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We consider the following eigenvalue problem:

−Δu + f(u) = λu, u = u(x), x ∈ B = {x ∈ R3 : |x| < 1},
u(0) = p > 0, u

∣
∣
|x|=1

= 0,

where p is an arbitrary ˇxed parameter and f is an odd smooth function. First, we prove that
for each integer n � 0 there exists a radially symmetric eigenfunction un which possesses
precisely n zeros being regarded as a function of r = |x| ∈ [0, 1). For p > 0 sufˇciently
small, such an eigenfunction is unique for each n. Then, we prove that if p > 0 is sufˇciently
small, then an arbitrary sequence of radial eigenfunctions {un}n=0,1,2,..., where for each n
the nth eigenfunction un possesses precisely n zeros in [0, 1), is a basis in Lr

2(B) (Lr
2(B)

is the subspace of L2(B) that consists of radial functions from L2(B)). In addition, in the
latter case, the sequence {un/‖un‖L2(B)}n=0,1,2,... is a Bari basis in the same space.
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1. INTRODUCTION. NOTATION AND DEFINITIONS. RESULTS

In the present work, we consider the problem

−Δu + f(u) = λu, u = u(|x|), x ∈ B = {x ∈ R3 : |x| < 1}, (1)

u(0) = p > 0, (2)

u
∣∣
|x|=1

= 0, (3)

where f is an odd continuously differentiable function, λ ∈ R is a spectral
parameter and p is an arbitrary positive ˇxed parameter. Problems of this type
may arise in particular in the solid state physics, heat and diffusion theory, in the
theory of nonlinear waves, etc. Hereafter in the paper, all the quantities we deal
with are real.

We restrict our attention to the radial eigenfunctions of problem (1)Ä(3), i. e.,
to the eigenfunctions u that depend only on r = |x|. Under our assumptions,
the problem has an inˇnite sequence of radial eigenfunctions {un}n=0,1,2,... such
that for each integer n the nth eigenfunction un regarded as a function of r has
precisely n zeros in the interval [0, 1). The main question we are interested in
in the present work is whether such a sequence of eigenfunctions is a basis in a
commonly used space, such as the subspace Lr

2(B) of L2(B) that consists of all
radial functions from L2(B). According to our result below, this is true if p > 0
is sufˇciently small.

For a discussion of the pertinence of our formulation of the problem (note that
problem (1)Ä(3) includes an unusual normalization condition (2)) and for a longer
list of references, we refer the reader to our quite recent review paper [4]. Here
we note only that our formulation of the problem is ®good¯ in the sense that, as in
the linear case, our problem has an inˇnite sequence of radial eigenfunctions un,
where for each integer n � 0 the nth eigenfunction un, regarded as a function of
the argument r ∈ [0, 1), possesses precisely n zeros and, if p > 0 is sufˇciently
small, such a sequence of eigenfunctions is a basis in the space Lr

2(B). But if one
excludes the normalization condition (2) from the statement of the problem, then
the set of all eigenfunctions becomes too wide: it would contain ®a lot of¯ bases.
It is a separate question what normalization condition should be imposed. The
author believes that this question may be answered only in the future if/when the
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ˇeld becomes developed sufˇciently; in particular, an applied problem may give
such an answer. In this context, the reader may consider our system (1)Ä(3) as a
model problem.

We mention especially our paper [3] (see also [4]) in which a problem
analogous to (1)Ä(3) was studied in the spatial dimension 1. It is proved in these
two articles that if assumption (f) is valid (see below) and if in addition f(u)/u
is a nondecreasing function of u > 0, then this one-dimensional problem has a
unique sequence of eigenfunctions {ϕn}n=0,1,2,... such that for each n the nth
eigenfunction has precisely n zeros in [0, 1) and this sequence of eigenfunctions is
a basis (in addition, a Riesz basis) in L2(0, 1) while the sequence of normalized
eigenfunctions {ϕ/‖ϕ‖L2(0,1)}n=0,1,2,... is a Bari basis in the same space (we
shall establish precise deˇnitions below).

Now, we shall introduce some notation and deˇnitions. Let L2 = L2(B)
be the standard Lebesgue space of functions g, h, . . . square integrable over B,
equipped with the scalar product (g, h)L2(B) =

∫
B

g(x)h(x)dx and the correspond-

ing norm ‖ · ‖L2(B) = (·, ·)
1
2
L2(B). By Lr

2 = Lr
2(B) we denote the subspace of the

space L2(B) that consists of all radial functions from L2(B) and is equipped with
the same scalar product and the norm. Let L2,r2(0, 1) denote the usual weighted
Lebesgue space of functions g measurable in (0, 1) for which

‖g‖L2,r2(0, 1) :=

⎧⎨
⎩

1∫
0

r2g2(r)dr

⎫⎬
⎭

1
2

< ∞.

The space L2,r2(0, 1) is equipped with the corresponding scalar product. In fact,
L2(B), Lr

2 and L2, r2(0, 1) are Hilbert spaces.
Let H be a separable Hilbert space over the ˇeld of real numbers in which

the scalar product and the norm are denoted (·, ·)H and ‖ · ‖H , respectively. We
recall that a sequence {hn}n=0,1,2,... ⊂ H is called a (Schauder) basis in H if
for any h ∈ H there exists a unique sequence of real numbers {an}n=0,1,2,...

such that

h =
∞∑

n=0

anhn in H.

Two sequences {hn}n=0,1,2,... and {en}n=0,1,2,... from H are called quadratically
close to each other (or the sequence {hn}n=0,1,2,... is called quadratically close
to the sequence {en}n=0,1,2,...) if

∞∑
n=0

‖hn − en‖2
H < ∞.

2



A basis {hn}n=0,1,2,... in H quadratically close to an orthonormal basis
{en}n=0,1,2,... in H is called a Bari basis in H . According to corollary 2.5
in [4], if {hn}n=0,1,2,... is an arbitrary sequence of elements of H and if

∞∑
n=0

‖hn − en‖2
H < 1,

where {en}n=0,1,2,... is an orthonormal basis in H , then {hn}n=0,1,2,...is a Bari
basis in H . Bari bases being compared with bases have additional nice properties
that we do not discuss in the present paper (on this subject, see, for example, [1]).
Some general aspects of the theory of nonorthogonal expansions in a Hilbert space
are considered in [1] and in [4].

We call a sequence of radial eigenfunctions {un}n=0,1,2,... of prob-
lem (1)Ä(3) standard if for each integer n � 0 the nth eigenfunction un regarded
as a function of r possesses precisely n zeros in the interval [0, 1). Everywhere
we assume the following.

(f) Let f be a continuously differentiable odd function in R and let f ′(0) = 0.

Note that the assumption that f ′(0) = 0 is not restrictive: one can achieve
this for an arbitrary odd continuously differentiable function by a shift of the
spectrum.

Consider the following linear eigenvalue problem:

−Δv = μv, v = v(|x|), x ∈ B, (4)

v(0) = p, (5)

v
∣∣
|x|=1

= 0, (6)

where μ ∈ R is a spectral parameter. Denote by {vn}n=0,1,2,... the sequence
of the radial eigenfunctions of problem (4)Ä(6) where, for each integer n � 0,
the nth eigenfunction vn regarded as a function of r ∈ [0, 1) possesses precisely
n zeros. By

μ0 < μ1 < . . . < μn < . . .

we denote the corresponding sequence of eigenvalues. Note that {vn}n=0,1,2,...

is an orthogonal basis in L2. Our main results here are as follows.

Theorem 1. Under assumption (f)
(a) for any integer n � 0 problem (1)Ä(3) has a radial eigenfunction un

which, being regarded as a function of r, possesses precisely n zeros in the
interval [0, 1);

(b) |u(r)| � p for any r ∈ [0, 1] and for an arbitrary radial eigenfunction u
of problem (1)Ä(3);
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(c) Let in addition to assumption (f) f(u)/u be a nondecreasing function of
u > 0. Then, the positive radial eigenfunction un is unique;

(d) under assumption (f) there exists p0 > 0 such that for any p ∈ (0, p0]
and any integer n � 0 the radial eigenfunction un of problem (1)Ä(3) that, being
regarded as a function of r, has precisely n zeros in [0, 1) is unique.

Theorem 2. Let assumption (f) be valid. Then, there exists κ = κ(p) > 0
deˇned for all p > 0 and going to 0 as p → +0 such that for any p > 0

∞∑
n=0

∥∥∥∥ un

‖un‖L2

− vn

‖vn‖L2

∥∥∥∥
2

L2

< κ(p)

for an arbitrary standard sequence {un}n=0,1,2,... of eigenfunctions of prob-
lem (1)Ä(3). Consequently, if p > 0 is sufˇciently small, an arbitrary standard
sequence of eigenfunctions, which is unique for p > 0 sufˇciently small by theo-
rem 1, is a basis in Lr

2 and, in addition, the sequence {un/‖un‖L2}n=0,1,2,... is
a Bari basis in the same space.

Remark. In view of theorem 2 and the Bari theorem (see [1, 4]), if one proves
the linear independence, in the sense of the space Lr

2, of a standard sequence of
eigenfunctions of problem (1)Ä(3) when p > 0 is not necessarily sufˇciently
small, then this sequence of eigenfunctions will be proved to be a basis in Lr

2 and
the sequence of the normalizations of these eigenfunctions to 1 is a Bari basis in
the same space, too. However, in the present work, we leave open the question
about the linear independence of such a system when p > 0 is not small.

In the next section 2, we shall prove theorem 1, and in section 3 Å theorem 2.

2. PROOF OF THEOREM 1

Proofs of results of the type of theorem 1 (a) are known now (on this subject,
see, for example, [5]), so we shall establish only a sketch of the proof of this
claim. In the class of radial solutions, problem (1)Ä(3) reduces to the following
one:

−(r2u′)′ + r2f(u) = λr2u, u = u(r), r ∈ (0, 1), (7)

u(0) = p, (8)

u′(0) = u(1) = 0, (9)

where the prime means the derivative in r. Equation (7) can also be rewritten in
the following equivalent form:

−u′′ − 2
r
u′ + f(u) = λu, u = u(r), r ∈ (0, 1). (10)
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We supply equation (10) with the following initial data:

u(0) = p, u′(0) = 0. (11)

A solution of equations (10) and (11) that satisˇes the condition u(1) = 0 is
a solution of problem (7)Ä(9). In equations (7) and (10), r = 0 is a singular
point. However, for problem (10)Ä(11), local existence, uniqueness and con-
tinuous dependence theorems in their usual form are valid (for proofs of these
claims, see, for example, [5]). Let u(r) be a solution of (10)Ä(11). Then,

u′′(0) =
1
3
[f(p) − λp] and the derivative uλ =

du

dλ
exists, is continuous and it

satisˇes the equations

−(r2u′
λ)′ + r2f ′(u(r))uλ = λr2uλ + r2u, uλ = uλ(r), r ∈ (0, 1), (12)

uλ(0) = u′
λ(0) = 0. (13)

As above, for problem (12)Ä(13) local existence and uniqueness theorems in their
usual form, as far as the theorem of the continuous dependence on λ, take place.
In addition, since equation (12) is linear with respect to uλ, the solution uλ of
problem (12)Ä(13) exists for all those values of r > 0, for which the solution u(r)
of problem (10)Ä(11) exists.

Let us prove statement (a) of theorem 1. Multiply equation (10) by u′(r)
and integrate the result from 0 to r. Then, we obtain the identity{

1
2
u′2(r) +

λ

2
[u2(r) − p2] + F (p) − F (u(r))

}′
= −2

r
u′2(r), (14)

where F (u) =
u∫
0

f(s)ds. Denote E(u(r)) = 1
2u′2(r) + λ

2 [u2(r) − p2] + F (p) −

F (u(r)).

Lemma 1. If λ ∈ R is such that u′′(0) > 0, where u(r) is the corresponding
solution of problem (10)Ä(11), then there is no point r > 0 such that u(r) = p.
In particular, u(r) > 0 for any r > 0 so that u is not an eigenfunction of
problem (7)Ä(9).

Proof. On the contrary, suppose that u′′(0) > 0 and there exists r > 0 such
that u(r) = p. But then, u′2(r) � 0, therefore E(u(r)) � 0 which contra-
dicts (14). �

Lemma 2. Let u′′(0) � 0. Then, |u(r)| � p for all r ∈ (0, 1].
Proof can be made by analogy (if u′′(0) = 0, then u(r) ≡ p by the uniqueness

theorem). �

Note that lemmas 1 and 2 yield statement (b) of theorem 1. Note in addition
that if u′′(0) � 0, then the solution of problem (10)Ä(11) is global (that is, it can
be continued on the entire half-line r > 0).
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Observe now that u′′(0) > 0 for all sufˇciently large |λ|, λ < 0, and
u′′(0) < 0 for all sufˇciently large λ > 0. By lemma 2 |u(r)| � p for all
λ > 0 sufˇciently large. Therefore, comparing equations (10)Ä(11) and (4)Ä(6)
(one should rewrite system (4)Ä(6) in the form analogous to (10)Ä(11)), we see
that, according to the standard comparison theorem, the number of zeros in (0, 1)
of u(r) increases unboundedly when λ > 0 unboundedly increases.

Take an arbitrary integer n � 0 and denote by Λn the set of all values
of λ for each of which the solution u(r) of (10)Ä(11) has at least (n + 1) zeros
in (0, 1). Let λn = inf Λn. Denote by un(r) the solution of problem (10)Ä(11)
taken with λ = λn. Then, |un(r)| � p for all r so that this solution is global.
Observe that, if u(r) �≡ 0 is a solution of equation (10) and if u(r0) = 0, then
u′(r0) �= 0 by the uniqueness theorem. Therefore, zeros of un(r) are isolated
and hence, un has a ˇnite number m of zeros in (0, 1). If m > n, then there
exists λ < λn sufˇciently close to λn such that the corresponding solution u(r)
of (10)Ä(11) has no less than m > n zeros in this interval, which contradicts our
deˇnition of the set Λn. By analogy, if m < n or if m = n and un(1) �= 0,
then any solution of equations (10) and (11) taken for λ > λn sufˇciently close
to λn has no more than n zeros in (0, 1) which contradicts our deˇnition of the
set Λn. Thus, un(r) has precisely n zeros in the interval (0, 1) and un(1) = 0.
So, claim (a) of theorem 1 is proved.

Let us prove claim (c). On the contrary, suppose that there exist two positive
eigenfunctions u1 and u2 of problem (7)Ä(9) corresponding to the eigenvalues λ1

and λ2, respectively, where λ1 < λ2. By (14), ui′(r) < 0 for any r ∈ (0, 1].
Indeed, if it would be ui(r) = ui′(r) = 0, then ui ≡ 0, while if ui(r) > 0 and
ui′(r) < 0 for r ∈ (0, r0) and if ui′(r0) = 0, then ui(r) � ui(r0) for all r > r0

in view of equation (10) and by the same arguments as in the proof of lemma 1.
Now, we apply a variant of the result from [2].

Lemma 3. One has
u2′(r)
u2(r)

<
u1′(r)
u1(r)

for any r ∈ (0, 1).

Proof. We have u2′′(0) < u1′′(0) < 0, therefore

u1′(r)
u1(r)

>
u2′(r)
u2(r)

and u2(r) < u1(r) < p (15)

in a right half-neighborhood of the point r = 0. Let us prove that (15) holds
everywhere in (0, 1). Suppose that the ˇrst inequality (15) holds in some interval
(0, a), where a ∈ (0, 1). Integrate it from 0 to r ∈ (0, a]. Then

ln u1(r) − ln p > ln u2(r) − ln p,

therefore u1(r) > u2(r) until the ˇrst inequality (15) holds.
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Suppose that the ˇrst inequality (15) is valid in an interval (0, a), a ∈ (0, 1),
and that it is violated at the point r = a. Note that, as is proved above, u1(a) >
u2(a). But then, by equation (10),(

u1′(r)
u1(r)

)′ ∣∣∣∣
r=a

>

(
u2′(r)
u2(r)

)′ ∣∣∣∣
r=a

, (16)

hence, by continuity (16) is still valid in a left half-neighborhood of the point

r = a so that it must be
u1′(a)
u1(a)

>
u2′(a)
u2(a)

, which is a contradiction.

Now, suppose that (15) holds everywhere in (0, 1) and that ui(1) = 0,
i = 1, 2. Denote t1 = u1′(1), t2 = u1′′(1), s1 = u2′(1) and s2 = u2′′(1).
From (10),

t2 = −2t1 and s2 = −2s1.

In a neighborhood of the point r = 1 one has

u1′(r)
u1(r)

=
t1 − 2t1(r − 1) + O((r − 1)2)

t1(r − 1) − t1(r − 1)2 + O((r − 1)3)
=

1
r − 1

− 1 + O(r − 1),

and by analogy
u2′(r)
u2(r)

=
1

r − 1
− 1 + O(r − 1).

So, we see that the difference

r−1

(
u1′(r)
u1(r)

− u2′(r)
u2(r)

)

goes to 0 as r → 1 − 0. But then

(
u1′(r)
u1(r)

)′

−
(

u2′(r)
u2(r)

)′

> 0 in a left half-

neighborhood of the point r = 1 (because by (15)

(
u1′(r)
u1(r)

)2

−
(

u2′(r)
u2(r)

)2

� 0

in (0, 1)), and since in addition
u1′(r)
u1(r)

>
u2′(r)
u2(r)

in (0, 1), and we arrive at a

contradiction as earlier. Thus, claim (c) of theorem 1 is proved.

Now, we turn to proving claim (d) of theorem 1. Let us prove the following.

Lemma 4. There exist p > 0 and C > 0 such that for any p ∈ (0, p]
a ∈ (0, 1], λ ∈ R and the corresponding solution u(r) of (10)Ä(11) which satisˇes
u(a) = 0 one has

‖uλ‖2
L2,r2(0,a) � C‖u‖2

L2,r2(0,a).
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Proof. First, multiply equation (12) by u′
λ and integrate the result from 0

to r ∈ (0, a]. Then, after integration by parts, we obtain

1
2
r2u′

λ
2(r) +

λ

2
r2u2

λ(r) +

r∫
0

su′
λ
2(s)ds =

= λ

r∫
0

su2
λ(s)ds +

r∫
0

s2f ′(u(s))uλ(s)u′
λ(s)ds −

r∫
0

s2u(s)u′
λ(s)ds. (17)

Second, multiply equation (12) by r−1uλ(r) and integrate the result from 0 to r.
Then, after integration by parts,

1
2
u2

λ(r) + λ

r∫
0

su2
λ(s)ds =

r∫
0

su′
λ
2(s)ds − ruλ(r)u′

λ(r)+

+

r∫
0

sf ′(u(s))u2
λ(s)ds −

r∫
0

su(s)uλ(s)ds. (18)

Now, add (18) to (17). Then, we obtain the following identity:

1
2
r2u′

λ
2(r) +

λ

2
r2u2

λ(r) +
1
2
u2

λ(r) =

− ruλ(r)u′
λ(r) +

r∫
0

sf ′(u(s))u2
λ(s)ds −

r∫
0

s2u(s)u′
λ(s)ds+

+

r∫
0

s2f ′(u(s))uλ(s)u′
λ(s)ds −

r∫
0

su(s)uλ(s)ds. (19)

Take an arbitrary p > 0 and integrate (19) for one more time from 0 to r.
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Then, applying the inequality ab � 1
2t

a2 +
t

2
b2, t > 0,

1
2

r∫
0

s2[u′
λ
2(s) + λu2

λ(s)]ds +
1
2
ru2

λ(r) �

� C1(p)

r∫
0

dt

⎛
⎝ t∫

0

(s + s2)u2
λ(s)ds

⎞
⎠ +

1
2

r∫
0

dt

⎛
⎝ t∫

0

s2u′
λ
2(s)ds

⎞
⎠ +

+
1
2

r∫
0

dt

⎛
⎝ t∫

0

u2
λ(s)ds

⎞
⎠ +

3
2

r∫
0

dt

⎛
⎝ t∫

0

s2u2(s)ds

⎞
⎠ �

� C2(p)r

r∫
0

su2
λ(s)ds +

r

2

r∫
0

s2u′
λ
2(s)ds+

+
r

2

r∫
0

u2
λ(s)ds +

3
2
r

r∫
0

s2u2(s)ds (20)

for constants C1 = C1(p) > 0 and C2 = C2(p) > 0 independent of p ∈ (0, p],
a, r and λ. Consequently, since λ > 0 for p > 0 sufˇciently small by the
comparison theorem, for p > 0 sufˇciently small

u2
λ(r) � C3(p)

r∫
0

u2
λ(s)ds + C4

r∫
0

s2u2(s)ds,

where the constants C3(p) > 0 and C4 > 0 do not depend on p ∈ (0, p], a, r
and λ. Now, the statement of lemma 4 follows by the Gronwell lemma. �

Lemma 5. There exists p̂ > 0 such that for any p ∈ (0, p̂] there is no
a ∈ (0, 1] and λ ∈ R for which u(a) = uλ(a) = 0.

Proof. On the contrary, suppose that there exist arbitrary small p > 0,
a ∈ (0, 1] and λ ∈ R for which u(a) = uλ(a) = 0. Multiply equation (10)
by uλ(r), equation (12) by u(r), subtract the results from each other and integrate
the obtained identity from 0 to a. Then, after integration by parts,

a∫
0

s2u2(s)ds =

a∫
0

s2[f ′(u(s)) − f(u(s))/u(s)]u(s)uλ(s)ds �

� C5(p)[‖u‖2
L2,r2(0,a) + ‖uλ‖2

L2,r2(0,a)],

9



where C5(p) → +0 as p → +0 because f(0) = f ′(0) = 0. Therefore

‖u‖2
L2,r20,a) ≤ 2C5(p)‖uλ‖L2,r2(0,a)

for p > 0 sufˇciently small, which contradicts lemma 4. �

Let us prove theorem 1 (d). Let now p ∈ (0, p̂]. Take an arbitrary integer
n � 0 and let λn = inf Λn, as earlier. Then, a simple corollary of lemma 5 is
that there exists a right half-neighborhood In of λn belonging to Λn in which
the (n + 1)st zero rn+1 of the solution u(r) of problem (10)Ä(11) is a strictly
decreasing function of λ ∈ In (so that in particular rn+1 ∈ (0, 1)). Letting λ
increase further, by lemma 5, again, one sees that the (n + 1)st zero of the
corresponding solution u(r) of (10)Ä(11) continue to decrease strictly so that in
the half-line (λn, +∞) there is no value λ for which u(r) has precisely n zeros
in the interval (0, 1) and u(1) = 0. Claim (d) of theorem 1 is proved. Our proof
of theorem 1 is complete.

3. PROOF OF THEOREM 2

Denote wn(r) = un(r) − vn(r). Then

(−r2w′
n)′ = μnr2wn + r2gn(r), r ∈ (0, 1), (21)

wn(0) = w′
n(0) = wn(1) = 0, (22)

where gn(r) = (λn −μn)r2un(r)− r2f(un(r)). By the comparison theorem and
theorem 1 (b)

|λn − μn| � C1(p), (23)

where C1(p) > 0 goes to 0 as p → +0 and C1 does not depend on n. In addition,
by the standard comparison theorem, again, there exists C2 > 0 such that

C−1
2 (n + 1)2 � μn � C2(n + 1)2 (24)

for all n. By (23) and theorem 1 (b),

|gn(r)| � C3(p)|un(r)|, (25)

where C3(p) > 0 goes to 0 as p → +0 uniformly in n.
Now, we proceed as when proving lemma 4. First, multiply equation (21)

by w′
n(r) and integrate the result from 0 to r. Then, after integration by parts,

1
2
r2w′

n
2(r) +

μn

2
r2w2

n(r) +

r∫
0

sw′
n

2(s)ds = μn

r∫
0

sw2
n(s)ds−

−
r∫

0

s2gn(s)w′
n(s)ds. (26)
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Second, multiply equation (21) by r−1wn(r) and integrate the result from 0 to r.
Then, in view of the boundary conditions (22), after integration by parts,

1
2
w2

n(r) + μn

r∫
0

sw2
n(s)ds =

r∫
0

sw′
n

2(s)ds − rwn(r)w′
n(r)−

−
r∫

0

sgn(s)wn(s)ds. (27)

Add (27) to (26). Then, we obtain

1
2
r2w′

n
2(r) +

μn

2
r2w2

n(r) +
1
2
w2

n(r) =

= −rwn(r)w′
n(r) −

r∫
0

s2gn(s)w′
n(s)ds −

r∫
0

sgn(s)wn(s)ds. (28)

Integrate (28) for one more time from 0 to r. Then, as when deriving (20),

1
2

r∫
0

s2[w′
n

2(s) + μnw2
n(s)]ds +

1
2
rw2

n(r) �

� r

2

r∫
0

w2
n(s)ds +

r

2

r∫
0

s2w′
n

2(s)ds + r

r∫
0

s2g2
n(s)ds. (29)

Hence, in view of (23) and (25),

w2
n(r) �

r∫
0

w2
n(s)ds + C4(p)

r∫
0

s2u2
n(s)ds, (30)

where C4(p) > 0 is a constant independent of n and r and C4(p) → 0 as p → +0.
Now, we obtain from (30) by the Gronwell lemma the following:

w2
n(r) � C5(p)‖un‖2

L2,r2(0,r), r ∈ [0, 1],

where C5(p) > 0 does not depend on n and r and goes to 0 as p → +0. Thus,
ˇnally from (24) and (29):

‖wn‖2
L2

� C6(p)(n + 1)−2‖un‖2
L2

(31)

for a constant C6 > 0 independent of n and going to 0 as p → +0.
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Now, it follows from (31) that
∞∑

n=0

∥∥∥∥ un

‖un‖L2

− vn

‖un‖L2

∥∥∥∥
2

L2

< C(p),

where C(p) > 0 is deˇned for all p > 0 and goes to 0 as p → +0. So, we have

∞∑
n=0

∥∥∥∥ un

‖un‖L2

− vn

‖vn‖L2

∥∥∥∥
2

L2

�

� 2
∞∑

n=0

{∥∥∥∥ un

‖un‖L2

− vn

‖un‖L2

∥∥∥∥
2

L2

+
∥∥∥∥ vn

‖un‖L2

− vn

‖vn‖L2

∥∥∥∥
2

L2

}
=

= 2

{
C(p) +

∞∑
n=0

(
‖vn‖L2

‖un‖L2

− 1
∥∥∥∥

2

L2

}
.

In view of this estimate, to prove theorem 2, it sufˇces to show that
∞∑

n=0

(
‖vn‖L2

‖un‖L2

− 1
)2

� Ĉ(p), (32)

where Ĉ(p) > 0 goes to 0 as p → +0. But we have
∞∑

n=0

(
‖vn‖L2

‖un‖L2

− 1
)2

�
∞∑

n=0

∥∥∥∥ un

‖un‖L2

− vn

‖un‖L2

∥∥∥∥
2

L2

� C(p)

by the proved part of theorem 2, where C(p) → +0 as p → +0. Thus, (32)
follows. Our proof of theorem 2 is complete.
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