬂ — I;). After finding mg, mq, ..., my from (1.8), we can use
(1.4) or (1.5) to compute Sy, S1,...,S,. But we need another additional given

value for y(a) or y(b). If the additional (third) end condition yo = y(a) is not
given and y(a) is not available, in [1] it was proposed to use the relations

Sl — So = ]’Lmo or Sl — So = hm1 (19)

as an additional equation. However, in this case we lose the order of accuracy of
spline, due to (1.9).

If we use a second derivative representation of S(x), then it is easy to show
that conditions (1.3) lead to

h3 h
—ﬂ(Mi_l—FMi)"'?(Si—l“‘Si) =1, iZl(l)k‘, (1.10)
h3 h .
_ﬂ(MZ + Mi+1) + 5(52 + Si+1) =lit1, 1= 0(1)/6‘ — 1. (1.11)



Unlike the first derivative representation, here we cannot eliminate S’s between
(1.10), (1.11) and the consistency relations

%(SH — 28+ Sip1), i=11k—1  (1.12)

M;  +4M; + M, = N

to obtain a relation similar to (1.7) without S’s. So, to construct S(x) using
the second derivative representation with any end conditions, we have to solve a
system of linear equations with a full matrix of order (2k + 2) by (2k + 2). It
should be pointed out that the above-mentioned conclusions are the main results
of paper [1].

2. INTEGRO CUBIC SPLINE WITH B-REPRESENTATION

Now we proceed to use the B-representation of cubic spline S(x) of class
C?la,b]. To do this, the partition of [a, b] is extended to the left and right sides
by equally spaced knots

T3 <T_o<T_o<Xxo, Th <Th41 < Tpio < Tk43-

Then we have [2, 3]
k41

S(x) =Y a;B;(x), @.1)

j=—1

where B;(z) is a normalized cubic B-spline with compact support [z;_2, Tj42].

The coefficients of expansion (2.1) are given by [3]:

hi —h;_1 hih;_1
J - R L 6]

aj:Sj+ Mj 7=0,1,... k. 2.2)

In case of a uniform partition, formula (2.2) becomes

h2
Olj:Sj—EMj,jZO,l,...,k. (23)

Also from (2.1) it follows:

Qi1 +4a; + o

S; = , 2.4
5 2.4
Qi1 — Q-1
s = 1 2.5
" 2h 2:5)
o1 — 2045 + oy
M; = —H—3 -, (2.6)



where i =0,1,...,k.

We will show that the difficulties mentioned above may be overcome by
using B-representation (2.1), instead of the second derivative representation. In
order to show that, we rewrite relations (1.10) and (1.11) in term of expansion
coefficients «;

h? 2
;1 + oy + E(Miq + M;) = E-’i, i=1(1)k, 2.7
h? 2 ,
o + ayr + E(Mz + M) = Eli-&-ly i=0(1)k—1. (2.8)
By adding (2.7) and (2.8), we get
h? 2 .
Oéi—l+204i+04i+1+E(Mi—1+2Mi+Mi+1) = E(IH-L'-H), i=1(1)k—1 (2.9)

or

h? 2
Sic1+28i+ Siv1 — 5 (Mi—y +2M; 4+ M;y1) = E(IZ +1iy1), i=1(1)k—1.

12
(2.10)
If we use a notation
di =a; +5;, i= 0(1)]{, 2.11)
then it is easy to check that relations (2.7) and (2.8) are equivalent to
4
di—1+d; = Eji i =1(1)k, (2.12)
and 4
di +dip1 = EL‘H, i=0(1)k -1, (2.13)
respectively. Adding (2.12) and (2.13), we get
4 .
di—1 4+ 2d; +diy1 = E(IZ + Ii+1)7 1= 1(1)k‘ —1. (2.14)
From (2.14) it is clear that dy,ds,...,d;_1 are determined by solving this tridia-

gonal system, if dy and dj, are given. However, instead of solving the tridiagonal
system we can find all d; using the following formulas:

i

. 4 L
d; = (—1)Zdo+EZ(—1)Z+JIj, i=1(1)k (2.15)
j=1
or
_ 4 &F _
di = (~1)'di + (=)L i=k—1,k—2,...,0, (2.16)
j=i+1



that immediately followed from (2.12) and (2.13). We now want to show how
dop and dj, can be found. What was used to find them? To do this, we consider a
useful identity

ai—1 + 20 + a1 = 4a; + hQMz (2.17)

Using (2.17) we can rewrite (2.9) as

h? L+ Lt

a+48( 1+ + Mii1) o, (2.18)

"

Since M1 + M; 1 = 2M; + h(S; o — S;/LO), then from (2.18) it immediately
follows that

3
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3
a1+ o + Qi1 = —(IZ + Ii+1) — (SiJrO — SZ;O), 1= 1(1)k‘ —1. (2.19)

2h
The last term in the right-hand side of (2.19) is small and it can be neglected. As
a result, we obtain an approximate formula

3
i1 + o+ 01 = ﬁ([l + Ii+1), 1= 1(1)k‘ — 1. (2.20)

Taking into account (2.20) for ¢+ = 1, we obtain

h? oo + a1 + as I + Iy
S1+ —M; = = .
1t 3 2h
Therefore, we have
h? I+ 1> h?
dy = Sy =28 — —M; = - =M
1=0a1+ 051 1 g v h 5 M

in which we have used (2.3). From the last formula and (2.12) we get

4 3I, — I, h?
=-h—-d=—F—+—M;. 2.21
do 5l dy 3 + 5 M (2.21)
Analogously, we have
3L — I— h?
dy = % + 7Mk—1- (2.22)

Thus, the quantities dy and dy are determined by formulas (2.21) and (2.22),
respectively, if My or Mjy_1 are known. If M; = y" (z1) and My_1 = y” (xk—1)
are not given or y (x1) and y (xj_;) are not available, we can use simple
formulas

3L — 1 d, — 3 — Iy

do ho h

(2.23)



Of course, in this case the approximation order reduces by two.
From (2.11) it follows that

a;i—1 + 10a; + ;41 = 6d;, = O(l)k‘ (2.24)

On the other hand, relations (2.12) in term of «; are rewritten as

24
oo + 110(2'_1 + 110{1 + Ai41 = FIZ, 1= 1(1)k‘ (225)
From (2.25) and (2.20) with ¢ = 1 it follows:
3
a_1 4+ 10ag + 10a; = ﬁ<15[l — IQ).

From the last equality and from (2.24) we obtain

15 — I, 2 L+, A?
= — - — = — —M . 2-2

o 6h gh=—5, — 3 (2.26)

Analogously, we find
150, — I_1 2

= ——— — —d}. 2.27

Qg1 oh 5k (2.27)

When dy,dq,...,d; and aq,a,_1 are known the coefficients as, asg, ..., ar_o

are determined from the system

10z + a3 = 6dy — a1,
i1 + 100 + aigy = 6ds, i = 3(1)k — 3, (2.28)
op—3 + 10ag_2 = 6dr—2 — ag—1,

which follows from (2.24). After solving the system of linear equations (2.28),
the remainder coefficients a_1, g and ag, ax41 will be determined from (2.24)
for i = 0,1 and 7 = k — 1, k, respectively. Thus, we find all the coefficients «;
of B-representation of integro cubic spline. The values of this spline and its first
two derivatives at the knots x; are determined by formulas (2.4), (2.5) and (2.6).
The values of integro cubic spline at any point T € [a, b] different from knots x;

are given by
k+1

S(@) = > a;B;(x),
j=—1
in which the explicit formulas for B;-splines have been used. Thus, the construc-
tion of the integro cubic spline to approximate the function y(z) leads to solving
the (k — 3) by (k — 3) tridiagonal linear system (2.28). As mentioned above,
when we use the second derivative representation, the construction of the integro



cubic spline requires to solve the system of linear equations with a full matrix of
order (2k + 2) by (2k + 2). The main advantage of our approach is the use of
B-representation.

When the first derivative end conditions are given, the algorithm of construc-
tion of spline consists of two steps: first, as before, the system of equations (1.8)
is solved. Once mg, m1, ..., my are known, we can use formula (2.5) to compute
the expansion coefficients, i.e.,

Qi1 — OG—1 = thi, ¢ = 0(1)/€ (229)
It is easy to show that the linear combination of Eq. (2.25) with ¢+ = 1 and (2.29)
with ¢ = 0 and ¢ =1 yields

2 h
ag + o = Eh—l—g(mo—ml). (2.30)

On the other hand, from approximate formula (2.20) with ¢ = 1 and from (2.29)
with ¢ = 1 it follows that

3
20&0+O(1 = %(Il +IQ) —2]’),77’7,1. (231)
As a consequence of (2.30) and (2.31), we have

3L-5L h

ay = —n 6(11m1 + mo), (2.32)
5I — 31, h

= - . 2-

a1 o + 3 (mo + 5m1) ( 33)

All other coefficients «; are determined using (2.29) for ¢ = 1(1)k and a1 =
a1 — 2hmyg. Thus, when using B-representation of cubic splines we did not need
another third end conditions, unlike using the first derivative representation in [1].

3. APPROXIMATION PROPERTIES OF INTEGRO CUBIC SPLINES

Now we investigate the approximation properties of integro cubic splines.
First of all, we will derive some useful formulas from (1.3). We assume y(x)
is a six-times continuously differentiable function on interval [a, b]. Then, using
Taylor expansion of function y(x) at x;_1

y(@) =yi1 + Y (x —zi1) +

3//‘”1 y(4)1
71— . 3 71—
g (@) T+ T

+ (x - $i,1)4 + O(h5), S [mi,l,xi]



in (1.3), we get

ﬁzi v h* 1+ O(h). 3.1)
WA 1)

Analogously, using the expansion of S(x) at x;_1

111

M;_ S
S(x)=Sic1+mi—1(x — 1) + Tl(m —zi1)? + %(m —x )3
in (1.3), we get
Ii I’L h2 h3 1
— =951+ 5Mi-1 + gMi—l + ESFHO? (3.2

11

where S, .= S" (z;_1 +0). From (3.1) and (3.2) it follows that
h ’ h2 "
Sic1 = Yim1 + 5(Mim1 — y;4) + y(Mi—l — Y1)+

2
h3 "

+ E(Szepro — Y

1

) =O0(hY), i=1(1)k.
Replacing ¢ — 1 by ¢ in the last relation, one can rewrite it as

h ’ h2 " ]’),3 1" 1" 4 .
Si—yi+ §(mz —yi)+ y(Mz —y;)+ E(Si+0 —y; )=0(h"), i=0(1)k-1.
' ' (3.3)
Analogously, using Taylor expansion of function y(z) and S(z) at x = x;, we
get

h ’ h2 " h3 11 " 4 .
Si=yi=g5(mi=y;) + 53 (Mi=y; ) =77 (Sio—9; ) = O(h7), i = Lk 3:4)
By adding and substracting (3.3) and (3.4) we get

11 "

h? n ht Sie —Sisg 4
Si—yi+ E(Mi -y )+ E(f) =0M"Y, i=11)k—-1 (3.5
and 1" 1"t
’ 2 S S 1"
mi — g, + }1‘—2(% gy =0, i=11)k—1.  (36)

On the other hand, using Taylor expansion of y(x) € C%[a,b] in (1.3), one can
get

h ’ h2 7" h3 2z h4 h5
Ii/h =y; — SYi + Y T oY + yyfv - ayzv +0(h°), (3.7



I’L ’ h2 7" h3 1" 4 ]’),5
Lia/h=1y + vy, + —y;, +—1, + —ylV + =
1/ vit Uit et ol Ty g

Adding and substracting (3.7) and (3.8) we get

yY 4+ O(h°). (3.8)

Ii+Tiyn h? Rt 6o .
o Y + Y + Vi +O(h°), i=1(1)k (3.9
and / ; 2 y
+1 — 44 ’ 1" v 5 .
— s =Y; T 5V —Y; h =1(1)k. 3.10
h2 yl + 12y2 + 360y’b + O( )7 1 ( ) ( )

In order to derive estimations for SZ»(T) - ylm, for r = 0,1,2,3, we will use
equations (2.14) and end conditions

My =y, and M=y, ;. G.11)

Since dy and dj are given by formulas (2.21) and (2.22), respectively, equa-
tions (2.14) can be rewritten as

2d1 + do = %(Il + IQ) — do,
dioy +2d; + digy = £(L + Liz1), i =2(1)k — 2, (3.12)
di_o+2dy_o = %(Ik—l + 1) — di.
If we use a notation
2

(M —y)), i =11k — 1, (3.13)

0; = 2(5; —yi) — 6

then from (3.12) it immediately follows that

201 + 0 = cy,
0i14+20;,+0;11=ci, i = 2(1)k‘ -2, (3.14)
Op—2 +20p_1 = cr—1,
where
4 h2 " 1
c1= 3 (L + D) —do = 2(2y1 +92) + 5 (241 +12),
4 h2 " 1 1 .
Ci = E(Ii+Ii+1)_2(yi71 +2yi+yi+1)+g(yi—1 +2y; +Yiq1), 1=2(1)k-2,

2

4 h 1" 1"
Cr—1 = E(Ik—l + 1) —dp —2(2yp—1 + Yr—2) + K(ka_l +y._5). (3.15)

Lemma 3.1. Assume that dy and dj, are given by (2.21) and (2.22), in which
M and My, are defined by (3.11). If y(x) € C*[a, b], then

0; = O(h*), i =1(1)k — 1. (3.16)



Proof. Using Taylor expansion of function y(z) € C*[a,b] at a point z; and
(3.9), we easily obtain

ci = O(h%), i =2(1)k — 2. (3.17)

By analogy, using (3.9), (2.21), (2.22) and Taylor expansion of function y(x) at
the points x; and x_1, one can easily obtain

c1 = O(hY), c_1 = O(h"). (3.18)

Since the matrix of the system of linear equations (3.14) is diagonally domi-
nant, it has a unique solution (61,02, ...,0,_1). According to (3.17), (3.18), the
estimation (3.16) is fulfilled.

Lemma 3.2. For d; we have an estimation

h2 "
d; = 2y; — Vit O(h"), i=o(1)k. (3.19)
Proof. From Lemma 3.1 and (2.11), (3.13) follows estimation (3.19) for
i =1(1)k — 1. By virtue of (2.12) we have

4
d() - Ell - dl.

Using (3.19) and (3.7) for + = 1 in the last equality, we get
2

h ”
do = 2yo — oVt o(h*),

i.e., estimate (3.19) is proved for ¢ = 0. Analogously, using (2.12) for ¢ = k£ and
(3.19), (3.7) for i = k, we obtain (3.19) for i = k.
Remark 3.3. More detailed analysis shows that

2

6

"

h4
di = 2y; — —v; +@yfv+0(h6), i=1(1)k—1, (3.20)
provided y(z) € CY[a,b]. We are now ready to prove the main result.
Theorem 3.4. Let S(x) be an integro cubic spline to approximate the function
y(z) € C*[a, b], satisfying given conditions (1.3) and end conditions (3.11). Then,
for the coefficients of B-representation of this spline S(x) we have

’ h2 "
a-1=yo — hyo + 5yo + O(hY), (3.21)
h2 "
o =y — —vy; +O(hY), i =0(1)k, (3.21a)

6

10



’ ]’),2 12
Q1 = Yk + hyy, + ?yk +O(h%). (3.21b)
Proof. In Sec. 2 we show that the coefficients of integro cubic spline S are
defined by system (2.24), i.e.,
10a + a3 = 6dy — a1,

a;—1 + 100 + ajy1 = 6d;, @ = 3(1)/@' -3,
ap_3+ 10ak_o = 6dg_o — ag_1.

The right-hand side of the last system is defined by (2.15) and (2.26), (2.27). If
we use a notation

2
6

then from the last system it follows that

"

Wi =o; —Yi + Yi» i= 2(1)k -2, (3.22)

10wz + w3 = 22,
wi—1 + 10w; +wit1 = 24, T = 3(1)]4; -3, (3.23)
wi—3 + 10wk—2 = 22,

where 9
h 12 12
29 = 6dy — oy — 10y — y3 + g(% +3),
]’),2 " " "
Z; = 6dz — (yi—l + 10yi +yi+1) + g(yi,l + 102» +yi+1), 1= 3(1)k‘ — 3, (324)
h2 " 12
Zg—2 = 6dp_2 — ar—1 — 10yp—2 — Yp—3 + E(yk—2 + Yp_3)-

Using Taylor expansion of function y(z) € C*[a,b] at a point z; and (3.19), we
get

2z =O(hY), i=3(1)k—3.
Analogously, using (3.19), (2.26) and (2.27), we have zp = O(h*), zx_2 =

O(h*). Since the matrix of system (3.23) is diagonally dominant and its solution
is estimated by the right-hand side, that has a O(h*) order. Thus, we have

wi = O(R"), i =2(1)k — 2.

Therefore, from (3.22) it follows that (3.21a) for ¢ = 2(1)k—2. Estimation (3.21a)
for i =1 and ¢ = k — 1 follows from (2.26) and (2.27), in which (3.7), (3.8) and
(3.19) have been used for : = 0 and 7 = k. Now we use (2.24) for i = 1. We
have
h2 " 4
ag = 6dy — 10a; — a =Yo — Eyo +O(h )7

11



where (3.21a) has been used for ¢ = 1 and ¢ = 2. Analogously, from (2.24) for
i = k, we have
h2 "
ap =6d_1 — 1001 — ap—9 = Yk — Eyk + O(h4)

Thus, (3.21a) is proved for all ¢ = 0(1)k. Analogously, if we use (2.24) for i = 0,
and 7 = k and (3.21a) for s = 0,1 and ¢+ = k — 1, k, we obtain (3.21) and (3.21b).
This completes the proof.

Remark 3.5. When y(z) € C[a, b], using (3.20), as well as Egs. (2.24), we
easily obtain

k219 e
a1 =90 —hyo + 5uy — =sh'us” + gisus +O(hY), (3.25)
12, 11
=y — —vy, + —h*y!V +0(R%), i=001)k 3.25
@ =Y~ Y+ yi© +O(h°), i=0(1)k, (3.25a)
. R, 19 h®
A1 = Yk + hyk + ?yk - %h4 ](64) — %y,(f) + O(h6) (325b)

Theorem 3.6. Let S(z) be the integro cubic spline satisfying conditions (1.3)
and end conditions (3.11). Then

S; —yi = O(hY), i=0()k, (3.26)
m; —y, = O(h®), i=0(1)k, (3.27)
M; —y, =O(h?), i=0(1)k, (3.28)

S{” S{” "
% —y, =0(h), i=11)k—1, (3.29)
Sio—Si o =0(h), i=1(1)k—1. (3.30)

Proof. By virtue of (2.4) and (3.21a), we have

1 1
S; = 6(0%—1 + 4o + aig1) = 5(3/1‘—1 + 4yi + i) -

2

36

in which Taylor expansion of function y(z) is used. Analogously, by using
formulas (3.21), (3.21a) and (3.21b) one can obtain

(i1 +4y; +y;50) TO(Y) =i+ O(M"), i =11k —1,

1
So = E(OZ,1 + 4oy -I-Ckl) =

12



1 !/ h2 1" h2 1" h2 1" 4 4
= g[yo—hyo+§yo + 4(yo — gyo)ﬂ/l - gy1]+0(h ) =40+ O(h?),
and

1
Sk = g(ak—l +day + 1) = yr + O(h?),

respectively. This means that (3.26) holds for all 4, ¢ = 0(1)k. From (2.6) and
(3.21a) it follows:

i1 — 2045 + oy 1
M; = - % L= ﬁ[yiq =2y + Yir1—
h2 1 1 1 2 1 2
_g(yi—l —2y; +¥41)] +Oh°) =y; +O(h%), i=1(1)k~—1.

Using (3.20), (3.21a) and (3.21b), it is easy to verify estimation (3.28) for ¢ = 0

111 "

and 7 = k. Now we consider % Using (3.26), we obtain

Sivo+Sig Mg —Mi_y 1 p
2h, 2h 2h(y1+1 yz—1)+ ( )

1 1" " 1" " "
= %(yi +hy; —y; +hy; )+O(h) =y, +0(h), i=1(1)k-1,

i.e., estimation (3.29) is proven. Analogously, we have

" " MZ+1 - 2MZ + szl
Si+0 —Sio= =

Ui 2ty
h
which completes the proof of Theorem 3.6.

4. NUMERICAL EXAMPLES

In this section, we present results of the numerical experiment to illus-
trate the approximation properties of the integro cubic splines. Suppose that
y(z) € C*[0,1] and satisfies the end condition M; = y'(x1), we consider the
following test functions:

13



The results are shown in the table.
IS5 — v, Imj — vl |M; — oy ]
zj| k=10 k=20 k=40 k=10 |k=20|k=40 k=10 | k=20| k=140
0 (1.62E-04/1.01E-05(6.31E-07(8.08E-03(1.01E-03(1.26E-04(2.18E-01(5.45E-02(1.36E-02
0.1/2.00E-05|1.03E-07|1.30E-08|8.17E-04{1.03E-05|1.32E-08|5.55E-17|5.51E-03|1.25E-03
0.2|1.65E-06[2.07E-07|1.30E-08|8.25E-05|1.05E-07|1.37E-12[2.20E-02|5.01E-03|1.25E-03
0.3|3.50E-06[2.08E-07|1.30E-08|8.33E-06|1.07E-09/6.94E-16|1.98E-02|5.00E-03|1.25E-03
0.4|3.32E-06[2.08E-07|1.30E-08|8.33E-07|1.10E-11{1.78E-15[2.00E-02|5.00E-03|1.25E-03
0.5|3.34E-06[2.08 E-07|1.30E-08|1.11E-16{2.55E-15|1.89E-14{2.00E-02|5.00E-03|1.25E-03
0.6|3.32E-06[2.08E-07|1.30E-08|8.33E-07|1.10E-11|5.55E-15[2.00E-02|5.00E-03|1.25E-03
0.7|3.50E-06[2.08E-07|1.30E-08|8.33E-06|1.07E-0914.91E-14{1.98E-02|5.00E-03|1.25E-03
0.8/1.65E-06[2.07E-07|1.30E-08|8.25E-05|1.05E-07|1.56E-12[2.20E-02|5.01E-03|1.25E-03
0.9|2.00E-05|1.03E-07|1.30E-08|8.17E-04{1.03E-05|1.32E-08|3.93E-13|5.51E-03|1.25E-03
1.62E-04|1.01E-05|6.31E-07|8.08E-03|{1.01E-03{1.26E-04|2.18E-01|5.45E-02|1.36E-02
1S5 — y2,4l Im; — a1 |M; — y3 ]
zj| k=10 k=20 k=40 k=10 |k=20|k=40 k=10 | k=20| k=140
0 [6.21E-04/4.05E-05[2.55E-06(3.11E-02(4.05E-03|5.11E-04(8.44E-012.19E-01|5.51E-02
0.1/7.70E-05|3.97E-07|5.02E-08|3.10E-03{4.38E-0512.07E-07[2.31E-14{2.14E-02{4.83E-03
0.2|5.33E-06/6.94E-0714.30E-08|3.93E-04|5.11E-06{2.93E-07|7.44E-02|1.65E-02/4.11E-03
0.3|8.41E-06|5.09E-07|3.13E-08|7.15E-05|6.46E-06/4.03E-074.66E-02|1.20E-022.99E-03
0.4/4.74E-06[2.71E-07|1.65E-08|1.25E-04|7.59E-06/4.74E-07[2.59E-02|6.32E-03|1.57E-03
0.5/4.80E-07|7.74E-09|1.22E-10|1.27E-04{7.98E-06{4.98E-07|5.76 E-04|3.72E-05|2.34E-06
0.6|3.78E-06[2.56E-07|1.62E-08|1.25E-04|7.59E-06/4.74E-07(2.47E-02|6.24E-03|1.57E-03
0.7\9.37E-06/4.94E-07|3.10E-08|7.13E-05|6.46E-06/4.03E-074.77E-02|1.19E-022.98E-03
0.814.34E-06/6.78E-0714.27E-08|3.94E-04|5.11E-062.93E-07|7.32E-02|1.64E-02/4.10E-03
0.97.83E-05|3.81E-07|5.00E-08|3.12E-034.38E-052.07E-07|7.68E-04{2.13E-024.83E-03
1 16.25E-044.05E-052.56E-06|3.13E-02|4.05E-03|5.11E-04|8.47E-01|2.19E-01|5.51E-02

—

As shown in the table, the approximation properties of integro cubic splines were
confirmed by numerical experiments.
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