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1. IMPEDANCES AND WAKE FIELDS

Charged particles accelerated in a circular accelerator are a source of EM
fields that act back on the beam perturbing the motion. This may cause dangerous
feedbacks leading to different kinds of instabilities — Fig. 1.

The self-fields are a superposition

of EM field generated by the beam in Accelerator

the free space and of EM field pro- / \
duced by the image current induced on

the vacuum chamber walls. The wall

geometry is complicated. The smooth \ /
metallic (usually stainless steel) vacuum
pipe with an oval cross section is inter- Beam
rupted by steps, BPM plates, RF cav-
ities, bellows, flanges, ferrite kickers, Fig 1. The beam-environment feedback
septum magnets, etc. The EM field pro- may lead to instability
duced by the beam and modified by the
beam surroundings causes a force that acts back on the particles. Together with
the force due to the external EM fields, which imposes the particle trajectories,
this self-force affects the motion of the particles in the accelerator, and under
some circumstances this motion becomes unstable.

It is impossible to solve analytically Maxwell’s equations taking into account
a very complicated geometry of the vacuum chamber and various electromagnetic
properties of the walls. In an effort to generalize all the cases of wall geometry,
V.C. Vaccaro and A.M. Sessler have introduced the concept of wake fields and
impedances [1-5].

The coupling impedance gathers in one quantity all the details of the elec-
tromagnetic interaction of the beam and its surroundings. The longitudinal im-
pedance is defined by one-turn voltage seen by the particles:

1
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where 6 is the azimuth, R is the machine mean radius, E. is the longitudinal
electric field, and I is the beam current.



Introducing the Fourier components of the beam current we have:

oo

E.(t,0) = Zo (w) I(w,0) e'“! dw. ()
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The transverse signal as it is measured by the PUEs, is defined as the product of
the beam current by the local center-of-mass displacement < x >:

D(t,0)=1(t,0)(x(0)). 3)
By historical reasons, the transverse coupling impedance is defined as:
[E—Fﬁcxéh(t,@)=—% Z1(w)D(w,B) e dw, 4)
’7T

i.e., the transverse deflecting force on the unit charge (Lorentz force) over one
particle revolution divided by the dipole moment of the beam.

The dimension of Zy is [2] and of Z is [2/m]. The impedance is a complex
function of frequency.

Types of the beam environment can be classified in the following way.

e Perfectly conducting walls of uniform cross section (case of space—charge
dominated beam). The EM field emitted by an ultrarelativistic particle moving
with a velocity fc in a smooth pipe with perfectly conducting walls, is purely
transverse:

T 271'1607“ Oz - fet),
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where
Zo= |22 = 37670 (6)
€0

is the free-space impedance,

In the limit 8 — oo, the field is as in the free space. This «pancake»-like field
will not act on the particles moving in front of or behind the source particle —
Fig. 2.

In the longitudinal direction, the coupling impedance is (see Fig.3):
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where a is the beam radius, b is the vacuum chamber radius.



The space-charge impedance is o N
purely reactive (negative inductance),
i.e., there is no energy loss during the
particle motion.

In the transverse direction:

1RZy , 1 1
2% w)=—=5(=-=). O
)= () O
The transverse space-charge im- Fig. 2. EM field of the ultrarelativistic
pedance is shown in Fig. 4. charge moving in a perfectly conducting

The lower the particle energy is the pipe
higher the space-charge impedance.

e Walls with finite conductivity o. In the realistic case of the walls with finite
conductivity o, when the wall thickness is greater than the skin depth d:

5=\li, (10)
Hwow

the EM field emitted by the source particle is more complicated — Fig. 5.

At the distances bigger than dy behind the source particle, the EM field is
accelerating the trailing particles of the same charge sign, while at the distances
less than dp, it is decelerating in agreement with the energy balance condition

do = {| —. (11)

In the longitudinal direction, the coupling impedance is (see Fig.6):
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Fig. 3. Longitudinal space-charge im- Fig. 4. Transverse space-charge impedance

pedance Zo(p)/p, p = w/wo Zy



In the transverse direction, the coupling

[_L\’;‘/‘// impedance could be calculated applying the

relation between the transverse and longitu-

(\ dinal impedances:
d (S 2¢ 25
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» L=w (13)
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Due to the factor b in the denominator,

accelerators with a small cross section of the

vacuum chamber have large resistive wall

d, - — ot impedance.
The transverse resistive wall impedance

is shown in Fig.7.

e Resonant element. The EM fields
generated by the beam in the RF cavities
are between the main sources of beam-
environmental interactions. Instead of the
fundamental mode, at frequency wrr = hwy the accelerating cavities have many
other sharp resonances corresponding to all the resonant modes of the RF struc-
ture (higher-order modes, HOMs). When a bunch passes through the cavity, it
could excite these parasitic modes.

The field in the resonant element decays as exp (—35 t), where w; is the
resonance frequency, and @ is the quality factor. Time ¢ = 2Q /w, is needed for
the excited field to reduce «e» times. As in the RF cavities the quality factor )
is very high, 10* or higher, this field lasts long enough to couple the successive
bunches circulating around the ring.

\

Fig. 5. EM field in the vacuum pipe
with finite conductivity
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Fig. 6. Longitudinal resistive wall im- Fig. 7. Transverse resistive wall im-
pedance pedance
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Fig. 8. Longitudinal narrow-band resonant  Fig. 9. Transverse narrow-band resonant
impedance impedance

The longitudinal coupling impedance of a resonator is:

R,

Zn = ,
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where R, is the shunt impedance of the resonator.

Below resonant frequency (w < w,) the impedance is pure inductance; at
resonance (w = w,) is pure resistance, and above transition (w > w,.) is pure
capacitance. The bandwidth (HWHM) is:

Wy
dw = 50" (16)
The longitudinal narrow-band resonant impedance is shown in Fig. 8.
If in the accelerator there are many bunches, the attenuation between two
successive bunches is given by exp(—«), where:
o= fr tbunch-bunch ) (17)
Q
In the case of high @ (narrow band) resonator, the decay of the wake field is slow
(o < 1). Such a long-range wake field is a source of bunch coupling. The wake
field of a narrow-band resonator lasts for a long period of time, and successive
bunches will be coupled by such resonator.

The transverse narrow-band resonant impedance is shown in Fig. 9.

e Broad-band (BB) resonant element. This is the case of low quality factor
(Q ~ 1) and high attenuation of the field (o > 1). Changes of vacuum chamber
such as bellows, flanges, etc., can trap some magnetic field. The measurements on
many existing machines have shown that such structures are well approximated by
a BB resonator with ) ~ 1, and resonant frequency around the vacuum chamber
pipe cut-off frequency (~ 1 GHz) is

C
Wr X We.o. = T

(18)



The shunt impedance of this BB resonator is adjusted to fit the impedance ob-
served at low frequencies. Just at resonance we have pure resistance Z(w,) =
Rsp. The BB resonator has an impedance curve with a large bandwidth (# >

%), M is the number of bunches and therefore the wake field decays rapidly.
This element represents local interactions which can couple only close particles.
The longitudinal broad-band resonant impedance is shown in Fig. 10.

The transverse broad-band resonant impedance is shown in Fig. 11. Let us
consider two-point charges rotating in a circular accelerator at frequency wg =
Bo ¢/R. The leading particle has charge ¢ Coulombs. Following 7 seconds behind
is a unit charge. Let E,(z,¢) be the longitudinal component of the electric field
generated by the leading particle.

The longitudinal wake potential (function) is defined as the potential per unit
charge seen by the trailing particle:

wD(T)z—é / Ez(z,é + 7)d=. (19)

The dimension of wake potential is [2/s]. This is a real function of time.
It could be shown that the wake potential is a Fourier transfer of the coupling
impedance:

1 7 .
wy (1) = Py / Z) (w) e dw. (20)

For smooth enough impedance or a long enough machine so that the wake field
is equal to zero after one revolution, it could be proved that:

’LUH(T) ~ —T Ez (T), (21)

i.e., the wake potential is equal to one-turn voltage seen by the trailing particle
per unit charge.
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Fig. 10. Longitudinal broad-band resonant Fig. 11. Transverse broad-band resonant
impedance impedance
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When the source and the test particles move not just on the axes but on
parallel to their trajectories, the test particle will experience also a transverse
force. The transverse wake potential is defined as follows:

wi(T)=— / [E + fex B]L(z, — + 7)de. (22)

The EM fields generated by the source particle fall in two categories. The long-
range wake fields decay so slowly that can affect the particles in the next bunches.
The short-range wakes decay fast and they provide influence between the particles
of the same bunch but have no effect on the other bunches.

Useful formula for coupling impedances and wake functions are given in
Appendix 1, taken from [B3].

2. COASTING BEAM COHERENT INSTABILITIES [6-9]

2.1. Longitudinal Direction. Coasting
beam is a beam of particles uniformly distrib-
uted around the accelerator circumference —

Fig. 12.

On the stationary signal I, a perturba- Op-axis
tion in the form of travelling waves with beam
«p» wavelength around the ring, is superim-
posed — Fig. 13. In a frame moving with the
synchronous particle (angular velocity wy),
the azimuth of the test particle relative to the

; . . Circular
synchronous particle is Af. The travelling pipe

wave in this coordinate system will be:

o Fig. 12. Coasting beam and wall cur-
Lye'(@ipct=ph0), (23)  rents

In the stationary laboratory system this wave will be:
I, e Qet=r) Q. = puwy + Wijpe- (24)

Our patter consists in a closed wave of linear particle density with p wavelengths

along the accelerator circumference. The angular phase velocity of the wave in the

moving frame is wr,./p while in the laboratory frame it is ./p = wo + wrpe/p.
In the time domain

I(t,0) =1+ I,e'Stet=r), (25)
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Fig. 13. Longitudinal perturbation

where ZNB
e c
I= 26
2R (26)
is the average current.
In the frequency domain:
H(w,0) = =T6w)+ Le ™5(w—Q,), (27)

i.e., the spectrum consists of two lines at w = 0 and at w = ..
If
Im(wmpe) <0, (28)

the perturbation will increase exponentially with the time and the beam gets
bunched at harmonic «p» — Fig. 13. The growth rate of the instability is:

1 = —Im (wope)- (29)
Ti
The coherent instabilities prevent the beam current from being increased above the
certain threshold. This kind of instability leads to an increase of the momentum
spread.
The dispersion relation from which wope can be revealed, is obtained ap-
plying Vlasov’s equation. We will not go in further details but only summarize
the final results.



1. For a monochromatic beam:

e In the case of space-charge dominated interaction, the beam is stable
below transition (n <0) and unstable above transition (n > 0) —
negative-mass instability.

e For the practically important case of BB impedance at low frequencies,
the above result is inverted.

e If the beam is cold and some resistance is present, the line density
modulation will grow up and instability will take place.

2. For a coasting beam with momentum spread, the motion is stabilized by
the Landau damping mechanism. Landau damping is a phenomenon well
known from plasma physics. This is a natural mechanism that stabilizes
the coherent instabilities. In the presence of frequency spread, a collection
of lossless oscillators responds like a damped oscillator. In the transverse
direction, the spread in the betatron tune is due to different energies of the
particles in the beam and to the nonlinearities in the magnetic field which
cause the dependence of frequency on the amplitude. In the longitudinal
direction, the spread in the synchrotron tune is due to the nonlinear character
of the RF voltage. Also the revolution frequency depends on the particle
energy. The stability criterion is given by the Keil-Schnell formula [10, 11]:

Zl(p)‘ - (12 1y v 053 Ap
= — . 30
b | = &%) ( » VEWHM (30)

2.2. Transverse Direction. In the transverse

plane, the perturbation consists of a slight initial A <
displacement of the beam in the transverse direc- ~ by 3 -];ean{
tion — Fig. 14. This causes coherent oscillations A 7
of the particles in the external focusing field. — ’
In the time domain, the wave of the coherent Y o
betatron oscillation is: |V s ;
— D ptlpwotwipc)t—pd]
D(t,0) =De , 31 , «—

in the frequency domain:
D(w,) = De—ir? s [w—(pwo _’_wj_pc)]. (32) Fig. 14. Transverse instability
The dispersion relation has two roots — lower and upper betatron sidebands:
W] pe = Qpewo = —(Qo + AQpc) wo, (33)

W he = Qpewo = (Qo + AQpe) wo, (34)
where AQ pc¢ is the coherent transverse betatron tune shift.



Betatron For «—» solution the angular phase ve-
S oscillations  ocity of the coherent wave is less than the
' angular beam velocity wy:

W = w0 — Qo+ AGy) +pAQ”C). (35)

Coherent
wave

For that reason it is called the slow wave.

For «+» solution the angular phase ve-
locity of the coherent wave is greater than
the angular beam velocity:

wph = wo + W, (36)
Fig. 15. Waves in a coasting beam

and is called the fast wave — Fig. 15.
So, in the time domain the slow and fast waves have the following forms:

D~ (t,0) = D e lP=Qo)wot=pl] —iAQrowot (37)
D +(t, 0) = D e il(p+Qo)wot—pb] iAQpPcwot (38)

The transverse spectrum consists of the lower and upper betatron sidebands
around harmonics of the revolution frequency:

D~ (w,0)=De " §w—(p— Qo — AQpc)wo), (39)

DF(w,0)=De " §[w— (p+ Qo+ AQpc)wo]. (40)

The stability of the motion is determined by Im(AQp.).

For the cold beam (beam without tune spread) if the impedance has a resistive
part, the fast wave is always stable and the slow wave is always unstable. If 7
is purely imaginary, the motion will be stable and the frequency shift w . will
be a real number.

The momentum spread in the beam can stabilize the motion through the
Landau damping mechanism. The criterion for the transverse stability is given
by the following equation:

20 ((p - Qo) wo)| < &

[(p — Qo) wo + weln (%)FWHMa 41)

where 7 is the frequency slip factor, & is the chromaticity, we — betatron angular
frequency shift due to chromaticity:

w$ = Qou)o%. (42)
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3. BUNCHED BEAM COHERENT INSTABILITIES [12,13]

3.1. Longitudinal Direction. The longitudinal instabilities can be looked at
from different viewpoints.

From the point of view how fast instabilities develop in time, they are divided
into two categories:

1. Slow instabilities: T; > T, where 7; is the instability rise time, and 7T is
the period of synchrotron oscillations.

2. Fast instabilities: Ts > 7, > Ty, where Tj is the revolution period of
time.

From the point of view of the perturbation range:

1. Instabilities with short wavelength: A, < or, where ), is the wavelength
of the perturbation, and o, is the rms bunch length in m.

2. Instabilities with long wavelength: A\, > or.

We have to separate also the cases of a single bunch from cases of multiple
bunches.

I. Single bunch longitudinal instabilities [14—18]. If the beam-environment
interaction is local (delta function wake), successive bunches ignore each other.

The single bunch stationary distribution in the longitudinal phase space de-
pends only on the momentum (energy) deviations from the reference momentum
(energy). The spectrum is linear at harmonics of the revolution frequency (pwyo).
There are no synchrotron satellites; the synchrotron motion is hidden in the bunch.
The spectrum is peaked at zero frequency and extends to =27 /7y, where 77, is
the full bunch length in s, 40 for Gaussian bunches. The EM field induced by
the stationary distribution is also at harmonics of revolution frequency.

The perturbation consists in small oscillations (in azimuth and in time) about
the stationary distribution. The longitudinal perturbation introduces EM fields at
harmonics of synchrotron frequency. The spectrum of the perturbation consists
of lines at

W =pwo +Mmws + chma (43)

where Aw,,, is the coherent frequency shift. This is a complex number. Its
imaginary part determines whether the motion is stable or unstable. Instability
occurs when

Im (Awen) < 0. (44)
The spectrum is peaked at
1
M’ (45)
TL

and extends to 27 /7y,.

The type of oscillation of individual bunches is specified by the integer
index m — the synchrotron mode. m = 1 denotes the so-called dipole mode,
which represents off-centered oscillations of a rigid bunch in the longitudinal

11



phase space — Fig. 16. The coherent dipolar perturbation is caused by RF phase
errors or energy errors. The dipole perturbation develops in time with a coherent
frequency:

We = Ws + chlv (46)

m = 2 denotes the quadrupole or breading mode, which represents the bunch
shape oscillations in the longitudinal phase space — Fig. 17. It is caused by RF
focusing mismatched. The EM field induced by the quadrupole perturbation is at
frequencies

pwo + 2ws + Aweo. 47

The line density distribution of the first two longitudinal modes is shown in
Fig. 18.

II. Coupled bunch longitudinal instabilities [14-18]. Coupled bunch modes
are dominated by the resonant impedance (narrow band). Such impedance is due
to parasitic higher order modes in the RF cavities. In this case the attenuation of
the wake field between two successive bunches is weak — the environment can
memorize the passing of a bunch longer than the bunch repetition period. For M
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Fig. 18. Line density distribution of the first longitudinal modes

equally spaced bunches only every M line occurs in the spectrum:
wp = (n+pM)wo + mws + Aw em, (48)

where n = 0,1,...,(M — 1) is the so-called coupled-bunch mode number. It
specifies how the individual bunch modes are lined together. The phase shift
between oscillations in successive bunches is 27n/M. Another line of separation
is between the low and high intensity cases.

3.1.1. Low Intensity Longitudinal Instabilities. Low intensity coherent modes
are well described by F. Sachere’s integral equation or J. Laclare’s eigenvalue
equation. A resistance is needed to drive the instability depending on the sign of
the revolution harmonic number «p». Below transition upper sidebands (positive
«p») are stable and lower sidebands (negative «p») are unstable. Above transition
the situation is reversed.

In the case of a single bunch or two bunches (M = 1,2), the upper and
lower sidebands in the spectrum belong to the same mode «n». The impedance
will cover both sidebands which will cancel each other. In the case of more than
two bunches (M > 2), the upper and lower sidebands belong to different couple-
bunch modes «n». In this case even a resonator with a narrow band impedance
curve will push up one of the couple-bunch modes and suppress the other.

For the couple-bunch mode it is needed to have the narrow band resonant
impedance with impedance decay time much longer than the time between two

successive bunches;

1 T
— >

T (49)

where T is the width of Z(w).
Let us now look how different types of longitudinal coupling impedances
drive the couple—bunch instability.

13
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— Space-charge impedance. In this case iZ(p)/p is constant and real. There
is no instability. The coherent frequency is real. Once started, the synchrotron
mode «m» continues to oscillate infinitely.

— Resistive wall impedance. 1t is peaked at low frequencies and acts very weakly
on the longitudinal motion and can be neglected.

— Parasitic high Q modes in the RF cavities. If the distance between two adjacent
lines in the spectrum is larger than the resonator bandwidth Aw, a single line will
drive the instability. For large bandwidths, more than one line must be taken into
account and there is some cancellation between the upper and lower sidebands.
The growth rate of the instability is:

1 mwg AMT Rswo
— = —Im(Aw,,) = : F,. D, 50
T m(Awem) m + 1 72B2hV cos ¢y w, (50)
where: o
D=—— 51
sinh (a)’ D
T Wy
= T 52
o OQwo M’ (52)

F,, is a form factor — Fig. 19, and D is an attenuation factor — Fig. 20. There
is no instability for wake fields that decay appreciably before the next bunch to
arrive.

3.1.1.1. Robinson’s Instability. The RF cavities of a circular accelerator are
tuned to the fundamental mode w, = hwy, h is the harmonic number. The quality
factor @) is very high and the resonator bandwidth Aw is very narrow.

In these circumstances, the imaginary part of the coherent frequency which
indicates whether the motion will be stable or unstable, is proportional to the
difference of the resonator resistance at the upper coherent sideband (hwo +mws)
and at the lower coherent sideband (hwy — mwy):

1

Vs o. [R(hwo + mws) — R(hwo — mw)]. (53)

Im(w.) ~

14



As below the transition cos ¢ > 0, the beam R (0) R
will be unstable (Im(w.) < 0) if the reso-
nant frequency w, is slightly below hwy — Stable
Fig.21. Above the transition, the condition
for instability is reversed.
The so-described phenomenon is known - >
as Robinson’s effect — [22]. Below transition @r ho @
Qualitatively, if AE > 0 below transi-
tion, then Aw > 0 and the bunch will move
to the right and see lower resistance R_. Thus, less energy will be taken from
the beam and AF will continue to increase, i.e., some instability will occur.
The Robinson instability is removed by tuning the RF cavity slightly away
from hwy or recently by applying an active feedback.

+
R,
Unstable

Fig. 21. Robinson instability

3.1.2. High Intensity Longitudinal Instabilities. In the case of low intensity
the coherent force is treated as a perturbation compared to the longitudinally
focusing by RF cavities. In this case different synchrotron modes «m» are
decoupled. This is the case of low beam intensity.

If the beam intensity is high, the spectra of synchrotron modes «m» and
«m + 1» will be very close and partly overlapped. While increasing the beam
current, the bunch lengthening suddenly jumps up — this phenomenon is called
turbulent bunch lengthening. Also the bunch widening or increasing of Ap/p
takes place. All these can be explained by synchrotron mode coupling.

3.1.2.1. Microwave Instability (MWI). This is the high-frequency-fast-single-
bunch instability. The microwave instability develops in time with frequency
Q > ws, ws being the synchrotron frequency. Also the perturbation wavelength
is much shorter than the bunch length: A, < or. The PUE signal is in the
microwave region, from 100 MHz up to several GHz. MWTI has been observed
for the first time in CERN PS and ISR [19, 20].

The microwave instability is observed in high intensity machines. This is a
single bunch effect. It leads to a very fast blow-up of the bunch area which soon
exceeds the longitudinal acceptance of the accelerator.

According to the suggestion by D. Boussard [19] the condition of the mi-
crowave instability is given by the coasting beam stability criterion by Keil and
Schnell, but the local values of current and Ap/p must be used instead of average
current. This approach predicts the instability threshold quite well:

‘Zm(p)’ < 2mIn| Bod @)2’ (54)
p qupeak p

44/2 EgA A
1Z.| < M(_p). (55)

qe]peak <ﬂ> p
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The peak current depends on the distribution of particles in the bunch or bunching
factor. By definition:

1
By = " (56)
Ipeak
for M bunches in the ring:
ML
= —— 57
I7 SR ©7

where L is the full bunch length, I = 40, for Gaussian bunch, and S is a shape
factor, S = 1 — for «water bag» bunch, S = 1.6 — for a Gaussian bunch.

3.2. Transverse Direction. In the transverse direction a modulation of the
betatron oscillations by synchrotron motion takes place. This is the source of the
so-called head-tail modes.

The spectrum of the transverse perturbation is a line spectrum at frequencies
w={pP+Q)wy+muws, p=...,—1,0,+1,...and m = 0,1,2,... Synchrotron
modes «m» are no longer sidebands of the revolution harmonics pwg. They
are now sidebands of the betatron sidebands, the upper: (p + Q)w and lower:
(p — Q)wyo. The transverse perturbation is coherent only with the synchrotron
satellite number «m»

Am?l S~
D(w, 6) = 5= > e ™0 (p) 6w — [(p + Qo + mw, + Awen]). (58)
p=—00
/\ A The transverse PUE signals for the first three
k=0 A '/\ coherent modes are shownin Fig. 22.

It is essential that the spectrum is cen-

tered at w¢ — the betatron frequency shift
k=4 A_cv%_%&p_ due to chromaticity. This is the fundamen-
tal difference between the transverse and the

longitudinal cases. For standard machines
the uncorrected chromaticity & is negative,
therefore w¢ is a negative frequency above
the transition energy and positive frequency
below this.

The mechanism of the head-tail instabil-

k=0to5

Fig. 22. Transverse PUE signals for

the low order coherent modes. The W 15 sh9wn in Fig.23.
revolution number is denoted by k. Particles at the head of the bunch gen-

Five passings of the beam are super- Crate transverse wake fields that will excite
imposed at the third line oscillations of the particles at the bunch tail.

Because of the synchrotron motion after a
half synchrotron period, the tail particles will go to the bunch head and vice
versa. New transverse wakes are generated that affects the new tail particles.
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If the head-tail particle exchange and the excitation

by the transverse wake fields act in the phase, the Wake field

particle oscillations will grow up and instability will "U;/AE_N_\\

happen. tail head
A photo of the first three head-tail modes reg- \v\_\_/( !

istered at CERN PSB is shown in Fig.24. If the

transverse impedance is sufficiently smooth, the

growth rate of the instability for mode m = 0 is:

Fig. 23. Head-tail instabilit
R Y N N ’
7o 2QwoEoTL
I, being the bunch current.

For a positive chromaticity above transition we > 0, the bunch spectrum is
shifted to the right by we — Fig. 25. It is clear from Fig. 25 that a slightly positive
value of wg is sufficient to stabilize the dipole mode m = 0 as the beam sees
more impedance in positive frequency than in negative one. The higher modes
require a larger value of w¢ for achieving stability.

In the case of space charge impedance i Z, (p) is real and constant. The
coherent frequency shift is real and the motion is stable. Resistance is needed to
drive instability.

In the case of very narrow parasitic high Q modes in RF resonators, the
motion is driven by a single line at (p + Q)wo + mws, p = —00, ..., +00.
The imaginary part of the coherent frequency that determines the stability of the
motion, is proportional to the resistance:

Im(w.) ~ I.Re(Z(p)). (60)

Fig. 24. The first three head-tail modes measured at PSB,a ———m=0,b ———m =1
and ¢ — — — m = 2 modes
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Dipol d
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N

g

v

Unstable ReZ,

Fig. 25. Stabilization of resistive—wall head-tail instability by chromaticity

For instability to occur the negative resistance (negative frequency or p < 0) is
needed. A positive value of w¢ is necessary to stabilize the motion.

If there is no single bunch but M, equally spaced bunches are present, and
the couple-bunch modes can be driven. Similar to the longitudinal case the
couple-bunch mode number «n» is introduced, n = 0,1, ..., (M — 1). This index
determines the phase shift between the coherent perturbations in two successive
bunches. This phase shift is equal to 27n/M. Now the spectrum is a line
spectrum at frequencies:

w=n+pM+Q)wo+mws + Awem. (61)

4. STEPS AGAINST COHERENT INSTABILITIES

A careful design of the circular accelerator is usually sufficient to avoid the
coherent instabilities. The vacuum chamber must be as smooth as possible. All
the remained changes of the vacuum chamber cross section must be systematically
shielded.

In electron/positron machines, a natural damping mechanism is due to the
synchrotron radiation. To suppress the instability, the radiation damping time
must be shorter than the instability growth time. The higher order modes (HOMs)
in the accelerating resonators are the main source of concern in these accelerators.
The HOMs are reduced by a special design of RF cavities.

In hadron machines, the Landau damping mechanism is usually sufficient to
suppress the instability. At present, feedback systems are used in the modern
accelerators with high intensity beams.
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Appendix. Impedances and wake functions —[B3]

General Remarks and Notations:

W,, denotes mth azimuthal longltud.lnal wake function as a function of distance z for

2<0. When z>0, W} (z) =0 and W,

The mth azimuthal longitudinal 1mpedance Zm(u)

to the transverse impedance of the same azimuthal Z:(w) =
= (w/c)Z4 (valid when m # 0). In many cases, 3=

zh

(0)— lim W,',‘[z) Similar for transverse wake W,

Je /P Wh(z)dz/v is related

J e /"W (2)idz/(Bv) by
v/c has been set to 1.

Unless otherwise stated, round beam pipe of radius b is assumed. C' = 2rR is the ring
circumference and n is the revolution harmonic. Z; =~ 377 Q is the free-space impedance.
€g and pgq are the free-space dielectric constant and magnetic permeability.

angle each subtend-
ing to pipe axis ¢y,

BZQ C

Description Impedances Wakes
. I
b Tadh Lllm a 5.0 1+21nf] W.;=z"”‘[‘ [1+21 -] 8'(z)
n 20812 a 4
length L of perfectly Zl . ZoL [ 1 ZoeL LN P
e Vo | P =55 3~ | W e
%Ill » Zm _wZh _ zwmm,
pipe y W =
gy IENCE (14 5gni(w)i)(1+ mobcy [ %€ — ey 4 i
tivi , ski th
e st > baan=y/ 2/ (lZord. Il > ex/b. x = 1/(Zooeh)
Z) =221 c % L
For t >» dg, and . W"'=_+1— =
:f’f;? [zl = ¢/lw| > 71 _ 1-sgn(w)i L sl (trdm) r;" |2|L
S L Y I T e |20
For t < Syn - We 2262 Y 14-Bmo) | w0 |22
rt< or very
low freq., and b/x» | Zo _ _ifot = Zt _ _iot |W§_ Zotcg , Wi Zoteyz)
|z| = ¢f k| VBt. L 2rbe L x| L 2xb L
A pair of strip-line L 2wl 2
BPM's: (2] TengthZ, zoﬂzﬂ[“] [25‘ ’w——"ﬂnT %=2ch[%] [6(z) — 8(=+2L)]

t=2| <[] |w= 0 1 (<)
forming transmis Zy = [w ]n-ub’ [éu] sin 2 W= 2 sin’ 2 |H(z)—H (z+2L))
sion lines of charac-
teristic impedance | The strip-lines are assumed to terminate with impedance Z. at
Z, with pipe. the up-stream end.
Heifets inductive im- il 2p 221
pedance: Zy) - W= — 1+ 2| fa
o wctamwe £ | (e v i
ZJ! rolls off as w1/2, — —wkaa—0 — 2L (z)asa—0
Pill-box cavity  at 1 wZs e ) Zoc 1.
low freq.: length g, Zy = ' onch = Wy = 3 h — e d'(2)
radial depth h + b, ;‘ : i g’;
where g < h < b [6]. T _ 9 _ _Zoc &

Zy =—ig3 |9h— o= Wi=-—5 [oh 2 §(z)
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Description Impedances Wakes

Pill-box cavit at Zoh? [, 27g 1 Zoch® [, 27g 1
el __w g _ )
c::jrj leg’; ;:n%-:h i' Zo = !—Q—,r 5 [lnT + E] W(’)—— Tﬂ' b [IHT + E] 6‘{2)
isim iy R gt = 2 220 1] | w2k 2
6). TS h 2 TR R 2
Pill-box cavity: [1+sgn(w)ilZo [c 2Z0c\/2g

y [1teenlildo  feg | gy 2oV, npa
lngth g, il | 2= e | " " |
freq w > /b, zl 271 W = Zocy/2g -1/2
diffraction model "™ m (1+5mu}*§piii+llzl
applies [1].
Optical model: 7]

A series of cavities
of periodic length
L. Each cavity
has width g, high
@ resonances of
freq. wn/(27) and
loss factor k™ for
azimuthal mode m.

Formulas for com-

putation of W[
erfe(x) is the
complementary

error function.

N
ReZl, = ¥~ #k{™é(w — wn)

+ 2“Cm:G(§)F(”}y(u i)

(1+6mo)b?™

n=1
, (m) 0z 2C5,G(P) wz
W,,,,sz,, 008 == + (T3 o)™ und.uF{v)cos =

where Cg, = 2Z0j2,, /(7*¢23) = 650 {2 for m = 0 and 1650 {2 for
m = 1, jm is first zero of Bessel function J,,, ¢ = 0.8237.

G(»)=*K}(7), F(v)=

H\/a_;.i-l_o.m P | ) o —— e s
(+2vv+2)?" 7 Bye’ T wey  (eVgL

wh b2

w

F@F(V)cos "1—2 = wwﬁ'g(z,!'c) - f@p(,,) o ":_z
pD(I) = ﬁmdu;‘v(u] coSwr = ;.{I + 41)82"91'&'( \/ﬂ) _ g

Resonator model for m) (m) -
the mth azimuthal, Z,',, = - R = R'—f"""e‘”“z"'smﬁ
with shunt imp. 1+4iQ (wr/w — w/wy) i ¢
R™, resonant freq. | 71 _ € R™ where a = w,/(2Q)
w/(2n),  quality | " w 1+iQ (wr/w —w/wr) @ = JRT—a7|
factor @ [1].
Res. freq. 2 72 2
mmp/27)  and """C;" =Ty ‘%’
shunt im ce y

s)mnp Of & pill-box 29<mp 1
cavity for nth radial [&] B & MR T P
::al:l nft:l: longRi;:jd;i Qlonp  zinJo’(zon) T9wonp | 2 9;;;11.9 wodd

odes. c

depth d and length
g. Tmn is nth zero of sin? 2%, £ 1 and even
Bessel function Jm [&] = _!Z]__ch!_ 28¢
[8]. Qling  J{*(x10) 7921y, cma%“’l_ﬁ? p odd
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Description Impedances Wakes
Low-freq. response I
of & il Box carlty L Zuns Wy =29 ps5()
[4] length g, radial - =
depth d.  When zi= -az‘gg . = -2 g £3(:)
g > 2(d - b), replace L + d +
g by (d —b). Here, | Effect will be one half for a step in the beam pipe from radius b
S=d/b. to radius d, or vice versa, when g > 2(d — b).
Iris of half ellipti- uZ h? Zoch?
cal cross section at Zu = 4:b Wy = '—5'( )
low freq.:  width 2
2a, maximum pro- L _ 2ol Wy = _Zochk?

Zy =—i 1= 8(z)

truding length h [5). 253 268
Pipe transition at 271 2
Bllgle 9' transition 2c 2 ch h 2 iy 2 20
height h. ~ is Euler’s
constant and ¥ is Wy = —|=2[28'(z), Wi=~— |Zf‘|a§{z) heotf < b
the psi-function [6].
Pipe transition  at | wh?y wZoh?f 2wb 1
Tow Trequencie vencles with f0= 20 i =g (5 +3)
transition eight Z
h < b 6]. W= —‘:“|c’6’(z)‘ Wi = — |2t e(z)
Kicker with window- | wiugLixd pDL ,;-g
Erame]; mm];]net [9: Zo="ya37, W5=— & (2)
width a, height b, 2
length L, beam offset Zt = “"*‘;"ZL Wi = “"‘01' 8(z)
ro horizontally, and da"Zk

all image current
carried by conduct-
ing current plates,

Traveling-wave kicker

with _ characteristic
impedance Z. for
the cable, and a
window magnet of
width a, height b,
and length L [9].

is of C-type magnet, xo in Z} should be replaced by (zo + b).
wy = Ze€ [6(::) a( "“) ‘Ea'{z)]
v
Wi =2 [H (o) -
the capacitance-loaded windings.

Bethe's electric and
magnetic moments of
a hole of radius a in
beam pipe wall [10].

Zy = —iwl + Zg with L = pobL /a the inductance of the windings
and Z, the impedance of the generator and the cable. If the kicker
|l L _ .l.___ZeL l—mo_,(hﬁ)]
[281]1 i@ slnﬂ)] Zy = 2ab 7 il 7
_@ (z_%) _Eg{ )]
8 = wL /v denotes the electrical length of the kid(er windings and
v = Zeac/(Zoh) is the matched transmission-line phase velocity of
Electric and magnetic dipole __ 2035 - 4 3
moments when wawlengtpﬁ» a: d= 3 E, ri= 3o B
E and B are electric and magnetic flux density at hole when hole
is absent. This is a diffraction solution for a thin-wall pipe.
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Description Impedances Wakes
Small obstacle [5, 11] .
on beam pipe, size z)= —:'wf“ Q::;:;"' W = —Zm%d"{z)
< pipe radius, freq. Zo(te + agg) e
below cutoff. a | zi= —20Te TOm) s A Wi = —ch-—-‘-———zm cos Ap 8(z)
and apy are elec- i il
tric  polarizability A is the azimuthal angle between the obstacle and the direction
and magnetic sus- | concerning Zi and W.
ceptibility of the
obstacle.

Polarizabilities for various geometry: beam pipe radius is b and wall thickness is .

Elliptical hole: ma-
jor and minor radii
are a and d. K(m)
and E(m) are com-
plete elliptical func-
tions of the first and
second kind, with
m=l-myand m; =
(d/a)?. For long el-
lipse L beam, major
axis a < b, beam
pipe radius, because
the curvature of the
beam pipe has been
neglected here [12].

7@ m3[K (m)— E(m))]

wdi[In(4a/d)—1] | beam
" 3E(m)[E(m)—mK(m)] 22! 3a d<b
AT\ radE(m) —miK (m)]  Jous na® beam
3[K(m)—E(m)] 3[In(da/d)-1] a<b
3
agtam c%" = circular holea =d < b

Above are for t < a, x0.56 (circular) or x0.59 (long ellipse) when

t>a.

For higher frequency correction, add to a, + ay, the extra term,
‘.!T(JIC‘2 W‘zﬂz

e || beam
27a® [ 11w2a? 3 | 5c2 long ellipse
3 202 circular, . 5
2ma 2u2a 1 beam
3 |5¢2(In(4a/d) —1]| long ellipse

Rectangular slot:
length L, width w.

Qe+ ap = w*(0.1814 — 0.0344w/L) t < a, x0.59 whent>a

l;mn‘;t“lfef"ﬁ:i‘('iiﬁ_ ae +am = w%(0.1334— 0.0500w/L) t<a, x0.59 whent>a
Annular-ring-shaped B x2d2%a 2uw?(a + d) §dii
cut: inner and outer %t om = on32djw) -4 16 <

radiiaandd = a+w
with w < d.

ct¢+am=1m"w—iw’(a+d} t>d

Half ellipsoidal pro-
trusion with semi-
axes h radially, a
longitudinally, and d

azimuthally. 2F)
is the hypergeomet-
ric function.

1 1
a¢+am=2ﬂahd[ﬂ+m]
b=2R(1551-%), L=R(L}§1-%). ifa=d

3
ae+am=7a® ifa=d=h, Zx fa=d<h

3[In(2h/a) - 1]
8h3 4 w\a
“**“m‘T[l*(;'I)K] fagh=d

4
a¢+am=%[]n%—l] amhmid
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Array of pill-boxes,
box spacing L, each
with gap width g,
beam pipe radius b.
Gluckstern-Yokoya-
Bane formula [15] at

For each cavity of length L with k= w/c,

-1
iZol i : al [ =
nkb’{l+[l+'s@(“]_b _|k|g]

with k = w/c. a =1 when g/L < 1 and a = a; = 0.4648 when
g/L = 1, the limiting case of infinitely thin irises. In general, with

Zy =

ﬁi’;_{’{@q- to order | ¥ _ g/L, a(T) =1 -T2 — (1 - 2)T + O(1372) .

] ZocL i ZocL
s i | B= g 3 [ g] | W = T e

W=

depth d generates a i 27, Sry
single-frequency res- Zi = %Z& Wi(z) = ﬁsin%
onance impeda?m at = r

1/2 0
wp = L(E) [16, | The corresponding resonator per pill box has Ri'wy = @

bgd Q b2

17).

Smooth toroidal b
and R = é(a + b).
As the Lorentz
factor v — oo,
(ultra-relativistic
beam), a curvature
contribution remains
for the longitudinal
impedance [18].

Valid from zero frequency up to just below synchronous resonant
modes, i.e., 0 < v < /R/k withv = wh/e,

Z_,! _— (L)z{ [l— &~ 2X(b-R)/h_ e—:x(R—am.] [l 3 (5)3]
n =R T

2
+0.05179 — 0.01355 (E) } iy

: h \? vy\?
<o (25) [a-38 (2)].
where p is quadratic in ». As (b—a)/h increases, p vanishes ex-

ponentially and A = B =~ 1. In general, A/B = 1 implying ImZ,!
changes sign (a node) near v = 7/+/3.

Rf cage: beam of ra-
dius a surrounded by
a cylindrical cage or
array of N wires of
radius py, length L
at radial distance ry
from beam center.
Wire filling factor is
fu = Npuw/(re).
Formulas are valid at
low frequencies, 0 <
n{Rfrw and N> 1.

zZ! izl Tw "
T—m[l"'Zlﬂ:‘l‘Cﬂ]. Zl
Without metallic beam pipe outside wire array or cage [19],
C = —2(nre/R) In(x fio) c, =2
= " Na(are/B) +In(nfy)’ = N —2M(rfe)

With infinitely conducting metallic beam pipe, radius b > r,, [20],

_ b 2N [In(b/rw))?
Ci=2I0 0 ~ N Ta(/re) — I(xfu) + 01 —(re/B)™]

(1= (ru/b)?][(ru/b)*+(b/rw) *|{In[1 - (rw/b)*N] — 2In(x fu)}
N[1=(rw/b)?] + [(rw/b)?+ (b/rw)?] In[1— (ru/b)2N] — 2In(x fu)
A ceramic layer between the wires and metallic beam pipe has
negligible effect on the impedances.

wpiionee IR

I-CJ_]

2
Tw

C =
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Wall roughness [13]
1-D axisymmetric
bump, h(z) or 2-D
bump h(z,8). Valid
for low frequency
k = w/e < (bump
length or width)™!,
h <« b, pipe radius,
and |Vh| < 1.

1-D: zl - —2”;&’ f x|R(x)|2dx
1]

. o0
with spectrum h(k) = 2% f h(z)e*dz
—00

) | 4ikZy & K? Z g
2-D: Zo = b 23 ﬁml%(ﬁ)l dk
with spectrum i (k) = {2r}= f do f ds (=, §)e~tkz—tm

Heifets and Kheifets formulas for tapered steps and tapered cavity at high frequencies [14].

Taper in from radius
htob(<h), out from
radius b to h; taper-
ing angle a. Taper-
ing inefficient for a
bunch of rms length
a,if 2(h—b)tana >
a. All formulas here
and below are valid

ReZ} —:bz° ln—+(Zo) , ReZit=

Zobf1 1 n +in
e (m )t e, {1

I zn h b I Zy 1
(Z e lub tana > —— R (Zo)mp_katana tancntkb
Z 1 h—

)y oy — —
(4 mp_"bll {1+kb}23F1(1.2. 1 })] tana> W kb>1

tana;«h—b kb>1, h»b

i mp_Tw(Bf ) e

for positive k = w/c Zy
ol (zll)mp= —ﬁub)f'tan @, tana < k—b
Pill-box cavity: total (1+i)Zy kb2
length g, radial depth A_) 2 Vir LS
h without taper. L Zo, h
— i? In 3 g > kb?
Tapering angle a on I I 1 n
bk sk, 55 k. Rezb=2(2), . ReZs =22 )m,. as given above
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