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Kunkos I1.E. E5-2009-118
O CcyIlIecTBOB HHU, €IMHCTBEHHOCTH M CBOICTB X O 3MCHOCTH

P AU JIBHBIX COOCTBEHHBIX (PYHKIMI HOMYIMHEHHOIO DIUTUITHYECKOTO Yp BHEHUS

BTOPOTO MOPSAK B I pe

P com TpUB €TCA CJIIEAYyIOLl 4 3 1 94 H CcOOCTBEHHbBIE 3H UYCHMS:

~Au+ f(u) =M, u=u(xr), r€B={recR:|z|]<1},
u(0) =p > 0, u’lzl:lzo,

rae p — IPOU3BONIBHBI (PUKCUPOB HHBIA I P MeTp M f — HeYeTH S I K S (yHKIHS.
CH 4 1 JOK 3 HO, 4TO WISl K XJOro uejioro n > 0 cylecTByeT p M JbHO-CUMMETPUYH 4
coOCTBEeHH s (YHKIMS Up, KOTOP 5 OOJI 1 €T POBHO M HY/ISMH, €CIIM €€ P CCM TPHB Tb K K
¢yskuuo  pryment r = |z| € [0, 1). s moct ToyHO M 5oro p > 0 T K 5 COGCTBEHH s
(yHKIMS SIMHCTBEHH JUIA K XJIOro n. 3 TeM JOK 3 HO, Y4TO eciau p > 0 HoCT TOYHO M JIo,
TO HPOU3BOJIBH S IIOCJIEOB TEIBHOCTb P [M JIbHBIX COOCTBEHHBIX (PYHKUHI {n }n—01,2,...,
B KOTOPOHl I K XIOr0 m M- COOCTBEHH s (pyHKUUI u,, OON I €T POBHO 1 HYIIMU B
[0, 1), siBisterest 6 3ucom B L5(B) (L5(B) — nomupocrp HerBo La(B), KOTOpoe cOCTOUT
U3 p ;U JbHBIX (PyHKUHA u3 Lo (B)). KpoMe Toro, B moCaeqHeM CIyd € MOCIeNoB TENbHOCTh
{tn/||tnl|£,(B)}n=0,12,... aB1geTCA 6 3ucOM b pu B TOM ke NPOCTP HCTBE.
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On the Existence, Uniqueness and Basis Properties of Radial Eigenfunctions
of a Semilinear Second-Order Elliptic Equation in a Ball

We consider the following eigenvalue problem:

—Au+ f(u) =M, u=u(x), z€B={zecR:|z|<1},
u©0)=p>0, wuf, , =0

where p is an arbitrary fixed parameter and f is an odd smooth function. First, we prove that
for each integer n > 0 there exists a radially symmetric eigenfunction u, which possesses
precisely n zeros being regarded as a function of r = |z| € [0, 1). For p > 0 sufficiently
small, such an eigenfunction is unique for each n. Then, we prove that if p > 0 is sufficiently
small, then an arbitrary sequence of radial eigenfunctions {un }n=0,1,2,..., Where for each n
the nth eigenfunction u, possesses precisely n zeros in [0, 1), is a basis in L5(B) (L3(B)
is the subspace of L2(B) that consists of radial functions from Lz(B)). In addition, in the
latter case, the sequence {un/||unl|L,(B)}n=0,1,2,... is a Bari basis in the same space.
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1. INTRODUCTION. NOTATION AND DEFINITIONS. RESULTS
In the present work, we consider the problem

—Au+ f(u)=Xu, u=u(lz|), r€B={xcR®:|z| <1}, (1)
u(0) =p >0, (2)
g =0 B

where f is an odd continuously differentiable function, A\ € R is a spectral
parameter and p is an arbitrary positive fixed parameter. Problems of this type
may arise in particular in the solid state physics, heat and diffusion theory, in the
theory of nonlinear waves, etc. Hereafter in the paper, all the quantities we deal
with are real.

We restrict our attention to the radial eigenfunctions of problem (1)-(3), i.e.,
to the eigenfunctions u that depend only on r = |z|. Under our assumptions,
the problem has an infinite sequence of radial eigenfunctions {uy, }n=01,2,... such
that for each integer n the nth eigenfunction u,, regarded as a function of r has
precisely n zeros in the interval [0, 1). The main question we are interested in
in the present work is whether such a sequence of eigenfunctions is a basis in a
commonly used space, such as the subspace L5(B) of La(B) that consists of all
radial functions from Lo(B). According to our result below, this is true if p > 0
is sufficiently small.

For a discussion of the pertinence of our formulation of the problem (note that
problem (1)—(3) includes an unusual normalization condition (2)) and for a longer
list of references, we refer the reader to our quite recent review paper [4]. Here
we note only that our formulation of the problem is «good» in the sense that, as in
the linear case, our problem has an infinite sequence of radial eigenfunctions u,,
where for each integer n > 0 the nth eigenfunction u,,, regarded as a function of
the argument r € [0, 1), possesses precisely n zeros and, if p > 0 is sufficiently
small, such a sequence of eigenfunctions is a basis in the space L5 (B). But if one
excludes the normalization condition (2) from the statement of the problem, then
the set of all eigenfunctions becomes too wide: it would contain «a lot of» bases.
It is a separate question what normalization condition should be imposed. The
author believes that this question may be answered only in the future if/when the



field becomes developed sufficiently; in particular, an applied problem may give
such an answer. In this context, the reader may consider our system (1)—(3) as a
model problem.

We mention especially our paper [3] (see also [4]) in which a problem
analogous to (1)—(3) was studied in the spatial dimension 1. It is proved in these
two articles that if assumption (f) is valid (see below) and if in addition f(u)/u
is a nondecreasing function of w > 0, then this one-dimensional problem has a
unique sequence of eigenfunctions {,, }rn=0.1,2,.. such that for each n the nth
eigenfunction has precisely n zeros in [0, 1) and this sequence of eigenfunctions is
a basis (in addition, a Riesz basis) in Lo(0, 1) while the sequence of normalized
eigenfunctions {¢/||®|lz,(0,1)}n=0,1,2,... is a Bari basis in the same space (we
shall establish precise definitions below).

Now, we shall introduce some notation and definitions. Let Lo = Lo(DB)
be the standard Lebesgue space of functions g, h, ... square integrable over B,
equipped with the scalar product (g, h)r,(p) = [ g(x)h(x)dx and the correspond-

B

ing norm || - || z,B) = (-, -)EZ(B). By L} = L5(B) we denote the subspace of the
space Lo(B) that consists of all radial functions from Lo (B) and is equipped with
the same scalar product and the norm. Let L, ,2(0, 1) denote the usual weighted
Lebesgue space of functions g measurable in (0, 1) for which

1
1 2
9l 0.0 =4 [ 2wy <.
0

The space L, ,2(0, 1) is equipped with the corresponding scalar product. In fact,
Ly(B), Ly and Ly ,2(0, 1) are Hilbert spaces.

Let H be a separable Hilbert space over the field of real numbers in which
the scalar product and the norm are denoted (-,-)y and || - || g, respectively. We
recall that a sequence {hy}n=0,1,2.. C H is called a (Schauder) basis in H if
for any h € H there exists a unique sequence of real numbers {an}n=012,...
such that

h = ianhn in H.
n=0

Two sequences { Ay, }n=01,2,.. and {e, }n=0.1,2,... from H are called quadratically
close to each other (or the sequence {h,}n=01,2,.. is called quadratically close
to the sequence {e,}n—0,1,2,..) if

oo
Z | hn — enl|3; < o00.
n=0



A basis {hn}n:071727___ in H quadratically close to an orthonormal basis
{en}n=01,2,... in H is called a Bari basis in H. According to corollary 2.5
in [4], if {hp}n=0,1,2,... is an arbitrary sequence of elements of H and if

(oo}

Z [hn — enH%i <1,

n=0

where {ey,}n=0,1,2,.. is an orthonormal basis in H, then {h,}n=0.1,2, is a Bari
basis in H. Bari bases being compared with bases have additional nice properties
that we do not discuss in the present paper (on this subject, see, for example, [1]).
Some general aspects of the theory of nonorthogonal expansions in a Hilbert space
are considered in [1] and in [4].

We call a sequence of radial eigenfunctions {uy}n=01,2,.. of prob-
lem (1)-(3) standard if for each integer n > 0 the nth eigenfunction u,, regarded
as a function of r possesses precisely n zeros in the interval [0, 1). Everywhere
we assume the following.

(f) Let f be a continuously differentiable odd function in R and let f'(0) = 0.

Note that the assumption that f'(0) = 0 is not restrictive: one can achieve
this for an arbitrary odd continuously differentiable function by a shift of the
spectrum.

Consider the following linear eigenvalue problem:

—Av=pv, v=uv(z]), x€B, 4)
v(0) = p, )
v||I|:1 =0, (6)

where © € R is a spectral parameter. Denote by {Un}n:0,1,2,... the sequence
of the radial eigenfunctions of problem (4)—(6) where, for each integer n > 0,
the nth eigenfunction v,, regarded as a function of r € [0, 1) possesses precisely
n zeros. By

o < pp < .o < Up < ...

we denote the corresponding sequence of eigenvalues. Note that {vy,}n=012,...
is an orthogonal basis in L. Our main results here are as follows.

Theorem 1. Under assumption (f)

(a) for any integer n > 0 problem (1)—(3) has a radial eigenfunction u.,
which, being regarded as a function of r, possesses precisely n zeros in the
interval [0, 1);

(b) |u(r)| < p for any r € [0, 1] and for an arbitrary radial eigenfunction u
of problem (1)—(3);



(c) Let in addition to assumption (f) f(u)/u be a nondecreasing function of
w > 0. Then, the positive radial eigenfunction u,, is unique;

(d) under assumption (f) there exists py > 0 such that for any p € (0, po]
and any integer n > 0 the radial eigenfunction u,, of problem (1)—(3) that, being
regarded as a function of r, has precisely n zeros in [0, 1) is unique.

Theorem 2. Let assumption (f) be valid. Then, there exists k = r(p) > 0
defined for all p > 0 and going to 0 as p — +0 such that for any p > 0

oo
n=0

for an arbitrary standard sequence {un}n=01,2,.. of eigenfunctions of prob-
lem (1)—(3). Consequently, if p > 0 is sufficiently small, an arbitrary standard
sequence of eigenfunctions, which is unique for p > 0 sufficiently small by theo-
rem 1, is a basis in L} and, in addition, the sequence {uy/||unllL,}n=01,2,.. is
a Bari basis in the same space.

2

< K(p)
Lo

Un Un

[unllz, — [lonllL,

Remark. In view of theorem 2 and the Bari theorem (see [1,4]), if one proves
the linear independence, in the sense of the space L5, of a standard sequence of
eigenfunctions of problem (1)—(3) when p > 0 is not necessarily sufficiently
small, then this sequence of eigenfunctions will be proved to be a basis in Li and
the sequence of the normalizations of these eigenfunctions to 1 is a Bari basis in
the same space, too. However, in the present work, we leave open the question
about the linear independence of such a system when p > 0 is not small.

In the next section 2, we shall prove theorem 1, and in section 3 — theorem 2.

2. PROOF OF THEOREM 1

Proofs of results of the type of theorem 1 (a) are known now (on this subject,
see, for example, [5]), so we shall establish only a sketch of the proof of this
claim. In the class of radial solutions, problem (1)—(3) reduces to the following
one:

—(2u) +r2f(u) = MPu, uw=u(r), rec(0,1), 7
u(0) = p, (8)
w/'(0) = u(1) =0, 9)

where the prime means the derivative in r. Equation (7) can also be rewritten in
the following equivalent form:

=20 f) = e, u= (), 7 e O, 1) (10)



We supply equation (10) with the following initial data:
u(0) =p, '(0)=0. (11)

A solution of equations (10) and (11) that satisfies the condition u(1) = 0 is
a solution of problem (7)—(9). In equations (7) and (10), » = 0 is a singular
point. However, for problem (10)-(11), local existence, uniqueness and con-
tinuous dependence theorems in their usual form are valid (for proofs of these
claims, see, for example, [5]). Let u(r) be a solution of (10)-(11). Then,

1 o d L . .
u”(0) = §[ f(p) — Ap] and the derivative uy = % exists, is continuous and it
satisfies the equations

—(r2u/)\)/ —|—T2f'(u(r))u,\ =M2uy +1r%u, uy = ux(r), re€(0,1), (12)
ux(0) = u)\(0) = 0. (13)

As above, for problem (12)—(13) local existence and uniqueness theorems in their
usual form, as far as the theorem of the continuous dependence on ), take place.
In addition, since equation (12) is linear with respect to uy, the solution wy of
problem (12)—(13) exists for all those values of r > 0, for which the solution u/(r)
of problem (10)—(11) exists.

Let us prove statement (a) of theorem 1. Multiply equation (10) by u'(r)
and integrate the result from O to r. Then, we obtain the identity

{300+ 3020 -+ Fo) - FaD | =-20%0),
where F(u) = gf(s)ds. Denote E(u(r)) = 1u/(r) + 3[u?(r) — p?] + F(p) —

F(u(r)).

Lemma 1. If A € R is such that u”(0) > 0, where u(r) is the corresponding
solution of problem (10)—(11), then there is no point v > 0 such that u(r) = p.
In particular, u(r) > 0 for any r > 0 so that u is not an eigenfunction of
problem (7)—(9).

Proof. On the contrary, suppose that u”(0) > 0 and there exists > 0 such
that u(r) = p. But then, w/>(r) > 0, therefore E(u(r)) > 0 which contra-
dicts (14). O

Lemma 2. Let u”(0) < 0. Then, |u(r)| < p for all r € (0, 1].
Proof can be made by analogy (if ©”(0) = 0, then u(r) = p by the uniqueness
theorem). O

Note that lemmas 1 and 2 yield statement (b) of theorem 1. Note in addition
that if ”(0) < 0, then the solution of problem (10)—(11) is global (that is, it can
be continued on the entire half-line r» > 0).



Observe now that u”(0) > 0 for all sufficiently large ||, A < 0, and
u”(0) < 0 for all sufficiently large A > 0. By lemma 2 |u(r)| < p for all
A > 0 sufficiently large. Therefore, comparing equations (10)—(11) and (4)—(6)
(one should rewrite system (4)—(6) in the form analogous to (10)—(11)), we see
that, according to the standard comparison theorem, the number of zeros in (0, 1)
of u(r) increases unboundedly when A > 0 unboundedly increases.

Take an arbitrary integer n > 0 and denote by A,, the set of all values
of A for each of which the solution u(r) of (10)—(11) has at least (n + 1) zeros
in (0, 1). Let A, = inf A,,. Denote by u,(r) the solution of problem (10)—(11)
taken with A = A,. Then, |u,(r)| < p for all r so that this solution is global.
Observe that, if u(r) # 0 is a solution of equation (10) and if u(r¢) = 0, then
u'(rg) # 0 by the uniqueness theorem. Therefore, zeros of u,(r) are isolated
and hence, u,, has a finite number m of zeros in (0, 1). If m > n, then there
exists A < A, sufficiently close to A, such that the corresponding solution u(r)
of (10)—(11) has no less than m > n zeros in this interval, which contradicts our
definition of the set A,. By analogy, if m < n or if m = n and u,(1) # 0,
then any solution of equations (10) and (11) taken for A > )\, sufficiently close
to A, has no more than n zeros in (0, 1) which contradicts our definition of the
set A,,. Thus, u,(r) has precisely n zeros in the interval (0, 1) and w, (1) = 0.
So, claim (a) of theorem 1 is proved.

Let us prove claim (c). On the contrary, suppose that there exist two positive
eigenfunctions «' and u? of problem (7)-(9) corresponding to the eigenvalues A
and A2, respectively, where Al < A2. By (14), u?'(r) < 0 for any r € (0, 1].
Indeed, if it would be uf(r) = u®'(r) = 0, then v’ = 0, while if u*(r) > 0 and
u’ (r) < 0 for r € (0, 7o) and if u” (ro) = 0, then w'(r) > u'(ro) for all r > ¢
in view of equation (10) and by the same arguments as in the proof of lemma 1.

Now, we apply a variant of the result from [2].

W)t (r)
20~ W)

Proof. We have u2”(0) < u!”(0) < 0, therefore

Lemma 3. One has

forany r € (0, 1).

and u?(r) <u'(r) <p (15)

in a right half-neighborhood of the point » = 0. Let us prove that (15) holds
everywhere in (0, 1). Suppose that the first inequality (15) holds in some interval
(0, @), where a € (0, 1). Integrate it from O to r € (0, a]. Then

Inu'(r) —Inp > Inu?(r) — Inp,

therefore u'(r) > u?(r) until the first inequality (15) holds.



Suppose that the first inequality (15) is valid in an interval (0, a), a € (0, 1),
and that it is violated at the point » = a. Note that, as is proved above, u'(a) >

u?(a). But then, by equation (10),
1/ ! 2/ !
ut'(r) o (u (r)
ul(r) ) l—a =\ WP(r)
hence, by continuity (16) is still valid in a left half-neighborhood of the point

u'(a)  u¥(a)
@)~ w(a)

Now, suppose that (15) holds everywhere in (0, 1) and that w’(1) = 0,
i =1,2. Denote t; = u''(1), t2 = u'”(1), sy = (1) and s, = u2"(1).
From (10),

) (16)

r=a

r = a so that it must be

, which is a contradiction.

t2 = —2t1 and S9 = —281.

In a neighborhood of the point » = 1 one has

ul’(’l“) _ t1 —2t1(r — 1)+ O((r — 1)?) I
) hr-D-the-1P 0 -09) r-1 T

and by analogy
2/
u? (r) 1
—— = -1 —1).
w?(r)  r—1 +0(r—1)

So, we see that the difference

0\ ()
goes to 0 as » — 1 — 0. But then ) — > 0 in a left half-
ul(r
2 2
1/ 2/
neighborhood of the point » = 1 (because by (15) (u (r)) — (u r)) <0

'(r) u?(r)
1;11 ((:)) > 1;22 ((:)) in (0, 1), and we arrive at a

contradiction as earlier. Thus, claim (c) of theorem 1 is proved.

N

in (0, 1)), and since in addition

Now, we turn to proving claim (d) of theorem 1. Let us prove the following.

Lemma 4. There exist D > 0 and C > 0 such that for any p € (0, P
a € (0, 1], X\ € R and the corresponding solution u(r) of (10)—(11) which satisfies
u(a) = 0 one has

||UAH2L27T2(0,a) < C||U||2szrz(o,a)~



Proof. First, multiply equation (12) by w) and integrate the result from 0
to r € (0, a]. Then, after integration by parts, we obtain

Second, multiply equation (12) by »~!uy(r) and integrate the result from 0 to 7.
Then, after integration by parts,

%u?\(r) —&—)\/su)\(s)ds = /su’/\ (s)ds — ruy(r)ul\ (r)+
0 0
+/sf'(u(s))u?\(s)ds—/su(s)uA(s)ds (18)
0 0

%TQ &2(7‘) + %r ui(r) + %u?\(r) =
—TUA(T)UA(T)+/8f/(u(8))ux(5)d5—/5 u(s)uy(s)ds+
0 0

+/52f/(u(5))%\(8)u/,\(8)ds—O/su(s)u,\(s)ds. (19)

(=)

Take an arbitrary p > 0 and integrate (19) for one more time from 0 to 7.



1 t
Then, applying the inequality ab < %cﬂ + 51)2, t>0,

1 [ 1
5/52[1/)\2(5) + i (s)]ds + §Tu§\(r) <
0
T t 1 T t
< C’l(]_))/dt /(s—|—s2)u§(s)ds + §/dt /s2u’>\2(s)ds +
0 0 0 0
T t T t
+ Q/dt /u?\(s)ds + g/dt (/s2u2(s)ds <
0 0 0 0

+ g/u?\(s)ds—&— gr/s2u2(8)d8 (20)

for constants C; = C1(p) > 0 and Cy = C3(p) > 0 independent of p € (0, D),
a, v and A. Consequently, since A > 0 for p > 0 sufficiently small by the
comparison theorem, for p > 0 sufficiently small

T T

u3(r) < C3(p) /ui(s)ds + C4/s2u2(s)ds,

0 0

where the constants C5(p) > 0 and Cy > 0 do not depend on p € (0, p],a,r
and A. Now, the statement of lemma 4 follows by the Gronwell lemma. O

Lemma 5. There exists p > 0 such that for any p € (0, p| there is no
a € (0, 1] and X\ € R for which u(a) = ux(a) = 0.

Proof. On the contrary, suppose that there exist arbitrary small p > 0,
a € (0,1] and A € R for which u(a) = ux(a) = 0. Multiply equation (10)
by ux(r), equation (12) by u(r), subtract the results from each other and integrate
the obtained identity from O to a. Then, after integration by parts,

a a

/ Pu?(s)ds = / S (uls)) — £ (u(s))u(s)]u(s)ur(s)ds <
0 0
<@, o 0m + Tl o)



where C5(p) — +0 as p — 40 because f(0) = f’(0) = 0. Therefore
HuH2L27T20,a) < 205(p)||u>\“L27r2(0,a)
for p > 0 sufficiently small, which contradicts lemma 4. O

Let us prove theorem 1(d). Let now p € (0, p|]. Take an arbitrary integer
n > 0 and let A\, = inf A,,, as earlier. Then, a simple corollary of lemma 5 is
that there exists a right half-neighborhood I,, of A, belonging to A, in which
the (n + 1)st zero r,41 of the solution wu(r) of problem (10)—(11) is a strictly
decreasing function of A € I,, (so that in particular r,,11 € (0, 1)). Letting A
increase further, by lemma 5, again, one sees that the (n + 1)st zero of the
corresponding solution u(r) of (10)—(11) continue to decrease strictly so that in
the half-line (\,,, +00) there is no value A for which w(r) has precisely n zeros
in the interval (0, 1) and u(1) = 0. Claim (d) of theorem 1 is proved. Our proof
of theorem 1 is complete.

3. PROOF OF THEOREM 2
Denote wy, (1) = un(r) — v, (r). Then
(=r2wl) = pnr?w, +12ga(r), 7€ (0, 1), (21)
wn(0) = wy, (0) = wn(1) =0, (22)

where g, (1) = (Ap — pin)7?Un (1) — 72 f (un(r)). By the comparison theorem and
theorem 1 (b)

A = pin| < C1(p), (23)
where C(p) > 0 goes to 0 as p — +0 and C; does not depend on n. In addition,
by the standard comparison theorem, again, there exists C'y > 0 such that

Cyt(n+1)* < pp < Ca(n +1)? (24)
for all n. By (23) and theorem 1 (b),
|gn(r)] < C3(p)|un(r)l, (25)

where C3(p) > 0 goes to 0 as p — +0 uniformly in n.
Now, we proceed as when proving lemma 4. First, multiply equation (21)
by w!,(r) and integrate the result from 0 to r. Then, after integration by parts,

T T

1 n
57"210;2(7") + %7‘%}3(7‘) + / sw,*(s)ds = un/swi(s)ds—
0 0

T

—/San(s)w;L(s)ds. (26)

0

10



Second, multiply equation (21) by 7~ 1w, (r) and integrate the result from 0 to 7.

Then, in view of the boundary conditions (22), after integration by parts,

lwi(r) i Mn/swi(s)ds = /Tswf(é’)ds — Twp (r)wy, (r)—

2
0 0
T

—/sgn(s)wn(s)ds. (27)

0
Add (27) to (26). Then, we obtain
1 n 1
52 () + Bl () + Swl(r) =

2 " 2

T s

= —rwn (r), (r) — / $2ga(s)u, (s)ds — / 5n(8)wn(s)ds.  (28)

0 0

Integrate (28) for one more time from O to 7. Then, as when deriving (20),

s

1 1
3 [ S 6) + pe)lds + Grud) <
0
r 2 r 2, 12 2 2
< 5 wi (s)ds + 5 [ 5wn (s)ds+r | s°g:i(s)ds. (29)
0 0 0

Hence, in view of (23) and (25),

r

WA < [udds +Culp) [ sl (30)
0

0

where Cy(p) > 0 is a constant independent of » and r and C4(p) — 0 as p — +0.
Now, we obtain from (30) by the Gronwell lemma the following:

W) < Cs@)lunl?, Loy 7€ [0 1),

where C5(p) > 0 does not depend on n and r and goes to 0 as p — +0. Thus,
finally from (24) and (29):

lwallZ, < Co(p)(n + 1) lunllZ, 3D

for a constant Cs > 0 independent of n and going to 0 as p — +0.

11



Now, it follows from (31) that

o] u v 2
2| Tunlz, ~ Twnllza Il

where C(p) > 0 is defined for all p > 0 and goes to 0 as p — +0. So, we have

o] 2

> “| <
- HunHLz oallzz Iy,
2 2
22 ‘ Un ‘ Un _ Un —
Hun\IL2 lunllzallp, ~ Nlunllz,  llonllzs iz,

:2{ §:<wMu2_1

[unl|z,

2
Lo
In view of this estimate, to prove theorem 2, it suffices to show that

00 2
> ('v””“ - 1) < C), (32)

PN

where C(p) > 0 goes to 0 as p — +0. But we have
o} 2 o}
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by the proved part of theorem 2, where C(p) — +0 as p — +0. Thus, (32)
follows. Our proof of theorem 2 is complete.
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