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INTRODUCTION

In [1] H. Behforooz introduced integro cubic splines, and the accuracy of this
type of splines was shown by numerical experiments. Motivation of construction
of such splines was also explained in [1] by numerous practical applications. To
construct the integro cubic splines proposed in [1], besides two end conditions,
also one additional/or third end condition is needed that seems to be unnatu-
rally. He pointed out that to construct the integro cubic splines in terms of the
second derivative with any end conditions, one had to solve a system of linear
equations with a full matrix of higher order. In this paper we show that using
B-representation of cubic splines one can overcome the difˇculties arising in
H. Behforooz's approaches. We also prove that the unique integro cubic spline
exists under the appropriate given end condition and the algorithm of constructing
of such a spline leads to solving a tridiagonal system. Approximation properties
of the splines constructed using B-representation are also considered.

1. PRELIMINARIES

Suppose that the interval [a, b] is partitioned by the following k + 1 equally
spaced points:

a = x0 < x1 < · · · < xk−1 < xk = b, (1.1)

such that xi = a + ih, for i = 0, 1, . . . , k with h = (b − a)/k. Assume that the
function values yi = y(xi) are not given but integrals of y = y(x) are known on
k intervals [xi−1, xi] and they are equal to

xi∫

xi−1

y(x)dx = Ii, i = 1(1)k. (1.2)

The cubic splines S(x) ∈ C2[a, b] are called integro cubic ones [1], if

xi∫

xi−1

S(x)dx =

xi∫

xi−1

y(x)dx = Ii, i = 1(1)k. (1.3)
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For simplicity, we will use the notations: yi = y(xi), Si = S(xi), mi = S
′
(xi)

and Mi = S
′′
(xi). If we use the ˇrst derivative representation of S(x) ∈ C2[a, b],

then it is easy to show that conditions (1.3) lead to

h2(mi−1 − mi) + 6h(Si−1 + Si) = 12Ii, i = 1(1)k, (1.4)

h2(mi − mi+1) + 6h(Si + Si+1) = 12Ii+1, i = 0(1)k − 1. (1.5)

From (1.4), (1.5) and from the well-known consistency relations

mi−1 + 4mi + mi+1 =
3
h

(Si+1 − Si−1), i = 1(1)k − 1, (1.6)

it follows that [1]

mi−1 + 10mi + mi+1 =
12
h2

(Ii+1 − Ii), i = 1(1)k − 1. (1.7)

In order to construct the cubic spline S using Eq. (1.7) and solve it for k + 1
unknowns m0, m1, . . . , mk, we need (as usual) two additional equations. Suppose
that y′(a) = α and y′(b) = β are given. Then, by setting m0 = α and mk = β,
we can solve easily the following (k − 1) by (k − 1) linear tridiagonal equations
to obtain a unique set of solutions for m1, m2, . . . , mk−1:

⎧⎨
⎩

10m1 + m2 = b1 − α,
mi−1 + 10mi + mi+1 = bi, i = 2(1)k − 2,
mk−1 + 10mk = bk−1 − β,

(1.8)

where bi =
12
h2

(Ii+1 − Ii). After ˇnding m0, m1, . . . , mk from (1.8), we can use

(1.4) or (1.5) to compute S0, S1, . . . , Sk. But we need another additional given
value for y(a) or y(b). If the additional (third) end condition y0 = y(a) is not
given and y(a) is not available, in [1] it was proposed to use the relations

S1 − S0 = hm0 or S1 − S0 = hm1 (1.9)

as an additional equation. However, in this case we lose the order of accuracy of
spline, due to (1.9).

If we use a second derivative representation of S(x), then it is easy to show
that conditions (1.3) lead to

−h3

24
(Mi−1 + Mi) +

h

2
(Si−1 + Si) = Ii, i = 1(1)k, (1.10)

−h3

24
(Mi + Mi+1) +

h

2
(Si + Si+1) = Ii+1, i = 0(1)k − 1. (1.11)
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Unlike the ˇrst derivative representation, here we cannot eliminate S's between
(1.10), (1.11) and the consistency relations

Mi−1 + 4Mi + Mi+1 =
6
h2

(Si−1 − 2Si + Si+1), i = 1(1)k − 1 (1.12)

to obtain a relation similar to (1.7) without S's. So, to construct S(x) using
the second derivative representation with any end conditions, we have to solve a
system of linear equations with a full matrix of order (2k + 2) by (2k + 2). It
should be pointed out that the above-mentioned conclusions are the main results
of paper [1].

2. INTEGRO CUBIC SPLINE WITH B-REPRESENTATION

Now we proceed to use the B-representation of cubic spline S(x) of class
C2[a, b]. To do this, the partition of [a, b] is extended to the left and right sides
by equally spaced knots

x−3 < x−2 < x−2 < x0, xk < xk+1 < xk+2 < xk+3.

Then we have [2, 3]

S(x) =
k+1∑

j=−1

αjBj(x), (2.1)

where Bj(x) is a normalized cubic B-spline with compact support [xj−2, xj+2].
The coefˇcients of expansion (2.1) are given by [3]:

αj = Sj +
hj − hj−1

3
mj −

hjhj−1

6
Mj, j = 0, 1, . . . , k. (2.2)

In case of a uniform partition, formula (2.2) becomes

αj = Sj −
h2

6
Mj , j = 0, 1, . . . , k. (2.3)

Also from (2.1) it follows:

Si =
αi+1 + 4αi + αi−1

6
, (2.4)

mi =
αi+1 − αi−1

2h
, (2.5)

Mi =
αi+1 − 2αi + αi−1

h2
, (2.6)
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where i = 0, 1, . . . , k.
We will show that the difˇculties mentioned above may be overcome by

using B-representation (2.1), instead of the second derivative representation. In
order to show that, we rewrite relations (1.10) and (1.11) in term of expansion
coefˇcients αi

αi−1 + αi +
h2

12
(Mi−1 + Mi) =

2
h

Ii, i = 1(1)k, (2.7)

αi + αi+1 +
h2

12
(Mi + Mi+1) =

2
h

Ii+1, i = 0(1)k − 1. (2.8)

By adding (2.7) and (2.8), we get

αi−1+2αi+αi+1+
h2

12
(Mi−1+2Mi+Mi+1) =

2
h

(Ii+Ii+1), i = 1(1)k−1 (2.9)

or

Si−1 + 2Si + Si+1 −
h2

12
(Mi−1 + 2Mi + Mi+1) =

2
h

(Ii + Ii+1), i = 1(1)k − 1.

(2.10)
If we use a notation

di = αi + Si, i = 0(1)k, (2.11)

then it is easy to check that relations (2.7) and (2.8) are equivalent to

di−1 + di =
4
h

Ii, i = 1(1)k, (2.12)

and

di + di+1 =
4
h

Ii+1, i = 0(1)k − 1, (2.13)

respectively. Adding (2.12) and (2.13), we get

di−1 + 2di + di+1 =
4
h

(Ii + Ii+1), i = 1(1)k − 1. (2.14)

From (2.14) it is clear that d1, d2, . . . , dk−1 are determined by solving this tridia-
gonal system, if d0 and dk are given. However, instead of solving the tridiagonal
system we can ˇnd all di using the following formulas:

di = (−1)id0 +
4
h

i∑
j=1

(−1)i+jIj , i = 1(1)k (2.15)

or

di = (−1)idk +
4
h

k∑
j=i+1

(−1)i+j+1Ij , i = k − 1, k − 2, . . . , 0, (2.16)
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that immediately followed from (2.12) and (2.13). We now want to show how
d0 and dk can be found. What was used to ˇnd them? To do this, we consider a
useful identity

αi−1 + 2αi + αi+1 = 4αi + h2Mi. (2.17)

Using (2.17) we can rewrite (2.9) as

αi +
h2

48
(Mi−1 + 14Mi + Mi+1) =

Ii + Ii+1

2h
. (2.18)

Since Mi+1 + Mi−1 = 2Mi + h(S
′′′

i+0 − S
′′′

i−0), then from (2.18) it immediately
follows that

αi−1 + αi + αi+1 =
3
2h

(Ii + Ii+1) −
h3

16
(S

′′′

i+0 − S
′′′

i−0), i = 1(1)k − 1. (2.19)

The last term in the right-hand side of (2.19) is small and it can be neglected. As
a result, we obtain an approximate formula

αi−1 + αi + αi+1 =
3
2h

(Ii + Ii+1), i = 1(1)k − 1. (2.20)

Taking into account (2.20) for i = 1, we obtain

S1 +
h2

6
M1 =

α0 + α1 + α2

3
=

I1 + I2

2h
.

Therefore, we have

d1 = α1 + S1 = 2S1 −
h2

6
M1 =

I1 + I2

h
− h2

2
M1,

in which we have used (2.3). From the last formula and (2.12) we get

d0 =
4
h

I1 − d1 =
3I1 − I2

h
+

h2

2
M1. (2.21)

Analogously, we have

dk =
3Ik − Ik−1

h
+

h2

2
Mk−1. (2.22)

Thus, the quantities d0 and dk are determined by formulas (2.21) and (2.22),
respectively, if M1 or Mk−1 are known. If M1 = y

′′
(x1) and Mk−1 = y

′′
(xk−1)

are not given or y
′′
(x1) and y

′′
(xk−1) are not available, we can use simple

formulas

d0 =
3I1 − I2

h
; dk =

3Ik − Ik−1

h
. (2.23)
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Of course, in this case the approximation order reduces by two.
From (2.11) it follows that

αi−1 + 10αi + αi+1 = 6di, i = 0(1)k. (2.24)

On the other hand, relations (2.12) in term of αi are rewritten as

αi−2 + 11αi−1 + 11αi + αi+1 =
24
h

Ii, i = 1(1)k. (2.25)

From (2.25) and (2.20) with i = 1 it follows:

α−1 + 10α0 + 10α1 =
3
2h

(15I1 − I2).

From the last equality and from (2.24) we obtain

α1 =
15I1 − I2

6h
− 2

3
d0 =

I1 + I2

2h
− h2

3
M1. (2.26)

Analogously, we ˇnd

αk−1 =
15Ik − Ik−1

6h
− 2

3
dk. (2.27)

When d0, d1, . . . , dk and α1, αk−1 are known the coefˇcients α2, α3, . . . , αk−2

are determined from the system
⎧⎨
⎩

10α2 + α3 = 6d2 − α1,
αi−1 + 10αi + αi+1 = 6di, i = 3(1)k − 3,
αk−3 + 10αk−2 = 6dk−2 − αk−1,

(2.28)

which follows from (2.24). After solving the system of linear equations (2.28),
the remainder coefˇcients α−1, α0 and αk, αk+1 will be determined from (2.24)
for i = 0, 1 and i = k − 1, k, respectively. Thus, we ˇnd all the coefˇcients αi

of B-representation of integro cubic spline. The values of this spline and its ˇrst
two derivatives at the knots xi are determined by formulas (2.4), (2.5) and (2.6).
The values of integro cubic spline at any point x̄ ∈ [a, b] different from knots xi

are given by

S(x̄) =
k+1∑

j=−1

αjBj(x̄),

in which the explicit formulas for Bi-splines have been used. Thus, the construc-
tion of the integro cubic spline to approximate the function y(x) leads to solving
the (k − 3) by (k − 3) tridiagonal linear system (2.28). As mentioned above,
when we use the second derivative representation, the construction of the integro

6



cubic spline requires to solve the system of linear equations with a full matrix of
order (2k + 2) by (2k + 2). The main advantage of our approach is the use of
B-representation.

When the ˇrst derivative end conditions are given, the algorithm of construc-
tion of spline consists of two steps: ˇrst, as before, the system of equations (1.8)
is solved. Once m0, m1, . . . , mk are known, we can use formula (2.5) to compute
the expansion coefˇcients, i.e.,

αi+1 − αi−1 = 2hmi, i = 0(1)k. (2.29)

It is easy to show that the linear combination of Eq. (2.25) with i = 1 and (2.29)
with i = 0 and i = 1 yields

α0 + α1 =
2
h

I1 +
h

6
(m0 − m1). (2.30)

On the other hand, from approximate formula (2.20) with i = 1 and from (2.29)
with i = 1 it follows that

2α0 + α1 =
3
2h

(I1 + I2) − 2hm1. (2.31)

As a consequence of (2.30) and (2.31), we have

α0 =
3I2 − I1

2h
− h

6
(11m1 + m0), (2.32)

α1 =
5I1 − 3I2

2h
+

h

3
(m0 + 5m1). (2.33)

All other coefˇcients αi are determined using (2.29) for i = 1(1)k and α−1 =
α1 − 2hm0. Thus, when using B-representation of cubic splines we did not need
another third end conditions, unlike using the ˇrst derivative representation in [1].

3. APPROXIMATION PROPERTIES OF INTEGRO CUBIC SPLINES

Now we investigate the approximation properties of integro cubic splines.
First of all, we will derive some useful formulas from (1.3). We assume y(x)
is a six-times continuously differentiable function on interval [a, b]. Then, using
Taylor expansion of function y(x) at xi−1

y(x) = yi−1 + y
′

i−1(x − xi−1) +
y

′′

i−1

2
(x − xi−1)2+

+
y

′′′

i−1

3!
(x − xi−1)3 +

y
(4)
i−1

4!
(x − xi−1)4 + O(h5), x ∈ [xi−1, xi]
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in (1.3), we get

Ii

h
=

4∑
k=0

y
(k)
i−1

(k + 1)!
hk + O(h5). (3.1)

Analogously, using the expansion of S(x) at xi−1

S(x) = Si−1 + mi−1(x − xi−1) +
Mi−1

2
(x − xi−1)2 +

S
′′′

i−1+0

3!
(x − xi−1)3

in (1.3), we get

Ii

h
= Si−1 +

h

2
mi−1 +

h2

3!
Mi−1 +

h3

4!
S

′′′

i−1+0, (3.2)

where S
′′′

i−1+0 = S
′′′

(xi−1 + 0). From (3.1) and (3.2) it follows that

Si−1 − yi−1 +
h

2
(mi−1 − y

′

i−1) +
h2

3!
(Mi−1 − y

′′

i−1)+

+
h3

4!
(S

′′′

i−1+0 − y
′′′

i ) = O(h4), i = 1(1)k.

Replacing i − 1 by i in the last relation, one can rewrite it as

Si − yi +
h

2
(mi − y

′

i)+
h2

3!
(Mi − y

′′

i )+
h3

4!
(S

′′′

i+0− y
′′′

i ) = O(h4), i = 0(1)k−1.

(3.3)
Analogously, using Taylor expansion of function y(x) and S(x) at x = xi, we
get

Si−yi−
h

2
(mi−y

′

i)+
h2

3!
(Mi−y

′′

i )− h3

4!
(S

′′′

i−0−y
′′′

i ) = O(h4), i = 1(1)k. (3.4)

By adding and substracting (3.3) and (3.4) we get

Si − yi +
h2

6
(Mi − y

′′

i ) +
h4

48
(
S

′′′

i+0 − S
′′′

i−0

h
) = O(h4), i = 1(1)k − 1 (3.5)

and

mi − y
′

i +
h2

12
(
S

′′′

i+0 + S
′′′

i−0

2
− y

′′′

i ) = O(h3), i = 1(1)k − 1. (3.6)

On the other hand, using Taylor expansion of y(x) ∈ C6[a, b] in (1.3), one can
get

Ii/h = yi −
h

2
y

′

i +
h2

6
y

′′

i − h3

24
y

′′′

i +
h4

5!
yIV

i − h5

6!
yV

i + O(h6), (3.7)
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Ii+1/h = yi +
h

2
y

′

i +
h2

6
y

′′

i +
h3

24
y

′′′

i +
h4

5!
yIV

i +
h5

6!
yV
! + O(h6). (3.8)

Adding and substracting (3.7) and (3.8) we get

Ii + Ii+1

2h
= yi +

h2

3!
y

′′

i +
h4

5!
yIV

i + O(h6), i = 1(1)k (3.9)

and
Ii+1 − Ii

h2
= y

′

i +
h2

12
y

′′′

i +
h4

360
yV

i + O(h5), i = 1(1)k. (3.10)

In order to derive estimations for S
(r)
i − y

(r)
i , for r = 0, 1, 2, 3, we will use

equations (2.14) and end conditions

M1 = y
′′

1 and Mk−1 = y
′′

k−1. (3.11)

Since d0 and dk are given by formulas (2.21) and (2.22), respectively, equa-
tions (2.14) can be rewritten as

⎧⎨
⎩

2d1 + d2 = 4
h (I1 + I2) − d0,

di−1 + 2di + di+1 = 4
h (Ii + Ii+1), i = 2(1)k − 2,

dk−2 + 2dk−2 = 4
h (Ik−1 + Ik) − dk.

(3.12)

If we use a notation

θi = 2(Si − yi) −
h2

6
(Mi − y

′′

i ), i = 1(1)k − 1, (3.13)

then from (3.12) it immediately follows that
⎧⎨
⎩

2θ1 + θ2 = c1,
θi−1 + 2θi + θi+1 = ci, i = 2(1)k − 2,
θk−2 + 2θk−1 = ck−1,

(3.14)

where

c1 =
4
h

(I1 + I2) − d0 − 2(2y1 + y2) +
h2

6
(2y

′′

1 + y
′′

2 ),

ci =
4
h

(Ii +Ii+1)−2(yi−1 +2yi+yi+1)+
h2

6
(y

′′

i−1 +2y
′′

i +y
′′

i+1), i = 2(1)k−2,

ck−1 =
4
h

(Ik−1 + Ik) − dk − 2(2yk−1 + yk−2) +
h2

6
(2y

′′

k−1 + y
′′

k−2). (3.15)

Lemma 3.1. Assume that d0 and dk are given by (2.21) and (2.22), in which
M1 and Mk−1 are deˇned by (3.11). If y(x) ∈ C4[a, b], then

θi = O(h4), i = 1(1)k − 1. (3.16)
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Proof. Using Taylor expansion of function y(x) ∈ C4[a, b] at a point xi and
(3.9), we easily obtain

ci = O(h4), i = 2(1)k − 2. (3.17)

By analogy, using (3.9), (2.21), (2.22) and Taylor expansion of function y(x) at
the points x1 and xk−1, one can easily obtain

c1 = O(h4), ck−1 = O(h4). (3.18)

Since the matrix of the system of linear equations (3.14) is diagonally domi-
nant, it has a unique solution (θ1, θ2, . . . , θk−1). According to (3.17), (3.18), the
estimation (3.16) is fulˇlled.

Lemma 3.2. For di we have an estimation

di = 2yi −
h2

6
y

′′

i + O(h4), i = o(1)k. (3.19)

Proof. From Lemma 3.1 and (2.11), (3.13) follows estimation (3.19) for
i = 1(1)k − 1. By virtue of (2.12) we have

d0 =
4
h

I1 − d1.

Using (3.19) and (3.7) for i = 1 in the last equality, we get

d0 = 2y0 −
h2

6
y

′′

0 + O(h4),

i.e., estimate (3.19) is proved for i = 0. Analogously, using (2.12) for i = k and
(3.19), (3.7) for i = k, we obtain (3.19) for i = k.

Remark 3.3. More detailed analysis shows that

di = 2yi −
h2

6
y

′′

i +
h4

60
yIV

i + O(h6), i = 1(1)k − 1, (3.20)

provided y(x) ∈ C6[a, b]. We are now ready to prove the main result.
Theorem 3.4. Let S(x) be an integro cubic spline to approximate the function

y(x) ∈ C4[a, b], satisfying given conditions (1.3) and end conditions (3.11). Then,
for the coefˇcients of B-representation of this spline S(x) we have

α−1 = y0 − hy
′

0 +
h2

3
y

′′

0 + O(h4), (3.21)

αi = yi −
h2

6
y

′′

i + O(h4), i = 0(1)k, (3.21a)
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αk+1 = yk + hy
′

k +
h2

3
y

′′

k + O(h4). (3.21b)

Proof. In Sec. 2 we show that the coefˇcients of integro cubic spline S are
deˇned by system (2.24), i.e.,

10α2 + α3 = 6d2 − α1,

αi−1 + 10αi + αi+1 = 6di, i = 3(1)k − 3,

αk−3 + 10αk−2 = 6dk−2 − αk−1.

The right-hand side of the last system is deˇned by (2.15) and (2.26), (2.27). If
we use a notation

ωi = αi − yi +
h2

6
y

′′

i , i = 2(1)k − 2, (3.22)

then from the last system it follows that
⎧⎨
⎩

10ω2 + ω3 = z2,
ωi−1 + 10ωi + ωi+1 = zi, i = 3(1)k − 3,
ωk−3 + 10ωk−2 = zk−2,

(3.23)

where

z2 = 6d2 − α1 − 10y2 − y3 +
h2

6
(y

′′

2 + y
′′

3 ),

zi = 6di− (yi−1 +10yi + yi+1)+
h2

6
(y

′′

i−1 +10
′′

i + y
′′

i+1), i = 3(1)k−3, (3.24)

zk−2 = 6dk−2 − αk−1 − 10yk−2 − yk−3 +
h2

6
(y

′′

k−2 + y
′′

k−3).

Using Taylor expansion of function y(x) ∈ C4[a, b] at a point xi and (3.19), we
get

zi = O(h4), i = 3(1)k − 3.

Analogously, using (3.19), (2.26) and (2.27), we have z2 = O(h4), zk−2 =
O(h4). Since the matrix of system (3.23) is diagonally dominant and its solution
is estimated by the right-hand side, that has a O(h4) order. Thus, we have

ωi = O(h4), i = 2(1)k − 2.

Therefore, from (3.22) it follows that (3.21a) for i = 2(1)k−2. Estimation (3.21a)
for i = 1 and i = k − 1 follows from (2.26) and (2.27), in which (3.7), (3.8) and
(3.19) have been used for i = 0 and i = k. Now we use (2.24) for i = 1. We
have

α0 = 6d1 − 10α1 − α2 = y0 −
h2

6
y

′′

0 + O(h4),

11



where (3.21a) has been used for i = 1 and i = 2. Analogously, from (2.24) for
i = k, we have

αk = 6dk−1 − 10αk−1 − αk−2 = yk − h2

6
y

′′

k + O(h4).

Thus, (3.21a) is proved for all i = 0(1)k. Analogously, if we use (2.24) for i = 0,
and i = k and (3.21a) for i = 0, 1 and i = k− 1, k, we obtain (3.21) and (3.21b).
This completes the proof.

Remark 3.5. When y(x) ∈ C6[a, b], using (3.20), as well as Eqs. (2.24), we
easily obtain

α−1 = y0 − hy
′

0 +
h2

3
y

′′

0 − 19
720

h4y
(4)
0 +

h5

240
y
(5)
0 + O(h6), (3.25)

αi = yi −
12
6

y
′′

i +
11
720

h4yIV
i + O(h6), i = 0(1)k, (3.25a)

αk+1 = yk + hy
′

k +
h2

3
y

′′

k − 19
720

h4y
(4)
k − h5

240
y
(5)
k + O(h6). (3.25b)

Theorem 3.6. Let S(x) be the integro cubic spline satisfying conditions (1.3)
and end conditions (3.11). Then

Si − yi = O(h4), i = 0(1)k, (3.26)

mi − y
′

i = O(h3), i = 0(1)k, (3.27)

Mi − y
′′

i = O(h2), i = 0(1)k, (3.28)

S
′′′

i+0 + S
′′′

i−0

2
− y

′′′

i = O(h), i = 1(1)k − 1, (3.29)

S
′′′

i+0 − S
′′′

i−0 = O(h), i = 1(1)k − 1. (3.30)

Proof. By virtue of (2.4) and (3.21a), we have

Si =
1
6
(αi−1 + 4αi + αi+1) =

1
6
(yi−1 + 4yi + yi+1)−

−h2

36
(y

′′

i−1 + 4y
′′

i + y
′′

i+1) + O(h4) = yi + O(h4), i = 1(1)k − 1,

in which Taylor expansion of function y(x) is used. Analogously, by using
formulas (3.21), (3.21a) and (3.21b) one can obtain

S0 =
1
6
(α−1 + 4α0 + α1) =

12



=
1
6
[y0 − hy

′

0 +
h2

3
y

′′

0 + 4(y0 −
h2

6
y

′′

0 ) + y1 −
h2

6
y

′′

1 ] + O(h4) = y0 + O(h4),

and

Sk =
1
6
(αk−1 + 4αk + αk−1) = yk + O(h4),

respectively. This means that (3.26) holds for all i, i = 0(1)k. From (2.6) and
(3.21a) it follows:

Mi =
αi+1 − 2αi + αi−1

h2
=

1
h2

[yi−1 − 2yi + yi+1−

−h2

6
(y

′′

i−1 − 2y
′′

i + y
′′

i+1)] + O(h2) = y
′′

i + O(h2), i = 1(1)k − 1.

Using (3.20), (3.21a) and (3.21b), it is easy to verify estimation (3.28) for i = 0

and i = k. Now we consider
S

′′′
i+0+S

′′′
i−0

2 . Using (3.26), we obtain

S
′′′

i+0 + S
′′′

i−0

2h
=

Mi+1 − Mi−1

2h
=

1
2h

(y
′′

i+1 − y
′′

i−1) + O(h) =

=
1
2h

(y
′′

i + hy
′′′

i − y
′′

i + hy
′′′

i ) + O(h) = y
′′′

i + O(h), i = 1(1)k − 1,

i.e., estimation (3.29) is proven. Analogously, we have

S
′′′

i+0 − S
′′′

i−0 =
Mi+1 − 2Mi + Mi−1

h
=

=
y

′′

i+1 − 2y
′′

i + y
′′

i−1

h
+ O(h) = O(h), i = 1(1)k − 1,

which completes the proof of Theorem 3.6.

4. NUMERICAL EXAMPLES

In this section, we present results of the numerical experiment to illus-
trate the approximation properties of the integro cubic splines. Suppose that
y(x) ∈ C4[0, 1] and satisˇes the end condition M1 = y′(x1), we consider the
following test functions:

y1(x) = x4, y2(x) = cos(πx).
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The results are shown in the table.
|Sj − y1,j | |mj − y′

1,j | |Mj − y′′
1,j |

xj k = 10 k = 20 k = 40 k = 10 k = 20 k = 40 k = 10 k = 20 k = 40

0 1.62E-04 1.01E-05 6.31E-07 8.08E-03 1.01E-03 1.26E-04 2.18E-01 5.45E-02 1.36E-02
0.1 2.00E-05 1.03E-07 1.30E-08 8.17E-04 1.03E-05 1.32E-08 5.55E-17 5.51E-03 1.25E-03
0.2 1.65E-06 2.07E-07 1.30E-08 8.25E-05 1.05E-07 1.37E-12 2.20E-02 5.01E-03 1.25E-03
0.3 3.50E-06 2.08E-07 1.30E-08 8.33E-06 1.07E-09 6.94E-16 1.98E-02 5.00E-03 1.25E-03
0.4 3.32E-06 2.08E-07 1.30E-08 8.33E-07 1.10E-11 1.78E-15 2.00E-02 5.00E-03 1.25E-03
0.5 3.34E-06 2.08E-07 1.30E-08 1.11E-16 2.55E-15 1.89E-14 2.00E-02 5.00E-03 1.25E-03
0.6 3.32E-06 2.08E-07 1.30E-08 8.33E-07 1.10E-11 5.55E-15 2.00E-02 5.00E-03 1.25E-03
0.7 3.50E-06 2.08E-07 1.30E-08 8.33E-06 1.07E-09 4.91E-14 1.98E-02 5.00E-03 1.25E-03
0.8 1.65E-06 2.07E-07 1.30E-08 8.25E-05 1.05E-07 1.56E-12 2.20E-02 5.01E-03 1.25E-03
0.9 2.00E-05 1.03E-07 1.30E-08 8.17E-04 1.03E-05 1.32E-08 3.93E-13 5.51E-03 1.25E-03
1 1.62E-04 1.01E-05 6.31E-07 8.08E-03 1.01E-03 1.26E-04 2.18E-01 5.45E-02 1.36E-02

|Sj − y2,j | |mj − y′
2,j | |Mj − y′′

2,j |
xj k = 10 k = 20 k = 40 k = 10 k = 20 k = 40 k = 10 k = 20 k = 40

0 6.21E-04 4.05E-05 2.55E-06 3.11E-02 4.05E-03 5.11E-04 8.44E-01 2.19E-01 5.51E-02
0.1 7.70E-05 3.97E-07 5.02E-08 3.10E-03 4.38E-05 2.07E-07 2.31E-14 2.14E-02 4.83E-03
0.2 5.33E-06 6.94E-07 4.30E-08 3.93E-04 5.11E-06 2.93E-07 7.44E-02 1.65E-02 4.11E-03
0.3 8.41E-06 5.09E-07 3.13E-08 7.15E-05 6.46E-06 4.03E-07 4.66E-02 1.20E-02 2.99E-03
0.4 4.74E-06 2.71E-07 1.65E-08 1.25E-04 7.59E-06 4.74E-07 2.59E-02 6.32E-03 1.57E-03
0.5 4.80E-07 7.74E-09 1.22E-10 1.27E-04 7.98E-06 4.98E-07 5.76E-04 3.72E-05 2.34E-06
0.6 3.78E-06 2.56E-07 1.62E-08 1.25E-04 7.59E-06 4.74E-07 2.47E-02 6.24E-03 1.57E-03
0.7 9.37E-06 4.94E-07 3.10E-08 7.13E-05 6.46E-06 4.03E-07 4.77E-02 1.19E-02 2.98E-03
0.8 4.34E-06 6.78E-07 4.27E-08 3.94E-04 5.11E-06 2.93E-07 7.32E-02 1.64E-02 4.10E-03
0.9 7.83E-05 3.81E-07 5.00E-08 3.12E-03 4.38E-05 2.07E-07 7.68E-04 2.13E-02 4.83E-03
1 6.25E-04 4.05E-05 2.56E-06 3.13E-02 4.05E-03 5.11E-04 8.47E-01 2.19E-01 5.51E-02

As shown in the table, the approximation properties of integro cubic splines were
conˇrmed by numerical experiments.
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