S. Vokál1,*, J. Vrláková1

RELATIVISTIC PARTICLES PRODUCED IN 208Pb INDUCED NUCLEAR COLLISIONS AT 158 A GeV/c

Submitted to "Ядерная физика"

1P. J. Šafárik University, Košice, Slovakia
*E-mail: stanislav.vokal@upjs.sk
The angular structures of relativistic particles produced in 208Pb + Ag(Br) collisions in emulsion detector at 158 A GeV/c have been studied. Three different methods of analysis have been used — scaled factorial moments, wavelets and parameter S_2. An evidence for nonstatistical fluctuations has been shown using the method of scaled factorial moments in pseudorapidity phase space. The comparative study has been done for different beam energies and masses and Pb + Em events with different degree of centrality. No clear minimum has been found in the dependences of intermittency parameter λ_q on q. The continuous wavelet transform has been applied to the pseudorapidity spectra of produced particles. Some irregularities have been revealed mainly in the scale range $a \lesssim 0.5$ which can be interpreted as the preferred pseudorapidities of groups of emitted particles. The nonstatistical ring-like structures of produced particles in azimuthal plane of a collision have been found and their parameters have been determined when the azimuthal structures of produced particles have been investigated using the S_2 method.

The investigation has been performed at the Veksler and Baldin Laboratory of High Energy Physics, JINR.
1. INTRODUCTION

One of the topics intensively investigated in nuclear collisions at high energies is to search for phenomena connected with large densities obtained in such interactions. The existence of quark–gluon plasma (QGP) have been predicted in the framework of the quantum chromodynamics. As an example, the transition from the QGP back to the normal hadronic phase was predicted to give large fluctuations in the number of produced particles in local regions of phase space [1, 2].

The goal of our work was to present our last results obtained when some peculiarities in the emission of relativistic particles produced in 208Pb + Ag(Br) interactions at 158 A GeV/c have been studied. There are many methods proposed to analyze such effects in relativistic interactions of two nuclei. Three methods have been used in our analysis:

- method of S_2 parameter [3],
- wavelet method [4],
- scaled factorial moment method [5].

The S_2-parameter and wavelet methods are described and some selected results are discussed. The main aim of this paper is to present some new results of the search for fluctuations of relativistic particles produced in 208Pb induced interactions with Ag(Br) targets at the CERN SPS energy using the method of scaled factorial moments.

Experimental sample was collected in the EMU12 experiment organized by the EMU01 Collaboration [6, 7]. Comparison of experimental data with model calculations for events with different degree of centrality and for different beam nuclei have been done using the modified FRITIOF [8, 9] and cascade models [10].

2. EXPERIMENT

Nuclear emulsions were irradiated horizontally by 158 A GeV/c 208Pb beam at the CERN SPS — experiment EMU12. Experimental details can be found in [6, 7]. In the measured interactions all charged secondary particles were classified according to the commonly accepted emulsion experiment terminology into the following groups:
• b particles (black) — singly and multi-charged fragments evaporated from the target;
• g particles (grey) — charged particles with a range $\geqslant 3$ mm, b and g particles are target fragments with $\beta < 0.7$;
• s particles — the relativistic particles with $\beta \geqslant 0.7$ emitted outside the fragmentation cone, this group includes particles produced in the interactions as well as those knocked out from the target nucleus;
• f particles — the projectile fragments with $\beta \sim 0.99$.

The schematic view of our experimental setup is shown in Fig. 1.

Fig. 1. Our experimental setup

The polar (θ) and azimuthal (Ψ) emission angles of all tracks were measured. The pseudorapidity

$$\eta = - \ln \left(\tan \frac{\theta}{2} \right)$$

was calculated for each relativistic particle.

The event of 208Pb nuclear interaction in emulsion detector is presented in Fig. 2.

One can see the primary track of Pb nuclei on the left side and the tracks of produced particles, mainly fragments, on the right side.

Fig. 2. The 208Pb interaction in emulsion detector at 158 A GeV/c

The dependence of the number of produced relativistic particles (N_s) on the impact parameter b_{imp} calculated by the FRITIOF model for 208Pb+Em collisions at 158 A GeV/c is shown in Fig. 3 for different emulsion targets [11]. One can see that interactions with $N_s > 350$ are those of lead nuclei with the heavy emulsion
targets Ag and Br. The group with $N_s \geq 1000$ comprises the central Pb + Ag(Br) interactions with impact parameter $b_{\text{imp}} \approx (0 - 2)$ fm.

For the analysis 64 events with the number of relativistic particles $N_s > 350$ have been selected from the total number of 628 minimum bias events of $^{208}\text{Pb} + \text{Em}$ interactions at 158 A GeV/c.

3. METHODS OF ANALYSIS

In our previous investigations three different methods of analysis (the method of S_2 parameter, wavelet analysis and the method of scaled factorial moments [3–5]) have been used. Two methods (wavelet and S_2-parameter) are described and some selected results are presented here. As was mentioned in the introduction, the main aim of this paper is to present some new results of the search for fluctuations of relativistic particles produced in ^{208}Pb induced interactions with Ag(Br) targets at the CERN SPS energy made by the method of scaled factorial moments.

3.1. Method of the S_2 Parameter. The method of S_2 parameter was proposed by E. Stenlund (EMU01 Collaboration), and detailed study of the average values of the parameter S_2 was done in [3].
The azimuthal substructure of particles produced in ultra-relativistic heavy-ion collisions was investigated. It was found out that the observed substructure seems to be of stochastic nature and the features of the experimental data can be understood when effects like gamma-conversion and particle interference (HBT) are taken into account.

How was it found out in [3]? When azimuthal distributions of particles from relativistic heavy-ion collisions, produced within a narrow region of pseudorapidity, are studied, two classes of spectra are seen (Fig. 4). The jet class consists of cases where several particles seem to form clusters in the azimuthal plane, clusters which are separated with rather large void regions, as sketched in Fig. 4, a. The ring class consists of cases where the particles are distributed almost regularly as the spokes in a wheel (Fig. 4, b).

Fig. 4. Examples of two extreme azimuthal structures: (a) jet-like, (b) ring-like

In the S_2 method [3] the multiplicity N_d of the analyzed subgroup from an individual event is kept fixed. Each N_d tuple of consecutive particles along the η axis of individual event can then be considered as a subgroup characterized by:

- a size $\Delta \eta_d = \eta_{\text{max}} - \eta_{\text{min}}$, where η_{min} and η_{max} are the pseudorapidity values of the first and last particles in the subgroup;
- density $\rho_d = N_d/\Delta \eta_d$;
- average pseudorapidity (or subgroup position) $\eta_m = \sum \eta_i/N_d$.

To parametrize the azimuthal structure of the subgroup in a suitable way, a parameter S_2 of the azimuthal structure has been suggested, where $\Delta \phi$ is the difference between azimuthal angles of two neighboring particles in the investigated group (starting from the first and second and ending with the last and first):

$$S_2 = \sum (\Delta \phi_i)^2.$$ \hspace{1cm} (1)

For the sake of simplicity, $\Delta \phi$ was counted in units of full revolutions $\Delta \phi_i = 1$. The parameter S_2 is small ($S_2 \rightarrow 1/N_d$) for the particle groups with the ring-like structure and is large ($S_2 \rightarrow 1$) for the particle groups with the jet-like structure.

The expectation value for the parameter S_2, in the case of a stochastic scenario with independent particles in the investigated group, can be analytically...
Fig. 5. The dependence of the parameter S_2 on group size for central 200 A GeV S + Au interactions, $N_s \geq 300$, $N_d = 35$. The dashed line indicates the expectation values for purely stochastic emission expressed [3] as

$$\langle S_2 \rangle = \frac{2}{(N_d + 1)}. \quad (2)$$

This expectation value can be derived from the distribution of gaps between neighbors.

Figure 5 shows the results of the analysis of the generated FRITIOF+HBT sample, with and without γ conversion, compared with the results obtained from the data [3].

One can see that except for some additional jet structure seen by the S_2 parameter for the dilute groups, the features of the data can be understood as a superposition of stochastic fluctuations, γ conversion and particle interference. Finally it was concluded in [3] that jet-like and ring-like events do not exhibit significant deviations from what can be expected from stochastic emission. But average value studies do not give a full information about an effect. Next step was performed in 2002 [12] where the systematic study of the S_2 spectra for subgroups of the particles produced in 197Au induced collisions with heavy targets (Ag, Br) in emulsion detector has started. Nonstatistical ring-like substructures have been found and cone emission angles as well as other parameters have been determined.

What we can expect to see in the experimental $S_2/\langle S_2 \rangle$ distributions in different scenarios was shown in 2004 [13]. It is illustrated schematically in Fig. 6 using, for example, Gauss distributions. In case of a pure stochastic scenario.
the distribution would have a peak position at 1. The existence of the jet-like structures in collisions results in appearance of additional S_2 distribution from this effect, but shifted to the right side in comparison with stochastic distribution. Analogously, the existence of the ring-like structures results in appearance of additions to S_2 distribution from this effect, but shifted to the left side. As a result, the summary S_2 distribution from these three effects may have different form and depends on mutual order and sizes.

The experimental normalized $S_2/\langle S_2 \rangle$ distributions have been compared with the distributions calculated by the FRITIOF model [14]. One of the results is shown in Fig. 7, a, b.

The model spectra were aligned according to the position of the peak with the experimental one. The FRITIOF includes neither the ring-like nor the jet-like effects, so the model spectra are used like the statistical background. Except this, in [3], it was shown that the S_2 distribution for the FRITIOF model coincides with the calculated distribution in the case of the stochastic scenario with independent particles in the investigated group.

One can see that the experimental distributions are broader than the spectra calculated by the FRITIOF model. The experimental distributions have a surplus of events on both sides of the center. Such a situation takes place for all N_s and any N_d groups which were examined.

The results obtained from the experimental data after the subtraction of the statistical background are shown in Fig. 7, c, d. The obtained distributions have two very good distinguishable hills, the first in the region $S_2/\langle S_2 \rangle < 1$, where the ring-like effects are expected, and the second in the jet-like region ($S_2/\langle S_2 \rangle > 1$).

The preliminary result is that the azimuthal structures of produced particles from collisions induced by the 158 A GeV/c 208Pb beams with Ag(Br) targets in the emulsion detector have been investigated and the additional groups of produced particles in the region of the ring-like structures ($S_2/\langle S_2 \rangle < 1$) and the jet-like structures ($S_2/\langle S_2 \rangle > 1$) in comparison to the FRITIOF model calculations have been observed [11, 14]. A similar situation has been observed in the interactions of 11 A GeV/c 197Au beams with heavy targets in the emulsion detector [13].
3.2. Wavelet Method. The distributions of both the azimuthal and polar angles of produced particles have been investigated simultaneously to observe irregularities in particle emission. The continuous wavelet approach was applied to the angular spectra of the relativistic particles created in Au and Pb induced nuclear collisions at AGS and SPS energies [15, 16]. The wavelet pseudorapidity spectra have been subsequently surveyed at different scales to look for signs of ring-like structures. The particles contributing to the ring-like structures are expected to give peaks or bumps at certain typical pseudorapidities and to have approximately uniform azimuthal distributions (at certain scales).
Wavelet pseudorapidity spectrum of event is the sum of wavelets representing the individual particles. Wavelet coefficients $W_\psi(a, b)$ reflect the probability to observe particle at some pseudorapidity b and scale a:

$$W_\psi(a, b) = \frac{1}{N} \sum_{i=1}^{N} a^{-1/2} \psi \left(\frac{\eta_i - b}{a} \right).$$

(3)

The second derivative g_2 of Gaussian function (also known as Mexican hat) was chosen as a mother wavelet.

Wavelet g_2 pseudorapidity spectra for all s particles at the three different scales a are presented in Fig. 8 [16].

The b_{max} spectra plotted for the four different scale intervals are presented in Fig. 9 [16]. The scale intervals were introduced to investigate how an occurrence of maxima $W_\psi(a_{\text{max}}, b_{\text{max}})$ depends on scale.

One can see that the local maximum referred to as irregularities were uncovered in the wavelet pseudorapidity distributions mainly in the scale range $a \leq 0.5$. These irregularities indicate the preferred pseudorapidities of groups of emitted particles.

Fig. 8. Wavelet g_2 pseudorapidity spectra of all the studied Pb events seen at the three different scales a
3.3. Scaled Factorial Moments Method Analysis. Experimental data on particle fluctuations in small space domains have been presented for various high-energy multiparticle collisions. Bialas and Peschanski [17, 18] suggested to study the dependence of factorial moments \(F_q \), where \(q \) is the order of the moment, as a function of the bin width \(\delta \eta \). The intermittent behaviour should lead to a power law dependence of the factorial moments on the bin size \(\propto (\Delta \eta/\delta \eta)^{\varphi_q} \), \(\varphi_q > 0 \), where \(\Delta \eta \) is the pseudorapidity interval of produced relativistic particles.

Three methods: method of horizontal factorial moments (HFM), vertical factorial moments (VFM) and mixed factorial moments (MFM) have been proposed in [5]. The standard horizontal factorial moments \(F_e^{(H)} \) characterizing the \(e \)th event are defined by the following formula:

\[
F_e^{(H)}(q) = M^{q-1} \sum_{m=1}^{M} \left(\frac{F(n_{me}; q)}{N_e^{(H)}} \right)^q,
\]

where \(M \) is the number of equal bins of size \(\delta \eta \) into which the pseudorapidity interval \(\Delta \eta \) has been divided, \(n_{me} \) is the number of shower particles in the \(m \)th bin. Nonaveraging and nonnormalized factorial moments are given by \(F(n; q) = n(n-1)\ldots(n-q+1) \). Vertical averaging of \(F_e^{(H)} \) gives the full form

\[
F^{(H)}(q) = \frac{1}{E} \sum_{e=1}^{E} F_e^{(H)}(q).
\]

Denominator of the horizontal moment (4) is \(N_e^{(H)} = \sum_{m=1}^{M} n_{me} \).

Vertical analysis is suggested in case of rare events with sharp peaks. In this case the normalized standard vertical moments characterizing the \(m \)th bin are
given by
\[F_m^{(V)}(q) = E^{q-1} \sum_{e=1}^{E} F(n_{me}; q) \left(\sum_{e=1}^{E} n_{me}^{(V)} \right)^q \]
(6)

and the horizontal averaging gives the full form
\[F^{(V)}(q) = \frac{1}{M} \sum_{m=1}^{M} F_m^{(V)}(q), \]
(7)

where \(N_m^{(V)} = \sum_{e=1}^{E} n_{me} \) is the sum of multiplicities which appear in the \(m \)th bin of all events.

Besides the horizontal and vertical factorial moment methods, a mixed approach is applied. Mixed factorial moments are defined as
\[F^{(HV)}(q) = \frac{1}{M} \sum_{m=1}^{M} \left(\frac{1}{E} \sum_{e=1}^{E} F(n_{me}; q) \right)^q = M^{q-1} E^{q-1} \sum_{m=1}^{M} \sum_{e=1}^{E} F(n_{me}; q) \left(\sum_{e=1}^{E} N_e^{(H)} \right)^q, \]
(8)

where \(N^{(HV)} = \sum_{m=1}^{M} \sum_{e=1}^{E} n_{me} \) is the total number of charged particles observed in the sample of \(E \) events.

For experimental data of Si + Ag(Br) interactions at 14.6 A GeV/c, we used all the three above-mentioned methods of analysis — HFM, VFM and MFM. The \(\ln \langle F_q \rangle \) dependences on \(\ln M \) have been obtained. The results of this analysis have been published in [19]. The values of slopes are given in Table 1. The values of slopes \(\varphi_q \) obtained by all these methods are similar for \(q = 2-5 \), where \(q \) is the order of factorial moment. Because all the three methods give similar values of slopes, in next analysis we used the HFM method only.

From the total number of 628 measured events of \(^{208}\)Pb + Em interactions at 158 A GeV/c, 64 collisions with the number of relativistic particles \(N_s > 350 \)
Table 2. Different groups of 208Pb interactions in emulsion. N_i is number of interactions, $\langle N_s \rangle$ is average number of relativistic particles

<table>
<thead>
<tr>
<th>N_s</th>
<th>N_i</th>
<th>$\langle N_s \rangle$</th>
</tr>
</thead>
<tbody>
<tr>
<td>>350</td>
<td>64</td>
<td>635</td>
</tr>
<tr>
<td>>400</td>
<td>64</td>
<td>698</td>
</tr>
<tr>
<td>>500</td>
<td>40</td>
<td>775</td>
</tr>
<tr>
<td>>600</td>
<td>35</td>
<td>809</td>
</tr>
<tr>
<td>>700</td>
<td>23</td>
<td>900</td>
</tr>
<tr>
<td>>800</td>
<td>14</td>
<td>993</td>
</tr>
<tr>
<td>>900</td>
<td>8</td>
<td>1097</td>
</tr>
<tr>
<td>>1000</td>
<td>7</td>
<td>1120</td>
</tr>
</tbody>
</table>

have been selected. The interactions with $N_s > 350$ are those of lead nuclei with heavy emulsion targets (Ag, Br) [13]. The interactions with increasing number of relativistic particles or degree of centrality, respectively, have also been studied (see Table 2).

The $\ln \langle F_q \rangle$ dependences on $\ln M$ (for $q = 2$–6) have been obtained by horizontal factorial moment method. Some results of this analysis have been published in our previous work [20]. The dependence of $\ln \langle F_q \rangle$ on $\ln M$ for Pb + Ag(Br) interactions with $N_s > 1000$ obtained by HFM is shown in Fig. 10.

In our next analysis the dependences of parameters α_q and φ_q ($\ln \langle F_q \rangle = \alpha_q + \varphi_q \ln M$) on the order of factorial moments q have been studied for $\Delta \eta = 0$–7.4 and $M = 7$–74. In Fig. 11 the increasing dependences of values of slopes (φ_q) on q for two groups ($N_s > 350, N_s > 1000$) of Pb induced interactions in emulsion are shown. The steepest dependence of values of slopes on q has been found for interactions with $N_s > 1000$. These dependences ($\varphi_q > 0$) show an evidence for the presence of intermittent behaviour or nonstatistical fluctuations. Figure 12 presents the dependence of intercept parameter α_q on q for the most central Pb interactions, $q = 2$–6.

For comparison we used other experimental data obtained by the same standard emulsion method. The characteristics of used experimental data — beam nucleus, momentum (p), number of bins (M) and bin size ($\delta \eta$) of relativistic particles — are given in Table 3.

In Fig. 13 is shown our new result — the dependences of slope φ_q on q for Pb+Em and Au+Em central interactions. Measurements and calculations have been done in similar conditions: similar masses of projectiles and similar
Table 3. Experimental data

<table>
<thead>
<tr>
<th>Beam nucleus</th>
<th>16O</th>
<th>16O</th>
<th>197Au</th>
<th>208Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>p, A GeV/c</td>
<td>60</td>
<td>200</td>
<td>11.6</td>
<td>158</td>
</tr>
<tr>
<td>$\langle M \rangle$</td>
<td>6–64</td>
<td>8–76</td>
<td>4–25</td>
<td>7–74</td>
</tr>
<tr>
<td>$\Delta \eta$</td>
<td>1.07–0.1</td>
<td>0.95–0.1</td>
<td>1.25–0.2</td>
<td>1.087–0.1</td>
</tr>
</tbody>
</table>

Fig. 11. The φ_q dependence on q ($q = 2–6$) for Pb + Em interactions with $N_s > 350$ and $N_s > 1000$, $\Delta \eta = 0–7.4$, $M = 7–74$

Fig. 12. The α_q dependence on q ($q = 2–6$) for Pb + Em interactions with $N_s > 1000$, $\Delta \eta = 0–7.4$, $M = 7–74$

Fig. 13. The φ_q dependence on q ($q = 2–5$) for Pb + Em and Au + Em central interactions with $N_s > 350$ and $N_s > 100$, respectively

Fig. 14. The φ_q on q for Pb experimental and CEM data at 158 A GeV/c: $N_s > 1000$
Table 4. The values of slopes for experimental data from 4.5 A GeV/c and 14.6 A GeV/c.

<table>
<thead>
<tr>
<th>Energy</th>
<th>ϕ_2</th>
<th>ϕ_3</th>
<th>ϕ_4</th>
<th>ϕ_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5 A GeV/c</td>
<td>0.044 ± 0.009</td>
<td>0.117 ± 0.025</td>
<td>0.224 ± 0.051</td>
<td>0.336 ± 0.092</td>
</tr>
<tr>
<td></td>
<td>(0.008±0.004)</td>
<td>(0.023±0.012)</td>
<td>(0.032±0.023)</td>
<td>(0.040±0.037)</td>
</tr>
<tr>
<td>14.6 A GeV/c</td>
<td>0.037 ± 0.005</td>
<td>0.076 ± 0.012</td>
<td>0.112 ± 0.021</td>
<td>0.145 ± 0.032</td>
</tr>
<tr>
<td></td>
<td>(0.023±0.003)</td>
<td>(0.045±0.008)</td>
<td>(0.063±0.014)</td>
<td>(0.076±0.021)</td>
</tr>
</tbody>
</table>

Table 5. The values of slopes for experimental data from 4.5 A GeV/c and 14.6 A GeV/c.

<table>
<thead>
<tr>
<th>Energy</th>
<th>ϕ_2</th>
<th>ϕ_3</th>
<th>ϕ_4</th>
<th>ϕ_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5 A GeV/c</td>
<td>0.041 ± 0.006</td>
<td>0.099 ± 0.015</td>
<td>0.178 ± 0.029</td>
<td>0.270 ± 0.048</td>
</tr>
<tr>
<td></td>
<td>(0.018±0.003)</td>
<td>(0.035±0.004)</td>
<td>(0.050±0.019)</td>
<td>(0.072±0.033)</td>
</tr>
<tr>
<td>14.6 A GeV/c</td>
<td>0.040 ± 0.004</td>
<td>0.094 ± 0.017</td>
<td>0.163 ± 0.031</td>
<td>0.236 ± 0.047</td>
</tr>
<tr>
<td></td>
<td>(0.018±0.004)</td>
<td>(0.026±0.009)</td>
<td>(0.021±0.016)</td>
<td>(0.017±0.025)</td>
</tr>
</tbody>
</table>

values of bin size ($\delta \eta = 0.1$–1.057 for Pb + Em and $\delta \eta = 0.2$–1.25 for Au + Em). The central events have been selected for this analysis only, i.e., Pb events with $N_s > 350$ and Au events with $N_s > 100$. A similar trend of ϕ_q dependences on q only for Pb + Em data was published in [21].

The results of analysis using HFM method have been compared with the values obtained from data sample calculated by the modified cascade-evaporation model (CEM). The description of CEM can be found in [10]. The values of slopes obtained by HFM for the experimental data of 28Si interactions at 14.6 A GeV/c and 4.5 A GeV/c are given in Table 4 [19]. The values in the brackets are from CEM data at the same momenta. The similar comparison for 16O+Em experimental and CEM data at 4.5 and 14.6 A GeV/c are given in Table 5. These results have been published in our previous work [22]. One can see that the values of slopes for experimental samples are higher than the values calculated using CEM.

The events of Pb + Ag(Br) with $N_s > 1000$ have also been studied. The ϕ_q dependences on q for Pb + Ag(Br) experimental and CEM data are presented in Fig. 14.

The values of slopes for experimental data are higher than the values from CEM. Similar results have been published by B. Wosiek in [21] for Pb + Em and MC calculations at 158 A GeV/c, where the slopes ϕ_q increase with increasing value of q and values of slopes are higher than those obtained from MC calculations.
The dependences of intermittency parameter (λ_q) on the order of factorial moment q have been studied. The intermittency parameter is defined as

$$\lambda_q = \frac{\varphi_q + 1}{q}. \quad (9)$$

If the function λ_q on q had a minimum at a certain $q = q_c$, there would be a possibility of observing a nonthermal phase transition [23, 24].

The dependences of intermittency parameter (λ_q) on the order of factorial moment q for two groups of Pb interactions with different degree of centrality ($N_s > 350$ and $N_s > 1000$) are presented in Fig. 15. No minimum of λ_q dependence on q has been found. Similar dependences for $\delta \eta = 0.1-3.7$ have been published in [20], no minimum of λ_q on q has also been found.

The dependences of intermittency parameter (λ_q) on the order of factorial moment q for different primary nuclei have been studied. In Fig. 16 the λ_q dependences on the order of factorial moment q for different experimental data samples (see Table 3) are presented, but no minimum has been found. There are some hints for existence of minima at $q_c = 4-5$ published in [24, 25].

The dependence of values of slopes φ_2 on particle density per unit pseudorapidity ρ has been studied using different primary nuclei. Our preliminary result obtained for interval bin size $\delta \eta \sim 0.1-1.25$ (in logarithmic scale) is shown in Fig. 17. Similar results for chamber emulsion data in pseudorapidity interval $0.09 < \delta \eta < 2$ have been published in [26].
Central interactions of 208Pb nuclei at 158 A GeV/c in emulsion have been analyzed using the horizontal factorial moment method. The scaled factorial moments F_q of the order q have been studied as a function of the pseudorapidity bin size, parametrized in the form

$$\ln \langle F_q \rangle = \alpha_q + \varphi_q \ln M.$$

An evidence for the presence of intermittent behaviour has been shown. The dependences of parameters α_q and φ_q on the order of factorial moments q have been studied. The comparison for different primary nuclei (16O at momenta of 4.5–200 A GeV/c and 197Au at 11.6 A GeV/c) has been done. The dependences of intermittency parameter λ_q on q for different primary nuclei have been studied, but no clear minimum has been found.

4. CONCLUSION

Emission of relativistic particles produced in central 208Pb induced nuclear collisions at 158 A GeV/c has been studied using three different approaches — scaled factorial moments, wavelets and parameter S_2.

- An evidence for nonstatistical fluctuations has been shown using horizontal factorial moment method in pseudorapidity phase space. The comparative study has been done for different beam energies and masses and for different centrality selection of Pb events. No clear minimum has been found in the dependences of intermittency parameter λ_q on q.
- In the wavelet analysis some irregularities have been observed mainly in the scale range $a \leq 0.5$, which indicate the preferred pseudorapidities of groups of emitted particles.
- When the azimuthal structures of produced particles have been investigated using the S_2 method, the additional groups of produced particles in the region of the ring-like structures ($S_2/\langle S_2 \rangle < 1$) and the jet-like structures ($S_2/\langle S_2 \rangle > 1$) in comparison to the FRITIOF model calculations have been observed.

Acknowledgments. Financial support from the Scientific Agency of the Ministry of Education of the Slovak Republic and the Slovak Academy of Sciences (Grant No. 1/0080/08) is cordially acknowledged.
REFERENCES

Received on December 8, 2009.