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Numerical Investigation of Renormalization Group Equations
in a Model of Vector Field Advected by Anisotropic Stochastic Environment

Using the ˇeld-theoretic renormalization group, the in
uence of strong uniaxial
small-scale anisotropy on the stability of inertial-range scaling regimes in a model
of passive transverse vector ˇeld advected by an incompressible turbulent 
ow is
investigated. The velocity ˇeld is taken to have a Gaussian statistics with zero
mean and deˇned noise with ˇnite time correlations. It is shown that the inertial-
range scaling regimes are given by the existence of infrared stable ˇxed points of
the corresponding renormalization group equations with some angle integrals. The
analysis of integrals is given. The problem is solved numerically and the borderline
spatial dimension dc ∈ (1, 3] below which the stability of the scaling regime is not
present is found as a function of anisotropy parameters.

The investigation has been performed at the Laboratory of Information Tech-
nologies, JINR.
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1. INTRODUCTION

During the last two decades the so-called toy models of advection of a passive
scalar ˇeld (concentration of an impurity, temperature, etc.) or a vector ˇeld
(weak magnetic ˇeld in a conductive environment) by a given Gaussian statistics
of the velocity ˇeld have played the main role in the theoretical investigations
of intermittency and anomalous scaling in fully developed turbulence [1,2]. The
reason for this is twofold. On the one hand, the breakdown of the classical
KolmogorovÄObukhov phenomenological theory of fully developed turbulence [3]
is more noticeable for simpler models of a passively advected scalar or vector
quantity than for the velocity ˇeld itself and, on the other hand, the problem of
a passive advection is easier from theoretical point of view (see, e.g., [1] and
references therein).

An effective approach for studying self-similar scaling behavior is the method
of the ˇeld-theoretic renormalization group (RG) [4] which can also be used in
the theory of fully developed turbulence and related problems [5, 6]. During
the last decade the so-called rapid-change models of a passive scalar or vector
quantity advected by a self-similar white-in-time velocity ˇeld (also known as
Kraichnan model for scalar case and KazantsevÄKraichnan model for vector ˇeld)
and their various generalized descendants were analyzed. It was shown that
within the ˇeld-theoretic RG approach the anomalous scaling is related to the
existence of ®dangerous¯ composite operators with negative critical dimensions
in the framework of the operator product expansion (OPE) [5,6].

Nevertheless, one particular model of a passive vector advection is much more
complicated for theoretical investigations than the others even in the case that the
vector ˇeld is advected by the velocity ˇeld with a Gaussian statistics. It is the
model where the so-called stretching term is absent (the so-called A = 0 model,
see, e.g, [7, 8, 10]). The investigation of the anomalous scaling of correlation
functions in this model is essentially more complicated even in the simplest
isotropic case and the assumption of the presence of the small-scale anisotropy in
the model leads to difˇculties even in analysis of the stability of the corresponding
asymptotic scaling regimes [9]. The complexity of its analysis is similar to the
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corresponding problem in the ˇeld-theoretic renormalization group approach to
the stochastic NavierÄStokes equation [9].

In what follows, we shall concentrate on analysis of the stability of scaling
regimes of the model and it will be shown that the inertial-range scaling regimes
are given by the infrared (IR) stable ˇxed points of the system of ˇve differential
Gell-MannÄLow equations (also known as 
ow equations) which contain a special
type of integrals. Therefore, their calculation in process of integration of the
system of differential equations is needed. In this respect, one effective approach
to the integration of the integrals will be discussed in detail.

2. THE MODEL AND THE FIELD THEORY

We consider the so-called A = 0 model of the advection of transverse
(solenoidal) passive vector ˇeld b ≡ b(x, t) given by the stochastic equation

∂tb = ν0Δb− (v · ∇)b + f , (1)

where ∂t ≡ ∂/∂t, Δ ≡ ∇2 is the Laplace operator, ν0 is the diffusivity (a
subscript 0 denotes bare parameters of unrenormalized theory), and v ≡ v(x, t)
is the incompressible advecting velocity ˇeld. The vector ˇeld f ≡ f(x, t) is a
transverse Gaussian random (stirring) force with zero mean and covariance

Df
ij ≡ 〈fi(x, t)fj(x′, t′)〉 = δ(t − t′)Cij(r/L), r = x − x′, (2)

where parentheses 〈· · · 〉 hereafter denote average over corresponding statistical
ensemble and L denotes an integral scale related to the stirring. In what follows,
the concrete form of the correlator deˇned in (2) is not essential.

We suppose that the statistics of the velocity ˇeld is also given in the form
of a Gaussian distribution with zero mean and pair correlation function [8]

〈vi(x)vj(x′)〉 ≡ Dv
ij(x; x′) =

∫
ddkdω

(2π)d+1
Rij(k)Dv(ω,k)e−iω(t−t′)+ik(x−x′), (3)

where d is the dimension of the space, k is the wave vector, and Rij(k) is the
uniaxial anisotropic transverse projector taken in the following form [9]:

Rij(k) =
(
1 + α1(n · k)2/k2

)
Pij(k) + α2nsnlPis(k)Pjl(k), (4)

where Pij(k) ≡ δij − kikj/k2 is common isotropic transverse projector, the
unit vector n determines the distinguished direction of uniaxial anisotropy, and
α1, α2 are the parameters characterizing anisotropy. The necessity of positive
deˇniteness of the correlation tensor Dv

ij leads to the restrictions on the values of
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the anisotropy parameters, namely α1,2 > −1. The function Dv(ω,k) in (3) is
taken in the following form [8]:

Dv(ω, k) =
g0u0ν

3
0k4−d−2ε−η

(iω + u0ν0k2−η)(−iω + u0ν0k2−η)
, (5)

where g0 plays the role of the coupling constant of the model, the parameter
u0 is the ratio of turnover time of scalar ˇeld and velocity correlation time, and
the positive exponents ε and η are small RG expansion parameters (for details
see [8, 9]). The value ε = 4/3 corresponds to the Kolmogorov ®two-thirds
law¯ for the spatial statistics of velocity ˇeld, and η = 4/3 corresponds to the
Kolmogorov frequency. Simple dimensional analysis shows that g0 and u0, which
we commonly term as charges, are related to the characteristic ultraviolet (UV)
momentum scale Λ (or inner legth l ∼ Λ−1) by relations g0 � Λ2ε and u0 � Λη.

It can be shown that the stochastic problem (1)Ä(3) can be treated as a ˇeld
theory with the following action functional [4, 5]:

S(Φ) = b′j [(−∂t − vi∂i + ν0Δ +

+ ν0χ10(n · ∂)2)δjk + nj ν0

(
χ20Δ + χ30(n · ∂)2

)
nk]bk −

− 1
2

(
vi[Dv

ij ]
−1vj − b′iD

f
ijb

′
j

)
, (6)

where Dv
ij and Df

ij are given in (3) and (2) respectively, b′ is an auxiliary vector
ˇeld (see, e.g., [5]), and the required integrations over x = (x, t) and summations
over the vector indices are implied. In action (6) the terms with new parameters
χ10, χ20, and χ30 are related to the presence of small-scale anisotropy and they
are necessary to make the model multiplicatively renormalizable. The model (6)
corresponds to a standard Feynman diagrammatic technique (see, e.g., [8] for
details), and the standard analysis of canonical dimensions then shows which
one-irreducible Green functions can possess UV superˇcial divergences.

The functional formulation (6) gives possibility to use the ˇeld-theoretic
methods, including the RG technique to solve the problem. By means of the RG
approach it is possible to extract large-scale asymptotic behavior of the correla-
tion functions after an appropriate renormalization procedure which is needed to
remove UV divergences.

Using the standard RG analysis (see, e.g., [5,8]), one concludes that possible
scaling regimes of the model are given by the IR stable ˇxed points of the
system of ˇve nonlinear RG differential equations (
ow equations) for ˇve scale-
dependent effective variables (charges) C = {g, u, χ1, χ2, χ3} of the model which
are functions of the dimensionless scale parameter t = k/Λ [5]. In our model the
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system of the 
ow equations has the following form:

t
dg

dt
= g(−2ε+2γ1), t

du

dt
= u(−η+γ1), t

dχi

dt
= χi(γ1−γi+1), i = 1, 2, 3,

(7)
where the functions γi, i = 1, 2, 3, 4 are given by the following expressions (one-
loop approximation):

γ1 = −g
Sd−1

(2π)d

1
(d − 1)(d + 1)

1∫
0

dx
(1 − x2)(d−3)/2

w1w2
K1, (8)

γi+1 = − g

χi

Sd−1

(2π)d

1
(d − 1)(d + 1)

1∫
0

dx
(1 − x2)(d−3)/2

w1w2
Ki+1, i = 1, 2, 3, (9)

where Sd = 2πd/2/Γ(d/2) is the surface of the d-dimensional sphere, w1 =
(1+u+χ1x

2), w2 = (1+u+χ1x
2 +(χ2 +χ3x

2)(1−x2)), and the coefˇcients
Ki, i = 1, 2, 3, 4 are given as follows:

K1 = 2(1 + χ2 + u) + 2(χ1 − χ2 + χ3 + α1(1 + χ2 + u))x2 − (1 + 2χ3 −
−2α1(χ1 − χ2 + χ3) + u + α2(1 + u))x4 − (χ1 + α2(−1 + χ1 − u) +
+α1(1 + 2χ3 + u))x6 − (α1 − α2)χ1x

8 + d(−1 + x)(1 + x)(−2(1 +
+χ2 + u) − (2χ1 − χ2 + 2χ3 + 2α1(1 + χ2 + u) − α2(1 + χ2 + u)) ×
×x2 + (α1(−2χ1 + χ2 − 2χ3) + χ3 + α2(χ1 − χ2 + χ3))x4 + (α1 −
−α2) − χ3x

6) + d2(1 + α1x
2)(−1 − u − (χ1 + χ3)x2 + χ3x

4 +
+χ2(−1 + x2)),

K2 = α2(−1 + x2)((−2 + d)(1 + d)(1 + χ2 + u) + (3 − 2χ1 + 4χ2 −
−2χ3 + 3u + d(1 − χ1 + χ2 − χ3 + d(−1 + χ1 − 2χ2 + χ3 − u) +
+u))x2 − (−3χ1 + 2(1 + χ2 − 2χ3 + u) + d(1 + (−1 + d)χ1 −
−dχ2 − χ3 + 2dχ3 + u))x4 − ((2 + d)χ1 − (−2 + d2)χ3)x6) −
−(1 + α1x

2)(d(1 + χ2 + u) − (−2χ2 − 3(1 + u) + d(−χ1 +
+χ2 − χ3 + d(1 + χ2 + u)))x2 − (−3χ1 + 2(1 + χ2 − χ3 + u) +
+d(1 + χ3 + d(χ1 − χ2 + χ3) + u))x4 − ((2 + d)χ1 −
−(−2 + d2)χ3)x6),

K3 = −d(1 + u) + (d2 − 2d − 2)χ2 + (−3 + 2χ2 − 2χ3 + α2(−1 + dχ2 −
−u) − 3u + α1(−2χ2 + d2χ2 − d(1 + 2χ2 + u)) + d(−χ1 + 3χ2 −
−2χ3 + d(1 − χ2 + χ3 + u)))x2 + (−3χ1 + 2(1 + χ3 + u) + d(1 +
+dχ1 − χ2 + 3χ3 − dχ3 + u) + α2(3 − χ1 + 3u + d(1 − 2χ2 + χ3+
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+u)) + α1(−3 + 2χ2 − 2χ3 − 3u + d(−χ1 + 3χ2 − 2χ3 + d(1 −
+χ2 − 2χ3 − u) − 2(1 + u)) + α1(−3χ1 + 2(1 + χ3 + u) + d(1 +
+dχ1 − χ2 + 3χ3 − dχ3 + u)))x6 + (α1 − α2)((2 + d)χ1 − dχ3)x8,

K4 = α2(−1 + x2)(1 + 2χ2 + u + (χ1 − 2(4 + 3χ2 − χ3 + 4u))x2 +
+2(4 − 4χ1 + 2χ2 − 3χ3 + 4u)x4 + 4(2χ1 + χ3)x6 + d(1 + χ2 +
+u + (−6 + χ1 − χ2 + χ3 − 6u)x2 − (−6 + 6χ1 + χ3 − 6u)x4 +
+6χ1x

6) − d2(x2 − 1)(−(1 + χ3 + u)x2 + (−χ1 + χ3)x4 +
+χ2(x2 − 1))) − (1 + α1x

2)(3 − (12 − 3χ1 − 2χ3 + d(6 + χ3))x2 +
+((2 + d)(4 + d − 6χ1) + (−6 + d + d2)χ3)x4 + (2 + d)((4 +
+d)χ1 − (−2 + d)χ3)x6 − (d − 2)χ2(x2 − 1)((2 + d)x2 − 1) +
+u(3 + (2 + d)x2((4 + d)x2 − 6))).

In (7), the scale parameter t belongs to the interval 0 � t � 1 with the initial
conditions given at t = 1 and the IR stable ˇxed point corresponds to the limit
t → 0, i.e., C|t=0 = C∗.

Before we perform the analysis and solution of the system of differential
equations (7), it is necessary to guarantee the convergence of the integrals which
are present in (8) and (9) within the interval x ∈ [0, 1]. Another question is to ˇnd
an effective method to solve the integrals. Both questions are brie
y discussed
in the next section.

3. NUMERICAL AND ANALYTICAL ANALYSIS OF INTEGRALS

The integrals in (8) and (9) are linear combinations of the following integrals:

I =

1∫
0

dx
(1 − x2)

d−3
2 x2n

w1w2
, (10)

where the explicit form of functions w1 and w2 is given in the text below (8) and
(9), and n is a natural number, i.e., n = 0, 1, 2, . . . Therefore, the γ functions in
(8) and (9) will be convergent if and only if integrals (10) are convergent. The
necessary and sufˇcient conditions for the convergence of the integrals (10) are
subject of the following theorem:

Theorem 1: The integrals (10) are convergent within integration interval
x ∈ [0, 1] if and only if the following conditions are satisˇed:

i) χ1 ∈ (−1 − u,∞);
ii) χ2 ∈ (−1 − u,∞);
iii) χ3 ∈

(
−

(√
1 + u + χ1 +

√
1 + u + χ2

)2
,∞

)
.
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Proof: The proof of the theorem is similar to the proof of an analogous
theorem which was proven in [9], therefore we shall not present it here. �

In principle, there are a few ways of solveing the integrals (10). In what
follows, we shall try to transform them to the form which is more appropriate
for their numerical calculations, i.e, the procedure improves their convergent
properties. The approach is based on the following theorem:

Theorem 2: Let α be a real number and let P0(x) and Q(x) be polynomials
of real variable x such that d(P0(x)) � d(Q(x)), where d(R(x)) denotes the
degree of a polynomial R(x) and Q(x) is nonzero for x ∈ [0, 1]. Then for
arbitrary m ∈ Z

+
0 the following formula holds:

I =

1∫
0

P0(x)
(
1 − x2

)α

Q(x)
dx =

m∑
i=1

[
1

4 (α + i)

(
Pi−1(1)
Q(1)

− Pi−1(−1)
Q(−1)

)
+

+
√

π

4
Γ(α + i)

Γ(α + i + 1/2)

(
Pi−1(1)
Q(1)

+
Pi−1(−1)
Q(−1)

)]
+

1∫
0

Pm(x)
Q(x)

(
1 − x2

)α+m
dx,

(11)

where

Pi(x) =
Pi−1(x) − (Aix + Bi)Q(x)

1 − x2
,

Ai =
1
2

(
Pi−1(1)
Q(1)

− Pi−1(−1)
Q(−1)

)
, Bi =

1
2

(
Pi−1(1)
Q(1)

+
Pi−1(−1)
Q(−1)

)

for i = 1, 2, . . . , m.
Proof : The proof of the theorem is done by the mathematical induction with

respect to m. The case m = 0 is evident. Further, let us denote as T (n) the
proposition of the theorem for m = n and suppose that the theorem holds for
n � 0. Thus, it is necessary to prove the validity of the theorem for m = n + 1.

According to the assumption of validity of T (n), it follows that

I =

1∫
0

P0(x)
(
1 − x2

)α

Q(x)
dx =

n∑
i=1

[
1

4(α + i)

(
Pi−1(1)
Q(1)

− Pi−1(−1)
Q(−1)

)
+

+
√

π

4
Γ(α + i)

Γ(α + i + 1/2)

(
Pi−1(1)
Q(1)

+
Pi−1(−1)
Q(−1)

)]
+

+

1∫
0

Pn(x)
Q(x)

(
1 − x2

)α+n
dx = I∑,n + In, (12)
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where

Pi(x) =
Pi−1(x) − (Ai−1x + Bi−1)Q(x)

1 − x2
,

Ai−1 =
1
2

(
Pi−1(1)
Q(1)

− Pi−1(−1)
Q(−1)

)
, Bi−1 =

1
2

(
Pi−1(1)
Q(1)

+
Pi−1(−1)
Q(−1)

)
,

for all i ∈ [1, n] and as In we have denoted the integral part of (12). Further,
integral In in (12) can be written as follows:

In =

1∫
0

Pn(x)
Q(x)

(
1 − x2

)α+n
dx =

=

1∫
0

Anx + Bn

1 − x2

(
1 − x2

)α+n+1
dx +

1∫
0

Pn+1(x)
Q(x)

(
1 − x2

)α+n+1
dx, (13)

where Pn+1 is deˇned by the relation

Pn(x)
(1 − x2)Q(x)

=
Anx + Bn

1 − x2
+

Pn+1(x)
Q(x)

, (14)

therefore,

Pn+1(x) =
Pn(x) − (Anx + Bn)Q(x)

1 − x2
(15)

with identities

Pn(1)
Q(1)

= An + Bn,
Pn(−1)
Q(−1)

= −An + Bn. (16)

By solving the previous system of equations, one obtains

An =
1
2

(
Pn(1)
Q(1)

− Pn(−1)
Q(−1)

)
, Bn =

1
2

(
Pn(1)
Q(1)

+
Pn(−1)
Q(−1)

)
(17)

and by insertion of An and Bn from (17) into (13), one obtains the following
expression for integral In:

In = An

1∫
0

x
(
1 − x2

)α+n
dx + Bn

1∫
0

(
1 − x2

)α+n
dx+

+

1∫
0

Pn+1(x)
Q(x)

(
1 − x2

)α+n+1
dx = An

1
2 (α + n + 1)

+
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+ Bn

√
π

2
Γ(α + n + 1)

Γ(α + n + 3/2)
+

1∫
0

Pn+1(x)
Q(x)

(
1 − x2

)α+n+1
dx =

=
1

4 (α + n + 1)

(
Pn(1)
Q(1)

− Pn(−1)
Q(−1)

)
+

√
π

4
Γ(α + (n + 1))

Γ(α + (n + 1) + 1/2)
×

×
(

Pn(1)
Q(1)

+
Pn(−1)
Q(−1)

)
+

1∫
0

Pn+1(x)
Q(x)

(
1 − x2

)α+n+1
dx.

Now, one can return to (12) to obtain

I = I∑,n + In =
n∑

i=1

[
1

4(α + i)

(
Pi−1(1)
Q(1)

− Pi−1(−1)
Q(−1)

)
+

+
√

π

4
Γ(α + i)

Γ(α + i + 1/2)

(
Pi−1(1)
Q(1)

+
Pi−1(−1)
Q(−1)

)]
+

+
1

4 (α + (n + 1))

(
Pn(1)
Q(1)

− Pn(−1)
Q(−1)

)
+

+
√

π

4
Γ(α + (n + 1))

Γ(α + (n + 1) + 1/2)

(
Pn(1)
Q(1)

+
Pn(−1)
Q(−1)

)
+

+

1∫
0

Pn+1(x)
Q(x)

(
1 − x2

)α+n+1
dx

︸ ︷︷ ︸
In+1

=

=
n+1∑
i=1

[
1

4(α + i)

(
Pi−1(1)
Q(1)

− Pi−1(−1)
Q(−1)

)
+

+
√

π

4
Γ(α + i)

Γ(α + i + 1/2)

(
Pi−1(1)
Q(1)

+
Pi−1(−1)
Q(−1)

)]
+ In+1 =

= I∑,n+1 + In+1. (18)

In the end, from (14), (17), and (18) it follow that T (n + 1) holds, which
proves the theorem. �

The formula given in (11), which was proven in Theorem 2, allows one to
compute the integrals (10) in the form of a sum of the gamma functions, which
can be calculated exactly, and one integral which is convenient for integration
with respect to needed precision and computing time of calculations. It is clear
that in our case, d ∈ (1, 3], it is sufˇcient to take m = 1 and the integral becomes
more convenient for integration, namely, the exponent p in (1 − x2)p part of
the integrand becomes a positive real number and the integral can be simply
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Dependence of the borderline dimension dc on the parameters α1 and α2 for u∗ = 0 (a)

and u∗ = 1 (b). The corresponding scaling regime is stable above the given surfaces

calculated with the high precision in a very short time by appropriate numerical
method of integration.

4. SCALING REGIMES OF THE MODEL

We have performed a numerical analysis of the system of differential 
ow
equations and we have found all possible ˇxed points which drive the corre-
sponding scaling regimes of the model. The model exhibits ˇve different scaling
regimes. Two of them correspond to the rapid-change model limit: one is trivial
with g∗/u∗ = 0, 1/u∗ = 0 which is stable for η > 0 and 2ε < η and the other
is non-trivial with g∗/u∗ > 0, 1/u∗ = 0 which is stable for ε < η and 2ε > η.
Two of the scaling regimes correspond to the so-called ®frozen¯ limit: one is
again trivial with g∗ = 0, u∗ = 0 which is stable for ε < 0 and η < 0 and the
other is non-trivial with g∗ > 0, u∗ = 0 which is stable for ε > 0 and ε > η.
The last and the most interesting scaling regime corresponds to the case with
ˇnite time correlations of velocity ˇeld and it is given by nonzero u∗ and g∗ > 0
(see, e.g., [8] and references therein) which is stable for ε = η. Further, we are
interested in the dependence of the so-called borderline dimension dc ∈ (1, 3]
on the anisotropy parameters α1 and α2 under which the corresponding scaling
regime is unstable. Some results are shown in the ˇgure. One can see that the
presence of small-scale anisotropy leads to the violation of the stability of the
corresponding scaling regimes below d = 2 for appropriate values of anisotropy
parameters. But from the viewpoint of further investigation into anomalous scal-
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ing of the correlation functions of the advected vector ˇeld, the most important
conclusion is that all the three-dimensional scaling regimes remain stable under
the in
uence of small-scale uniaxial anisotropy.

5. CONCLUSIONS

Using the ˇeld-theoretic RG, we have studied the in
uence of small-scale
uniaxial anisotropy on the stability of the scaling regimes in the model of a passive
vector advected by a given stochastic environment with ˇnite time correlations.
The existence of ˇve possible scaling regimes as functions of parameters ε and
η has been brie
y discussed. It has been shown that the stability of the scaling
regimes under the in
uence of small-scale uniaxial anisotropy is driven by the
system of ˇve nonlinear differential 
ow equations which contain angle integrals.
The conditions for the convergence of the integrals have been found and one
convenient method for their numerical calculation has been worked out. It has
been shown that the anisotropy does not disturb the three-dimensional scaling
regimes, but the two-dimensional scaling regimes could be destroyed by the
small-scale anisotropy. The results will be used in the further investigations of
the anomalous scaling of the model.

The work was supported in part by VEGA grant 2/0173/09 of the Slovak
Academy of Sciences, by ITMS project No. 26220120009, and by RFBR grant
No. 08-01-00800-·.
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