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Polyhedral Approach to Integer Partitions

This paper develops the polyhedral approach to integer partitions. We consider the set of
partitions of an integer n as a polytope Pn ⊂ Rn. Vertices of Pn form the class of partitions
that provide the ˇrst basis for the whole set of partitions of n. Moreover, we show that there
exists a subclass of vertices, from which all others can be generated with the use of two
combinatorial operations. Numerical experiments demonstrate considerable decrease in the
cardinality of these classes of basic partitions. We focus on the vertex enumeration problem
for Pn. We prove that vertices of all partition polytopes form a partition ideal of Andrews'
partition lattice. This allows us to construct vertices of Pn by a lifting method, which requires
examining only certain partitions of n. A criterion of whether a given partition is a convex
combination of two others connects vertices with knapsack partitions, sum-free sets, Sidon
sets, and Sidon multisets introduced in the paper. Albeit verifying the criterion condition was
proved to be an NP -hard problem, it recognizes almost all nonvertices for small n's. We
also prove several easy-to-check necessary conditions for a partition to be a vertex.
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1. INTRODUCTION

We develop the polyhedral approach to integer partitions proposed in [7].
A partition of a positive integer n is any ˇnite nondecreasing sequence of positive
integers n1, n2, . . . , nr such that

r∑
j=1

nj = n. (1.1)

Informally, a partition of n is its representation of form (1.1). The integers
n1, n2, . . . , nr are called the parts of partition [1].

The polyhedral approach is based on the n-dimensional geometrical inter-
pretation of integer partitions [14] that is common in Diophantine analysis but
seldom used in the partition theory. A partition of n is referred to as a nonnega-
tive integer point x = (x1, x2, . . . , xn) ∈ R

n whose components xi, i = 1, . . . , n,
indicate the numbers of times the parts i enter the partition. So, x satisˇes equa-
tion x1 +2x2 + . . .+nxn = n. We keep on writing x � n to indicate that x ∈ R

n

is a partition of n. For example, the partition 8 = 4+2+1+1 with three distinct
parts 1, 2, 4 is considered as the point x = (2, 1, 0, 1, 0, 0, 0, 0) ∈ R

8.
The polytope Pn ⊂ R

n of partitions of n is deˇned as the convex hull of the
set Tn of all partitions of n:

Pn = conv Tn = conv{x = (x1, x2, . . . , xn) ∈ R
n | x � n}.

The conversion from set to polytope brings geometry into arithmetic of parti-
tions and raises new problems concerned with the geometrical structure of integer
partition polytopes. The other well-known 2-dimensional interpretation of par-
titions as Young tables proved to be extremely useful for studying connections
between individual partitions but it hardly provides tools to treat the set of parti-
tions of an integer as a whole.

There are two ways to describe any polytope: 1) to enumerate its facets,
i.e., faces of the maximal dimension, and 2) to identify its vertices. Facets of Pn

were described in [7] as all but one coordinate hyperplanes and certain solutions
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of some systems of subadditive inequalities and equalities. This was done with
the use of a representation of Pn as a polytope on a partial algebra and a technique
borrowed from the group theoretical approach to the integer linear programming
problem and generalized for the case.

This article focuses on vertices of partition polytopes. As for any polytope,
a point x ∈ Pn is its vertex if it cannot be expressed as convex combination

x =
k∑

j=1

λjy
j ,

k∑
j=1

λj = 1, λj > 0, of some other points yj ∈ Pn, j = 1, . . . , k.

Vertices of Pn are of importance because they form a kind of basis for Tn as each
x � n is a convex combination of some vertices. To the best of our knowledge
this is the ˇrst attempt to reduce the set of all partitions of n to its subset.

The ˇrst partition that is not a vertex appears for n = 4. There are ˇve par-
titions of 4: x1 = (4, 0, 0, 0), x2 = (2, 1, 0, 0), x3 = (1, 0, 1, 0), x4 = (0, 2, 0, 0),
and x5 = (4, 0, 0, 0). P4 is a tetrahedron with vertices x1, x3, x4, x5 since x2 =
1
2
(x1 + x4) is not a vertex. For greater n's, the vertex recognition problem for

Pn 'Is a given partition x � n a vertex of Pn?' cannot be solved the same easily.
However, calculation shows that the gap between the number of vertices and the
number of partitions rapidly increases as n grows.

Another motif to study vertices of Pn is linked to optimization problems on
partitions: these are vertices which provide their optimal solutions in the linear
case. Anyway, we believe that any result on the topic is of interest for its
own sake.

The paper is organized as follows. Section 2 contains notation and a few
quotes of some previous results. In Sec. 3, we prove that vertices of partition
polytopes form a partition ideal of the partition lattice introduced by Andrews [1].
This property is crucial for constructing vertices of Pn by a lifting method: they
should be selected from only those partitions of n that are induced by certain
vertices of some polytopes Pj , j < n. The main result of Sec. 4 is a criterion of
whether a given partition can be expressed as a convex combination of two others.
It generalizes all known necessary conditions for vertices and provides some new
ones. In particular, it yields the exact bound on the number of distinct parts of
partitions-vertices of Pn. A great amount of partitions that are not vertices can be
recognized and rejected with the help of this criterion. However, for n = 15, 21,
and many others, there exist nonvertices, which this criterion is incapable to
capture because they need three partitions for convex representation.

In Sec. 5, we show that partition polytopes possess an uncommon feature:
there exists a subset of vertices (support vertices), from which all others can
be generated with the use of two operations of merging parts. Numerical data
testify that the subset of support vertices is small by comparison with the set
of all vertices. Some results of Secs. 4 and 5 were announced in preliminary
publications [8, 9].
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We suggest two hypotheses in two subsequent sections. The ˇrst 
ows
from the discussion of how the vertex recognition problem for Pn is related to
analogous problems concerning knapsack partitions, sum-free and Sidon sets, and
the combinatorial problem partition [4]. It claims that the main problem of the
article is polynomially insoluble. The second states that the number of vertices
of Pn is inversely dependent on the number of divisors of n. In the concluding
section, we sketch the most promising directions for the future study.

2. PRELIMINARIES

In this paper, Z+ denotes the set of nonnegative integers; [1, m] denotes the
set of integers {1, 2, . . . , m}, 0 < m ∈ Z; |M | denotes cardinality of a set M . For
α ∈ R, �α� and �α� denote the greatest (respectively, the least) integer not greater
(respectively, not less) than α. We denote by S(x) the set {i ∈ [1, n] | xi > 0}
of distinct parts of x, write vertP for the set of vertices of a polytope P and 0k

for the sequence of k zeroes. Symbol
⊎

denotes the union of disjoint sets.
Recall some results from [7]. We study the polytope Pn in R

n, though, in
fact, it is (n− 1)-dimensional since it belongs to the hyperplane x1 +2x2 + . . .+
nxn = n. It is not hard to see that Pn is a pyramid with the point (0n−1, 1) as
the apex and the base lying in the hyperplane xn = 0.

Deˇne transformations ϕi: R
n−i → R

n, i = 1, 2, . . . , n − 1, as

ϕi(y1, y2, . . . yn−i) = (y1, y2, . . . , yi−1, yi + 1, yi+1, . . . , yn−i, 0i).

Each ϕi is a composition of translation by 1 along the i-axis and embedding of
R

n−1 into R
n. It is easy to see that if y � n − i, then ϕi(y) � n. Conversely, if

x � n with some xi > 0, i < n, then the preimage ϕ−1
i (x) is well-deˇned and

ϕ−1
i (x) � n − i.

Some necessary and some sufˇcient conditions for x ∈ vertPn were ob-
tained in [7]. One of those is as follows.

Theorem 1 [7]. Let 1 = i1 < i2 < . . . < ik � n be an increasing sequence

of integers. Deˇne nk = n, xik
=

⌊
nk

ik

⌋
; nk−1 = nk − xik

ik, xik−1 =
⌊

nk−1

ik−1

⌋
;

. . .; n1 = n2 − xi2 i2, x1 = xi1 =
⌊

n1

i1

⌋
= n1; and xi = 0 for i 
= i1, i2, . . . , ik.

Then x = (x1, x2, . . . , xn) is a vertex of Pn.

One can see that the theorem holds for the case i1 > 1,
n1

i1
integer.

Partitions of n with parts in some subset M ⊂ [1, n] are often studied. Denote
by Pn(M) the polytope of such partitions: Pn(M) = conv {x � n | S(x) ⊆ M}.

Theorem 2 [7]. A vertex x of Pn is a vertex of Pn(M) if and only if xi = 0
for all i /∈ M .
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3. VERTEX IDEALS AND GENERATING VERTICES

In this section, we show how one can construct all vertices of Pn provided
certain vertices of some polytopes Pj , j < n, are known. This method is based on
the property of vertices to form a partition ideal in Andrews' lattice of partitions
of all numbers.

It is shown in [1] that the set of all partitions of all numbers forms a lattice P
relative to the partial order that can be deˇned as follows. Let x � n and y � m,
where n, m ∈ N, n � m. Consider y � x if yi � xi for all i ∈ [1, m]. Then
the lower bound u ∧ v of two partitions u, v ∈ P is the partition with parts in
S(u) ∩ S(v) that contains each part i min(ui, vi) times. The upper bound u ∨ v
is the partition with parts in S(u) ∪ S(v) that contains each part i max(ui, vi)
times. It is easy to check that these operations satisfy the lattice identities.

Recall that for any lattice L with the partial order �L, a subset M ⊂ L is
called an ideal of L if M contains the lower bound of any its two elements and
satisˇes the condition: m ∈ M, l ∈ L, l �L m imply l ∈ M [2]. Sometimes the
terms ®the order ideal¯ and ®semi-ideal¯ are used [12]. We follow Andrews [1]
and, in the case L = P we deal with, call such M a partition ideal.

For any integer k � 2, denote by Vk (respectively, V�k) the set of partitions
x � n of all n ∈ N that cannot be expressed as convex combinations of exactly k
(respectively, at most k) partitions of n.

Proposition 1. Vk and V�k are partition ideals of P for k � 2.
Proof. Prove the theorem for the case of Vk. Let x ∈ Vk, y ∈ P , and y � x.

It is sufˇcient to show that x without any its part i belongs to Vk. Then one can
apply this claim consequently for all parts i ∈ S(x) that are extra relative to y
and conclude that y ∈ Vk.

Deleting a part i from x gives us partition z = ϕ−1
i (x) of n − i. Suppose

z /∈ Vk. Then z is a convex combination z =
k∑

t=1
λtz

t,
k∑

t=1
λt = 1, λt > 0, of

some k partitions zt � n − i, 1 � t � k. Deˇne the integer points xt ∈ R
n,

1 � t � k, with the components: xt
i = zt

i + 1; xt
j = zt

j , 1 � j � n − i, j 
= i;
xt

j = 0, n − i < j � n. It is clear that xt � n for all t and we have the convex

representation x =
k∑

t=1
λtx

t since

∑
t

λtx
t
i =

∑
t

λt(zt
i + 1) = 1 +

∑
t

λtz
t
i = 1 + zi = 1 + xi − 1 = xi,

∑
t

λtx
t
j =

∑
t

λtz
t
j = zj = xj for 1 � j � n − i, j 
= i,

∑
t

λtx
t
j = 0 for n − i < j � n.
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This contradicts x ∈ Vk, yields z ∈ Vk, and ends the proof of the ˇrst claim.
The case of V�k can be considered similarly with the only difference that some
k1, 2 � k1 � k, should be used for the number of partitions of n − i.

Denote by V the set of vertices of all integer partition polytopes: V =
⋃

n∈N

vert Pn.
Theorem 3. The following statements are true:
(i) V is a partition ideal of P ;
(ii) V =

⋂
k�2 Vk;

(iii) V = limk→∞ V�k.
Proof. (ii) follows from deˇnition of vertices of Pn: these are those partitions

x � n that cannot be expressed as convex combinations of any k � 2 partitions
of n. Inclusion V�k+1 ⊆ V�k, k � 2, implies (iii). Statement (i) can be proved
directly but it follows from (ii) and the fact that the intersection of any two ideals
is an ideal.

We will see in Sec. 4 that V�2 
= V�3, so that V�3 ⊂ V2. However, it is not
known yet whether V�k 
= V�k+1 for any k > 2.

Corollary 1. V is a lower sublattice of P but not its sublattice.
Proof. The statement (i) implies u ∧ v ∈ V for all u, v ∈ V . The in-

stance u = (1, 1, 0) � 3 and v = (2, 0) � 2 shows that V is not a lattice
since u ∨ v = (2, 1, 0, 0) � 4 is a half-sum of two partitions of 4, (2, 1, 0, 0) =
1
2

((0, 2, 0, 0) + (4, 0, 0, 0)), whence u ∨ v /∈ V .

The next corollary extends Theorem 2 [7].
Corollary 2. For any x ∈ vertPn with a part i < n, the inclusion ϕ−1

i (x) ∈
vertPn−i holds.

Now we show that the most complicated case of the vertex recognition
problem for Pn is that when all parts of the partition are small.

Proposition 2. The following assertions are true:

(i) a partition x � n with some xi > 0,
⌊n

2

⌋
< i < n, is a vertex of Pn if

and only if y = ϕ−1
i (x) is a vertex of Pn−i;

(ii) for any even n, the partition n =
n

2
+

n

2
is the unique vertex of Pn

with xn
2

> 0.
Proof. In view of Corollary 2, to prove (i), it remains to prove only one

implication: if x � n, xi > 0,
⌊n

2

⌋
< i < n, and y ∈ vertPn−i, then x ∈ vertPn.

At ˇrst, note that in this case xi = 1. Suppose x /∈ vertPn. Then x is a convex
combination of some x1, . . . , xk � n with xt

i = 1, t = 1, . . . , k. Further, xt
j = 0

for all j > n − i, j 
= i, since xt
j > 0 would imply xt

jj + xt
ii > n. Therefore,

y1 = ϕ−1
i (x1), . . . , yk = ϕ−1

i (xk) are well-deˇned and are partitions of n−i. One
can check that y is a convex combination of y1, . . . , yk, and hence y /∈ vertPn−i,
as in the proof of Proposition 1. The contradiction completes the proof of (i).
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To prove (ii), notice that if x = (x1, x2, . . . , xn
2

= 1, . . . , xn) ∈ vertPn, then
xn

2 +1 = . . . = xn = 0 and x is the half-sum of partitions (2x1, 2x2, . . . , 2xn
2 −1,

xn
2

= 0, 0
n
2 ) and (0

n
2 −1, xn

2
= 2, 0

n
2 ). Thus, any x ∈ vertPn with xn

2
> 0

satisˇes xn
2

= 0. On the other hand, (0
n
2 −1, xn

2
= 2, 0

n
2 ) is obviously a vertex

of Pn. Theorem is proved.
For m ∈ N, denote Tm[� i] = {x � m | xj = 0, j = 1, . . . , i − 1}

and consider the polytope Pm[� i] = conv Tm[� i] of partitions of m with all
parts � i.

Theorem 4. The set Tn of partitions of n and the set of vertices of Pn satisfy
the following recurrence relations:

Tn =

( �n
2 �⊎

i=1

ϕi(Tn−i[� i])

)⋃
(0n−1, 1), (3.1)

vertPn ⊆
( �n

2 �⊎
i=1

ϕi(vertPn−i[� i])

) ⋃
(0n−1, 1). (3.2)

Proof. Note that (0n−1, 1) ∈ vertPn. Let x 
= (0n−1, 1) be a partition

of n, and let i be its least part. Then i �
⌊n

2

⌋
and x = ϕi(y) for some

y � n − i. This implies inclusion ⊆ in (3.1). The opposite inclusion is obvious,
as well as disjointness, so (3.1) is proved. The proof of (3.2) is similar. For

any (0n−1, 1) 
= x ∈ vertPn with the least part i �
⌊n

2

⌋
, Theorem 3 (i) implies

x = ϕi(y) for some y ∈ vertPn−i with yj = 0, j = 1, . . . , i− 1. By Theorem 2,
y is a vertex of Pn−i[� i].

Relation (3.2) can be used as the base for the lifting method to construct
vertices of Pn. It states that the set of partitions for which the vertex recognition
problem should be solved can be reduced to the set of ϕi images of all vertices

of the polytopes Pn−i, i = 1, 2, . . . ,
⌊n

2

⌋
, with parts � i. In subsequent sections

we consider how to treat this problem.

4. CRITERION FOR REPRESENTATION OF A PARTITION
AS CONVEX COMBINATION OF TWO OTHERS

In this section we characterize partitions that are convex combinations of two
partitions of the same number and deduce new easy-to-check necessary conditions
for a partition to be a vertex. The case considered seems to be the simplest,
however, in Sec. 6 we argue that recognizing such partitions is a hard problem.
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Theorem 5 [8]. A partition x � n is a convex combination of two partitions
of n (whence x /∈ vertPn) if and only if there exist two disjoint subsets S1, S2 of
parts of x and two tuples of integers u = 〈uj ∈ N; j ∈ S1〉, v = 〈vk ∈ N; k ∈ S2〉,
u 
= v, satisfying relations∑

j∈S1

ujj =
∑
k∈S2

vkk, uj � xj , vk � xk. (4.1)

Proof. Given the subsets S1, S2 ⊂ S(x) and the tuples u and v, one can
build partitions y, z � n, of which x is the half-sum, by setting

yj = xj + uj , j ∈ S1; yk = xk − vk, k ∈ S2; yi = xi, i /∈ S1 ∪ S2;
zj = xj − uj , j ∈ S1; zk = xk + vk, k ∈ S2; zi = xi, i /∈ S1 ∪ S2.

Conversely, if x � n is a convex combination x = z + λ(y − z), 0 < λ < 1,
of two partitions y, z � n, then λ is rational and we can consider that λ =

p

q
,

with p and q coprime. Then q divides all components of y − z and x is the

half-sum of partitions z +
p − 1

q
(y − z) and z +

p + 1
q

(y − z) of n. So, we can

consider that x =
1
2
(y + z). Deˇne three subsets: S = {i ∈ S(x) | xi 
= yi},

S1 = {j ∈ S(x) | xj < yj}, and S2 = {k ∈ S(x) | xk > yk}. It is easy
to see that S1, S2 ⊂ S ⊆ S(x), S1 ∩ S2 = ∅, S1 = {j ∈ S(x) | xj > zj},
S2 = {k ∈ S(x) | xk < zk}. The tuples u and v can be constructed by setting

uj = yj − xj , j ∈ S1, and vk = xk − yk, k ∈ S2. Equality x =
1
2
(y + z)

and nonnegativity of x, y, z imply uj < xj and vk < xk , and x, y � n implies
equality (4.1).

Corollary 3. For a given x ∈ vertPn, no integer k < n of the form
k =

∑
i∈S(x)

αii, αi ∈ Z+, αi � xi, except for the trivial case k = 1 · i, is a

part of x.
Corollary 4. Replacing requirement S1 ∩ S2 = ∅ by S1 
= S2 transforms

Theorem 5 to an equivalent form.
Proof. Disjoint sets are nonequal, so the new version of the statement

follows from the original one. To prove the opposite implication, note that if
some S1 
= S2 satisfy (4.1) and i ∈ S1 ∩ S2, ui � vi, then i can be excluded
from S1 and either (a) left in S2 while vi replaced by vi − ui if ui < vi, or (b)
excluded from S2 as well if ui = vi.

Theorem 5 has a simple interpretation. Given some x � n, consider that for
every i ∈ S(x) one has xi weights of i grams each. Then (4.1) means that there
exists some weight that can be weighed in two different ways with the use of the
given weights.
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Criterion (4.1) successfully determines all partitions of n � 20 that are not
vertices of Pn, except one for n = 15. The deviant partition 15 = 2 ·3+4+5 with

parts 3, 4, 5 is convex combination of three partitions
1
3
(3·5)+

1
3
(3+3·4)+

1
3
(5·3)

but not of any two. For n = 21, there are three partitions of this kind: 1+4+7+9,
3 + 5 + 6 + 7, and 3 · 3 + 5 + 7. The next proposition shows that these partitions
are not exclusions.

Proposition 3. For any integer k � 0, partitions 1+(4+k)+(7+2k)+(9+3k)
and 3+(5+k)+ (6+k)+ (7+k) of the numbers n = 21+6k and n = 21+3k,
respectively, are convex combinations of three partitions of n but not of any
two ones.

Proof. One can check straightforwardly that each partition of the two series
above can be expressed as convex combination of three partitions: 3 · (7 + 2k),
3·(4+k)+1·(9+3k), 3·1+2·(9+3k) for the ˇrst, and 3·(7+k), 1·3+3·(6+k),
2 ·3+3 · (5+k), for the second. Not harder is it to see that any partition does not
satisfy condition (4.1), whence not any two partitions are sufˇcient for its convex
representation.

Theorem 6. V2 
= V3 and V ⊂ V2.
Proof follows from Proposition 3 and Theorem 3.
Theorem 5 induces new necessary conditions for vertices of Pn.
Theorem 7 [8]. Every x ∈ vertPn satisˇes the conditions:
(i)

∏
i∈S(x)

(xi + 1) � n + 1;

(ii) the number of distinct parts of x is not greater than �log(n+1)� and this
bound is sharp.

Proof. Let x ∈ vertPn. Then x does not satisfy (4.1) and all sums∑
i∈S(x)

uii, 0 � ui � xi, (4.2)

are pairwise different. The number of such sums is
∏

i∈S(x)

(xi +1), all of them are

less than or equal to n, where the least sum is zero. By the Pigeonhole principle,
this implies (i).

Denote the number of distinct parts of x ∈ vertPn by d. The inequality∏
i∈S(x)

(xi + 1) � 2d obviously holds, so the estimate in (ii) follows from (i).

By Theorem 1, the partition 1 + 2 + 22 + . . . + 2m = n = 2m+1 − 1 is a vertex
of Pn, thus the bound is sharp.

5. MERGING PARTS AND SUPPORT VERTICES

We show in this section that all vertices of each Pn can be generated from
some subset of support vertices using two combinatorial operations of merging
parts of partitions. This means that support vertices of Pn constitute an even
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smaller basis of the set of all partitions of n. At the end, we compare the
numbers of vertices and support vertices of some partition polytopes with the
total numbers of partitions of corresponding integers. Deˇne these operations.

Operation μu,v. Let x � n and let u, v ∈ S(x), u 
= v, be two distinct
parts of x; assume that 1 � xu � xv . Build the point y = μu,v(x) ∈ Z

n
+

with components yu = 0, yv = xv − xu, yu+v = xu+v + xu, and yj = xj for
1 � j � n, j 
= u, v, u + v.

Operation μu. Let x � n and a part u ∈ S(x) enter x more than once,
i.e., xu > 1. Build the point y = μu(x) ∈ Z

n
+ with components yu = 0,

yxuu = xxuu + 1, and yj = xj for 1 � j � n, j 
= u, xuu.
Theorem 8. Let a vertex x of the polytope Pn have two distinct parts

u, v ∈ S(x), u 
= v. Then y = μu,v(x) is a vertex of Pn.
Proof. At ˇrst, we show that y � n. Indeed,

n∑
i=1

yii =
n∑

i=1,
j �=u, v, u+v

yjj + (xv − xu)v + (xu+v + xu)(u + v) =

=
n∑

i=1,
j �=u, v, u+v

xjj + xvv − xuv + xu+v(u + v) + xu(u + v) =
n∑

i=1

xii = n.

Now prove that y ∈ vertPn. Note that by Corollary 3, xu+v = 0. Suppose,

on the contrary, that y /∈ vertPn. Then y is convex combination y =
k∑

t=1
λty

t,

k∑
t=1

λt = 1, λt > 0, of some partitions yt � n, 1 � t � k. It follows from

yu = 0 that yt
u = 0 for all t. Deˇne integer points xt ∈ R

n, 1 � t � k, with the
components

xt
u = yt

u+v; xt
v = yt

u+v + yt
v; xt

u+v = 0; xt
j = yt

j , j 
= u, v, u + v.

One can check that all xt are partitions of n. Since
∑
t

λtx
t
u = xu;

∑
t

λtx
t
v =

xv;
∑
t

λtx
t
u+v = xu+v;

∑
t

λtx
t
j = xj for j 
= u, v, u + v, we have convex

representation x =
k∑

t=1
λtx

t, which contradicts x being a vertex of Pn. Therefore,

y ∈ vertPn.
The next theorem for μu can be proved similarly.
Theorem 9. Let a vertex x of the polytope Pn have a part u ∈ S(x) with

xu > 1. Then y = μu(x) is a vertex of Pn.
Theorems 8, 9 provide new sufˇcient conditions for x ∈ vertPn.

9



Let us illustrate application of operations of merging parts using polytope
P6 as an example. There are 7 vertices of P6 [7]: x1 = (6, 0, 0, 0, 0, 0), x2 =
(2, 0, 0, 1, 0, 0), x3 = (1, 0, 0, 0, 1, 0), x4 = (0, 3, 0, 0, 0, 0), x5 = (0, 1, 0, 1, 0, 0),
x6 = (0, 0, 2, 0, 0, 0), and x7 = (0, 0, 0, 0, 0, 1). We have μ4,1(x2) = x3 and
μ1,5(x3) = μ2,4(x5) = x7. Further, μ1(x2) = x5 and μ2(x4) = μ3(x6) = x7.
On the other hand, none of the vertices x1, x2, x3, x6 can be obtained from
any other with the use of these operations. Therefore, all vertices of P6 can be
obtained from 4 vertices x1, x2, x3, x6 and this is a minimal set of this kind,
relative to inclusion. The next deˇnition is natural.

Deˇnition 1. A vertex of a partition polytope is called support vertex if
it does not result from any other vertex of the same polytope with the use of
operations μu,v or μu.

Thus, we have seen that x1, x2, x3, x6 are support vertices of P6. Denote
the numbers of partitions, vertices, and support vertices of Pn by p(n), v(n), and
s(n), respectively. The values of these functions for 6 � n � 21 are presented
in the Table. One can observe that while the part of support vertices for n = 6
constitutes 36% of p(n), it decreases to 21% for n = 10 and falls down to 5%
for n = 20. The ratio s(n)/v(n) also deˇnitely decreases as n grows.

Numbers of partitions, vertices and support vertices

n p(n) v(n) s(n) n p(n) v(n) s(n)

6 11 7 4 14 135 41 12
7 15 11 5 15 176 57 15
8 22 12 5 16 231 56 17
9 30 17 8 17 297 84 20
10 42 19 9 18 385 75 19
11 56 29 9 19 490 117 28
12 77 25 10 20 627 99 27
13 101 41 14 21 792 146 42

6. ADDITIVE STRUCTURES RELATED TO VERTICES OF Pn

Theorem 5 reveals relations of vertices and the vertex recognition problem
for integer partition polytopes (PPVR problem) with several structures of additive
combinatorics. Ehrenborg and Readdy [3] independently came to a class of
knapsack partitions. These are partitions, all collections of parts of which give
different sums. Theorem 5 states that knapsack partitions are just those that
cannot be expressed as convex combinations of two other partitions of the same
number. Therefore, knapsack partitions form the class V2 and we can refer to the
problem 'Does a given partition belong to the V2 class?' as the decision problem
Knapsack Partition: 'Is a given partition knapsack partition?' Ehrenborg and
Readdy displayed the numbers k(n) of knapsack partitions for n � 50 in the
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On-Line Encyclopedia of Integer Sequences [6]. Comparison of v(n) with k(n)
shows that v(n) = k(n) for all n < 24, n 
= 15, 21, and v(15) = k(15) − 1,
v(21) = k(21) − 3, where the differences are caused by appearance of partitions
that need three partitions for their convex representations.

Other structures related to vertices are Sidon and sum-free sets, well-known in
additive combinatorics [13]. We will deˇne Sidon sets in the way that looks most
accepted now, though the original Sidon's deˇnition [11] was slightly different
and the term B2-sequence could be more appropriate [5]. So, let a Sidon set be
a set A ⊂ N such that

a1 + a2 
= a3 + a4 (6.1)

for all ai ∈ A unless {a1, a2} = {a3, a4}. Some authors, see [5,13] for references,
consider Sidon sets of order h > 2 (or Bh-sequences). In their deˇnition, instead
of pairs, both sums in (6.1) engage all possible h-tuples, h ˇxed. Considering
inequality a1 + a2 
= a3 instead of (6.1) brings us to sum-free sets A ⊂ N,
see [13]. Note that repetitions of numbers are allowed in all cases.

Theorem 5 states that x ∈ V2 (respectively, if x ∈ vertPn) if and only if
(respectively, then) neither two h- and k-tuples of elements of S(x), with each
element i engaged at most xi times, have equal sums; here h and k are arbitrary
integers <

∑
a∈A

xa. So, knapsack partitions differ from Sidon sets in that

(a) the lengths h and k of the tuples can be different and
(b) repetitions of any a ∈ A in either tuple are restricted by xa.
We introduce the notion of Sidon multiset. Recall that a multiset is a pair

〈A, x〉 of a set A and a positive integer-valued multiplicity function x : A → N,
whose values xa, a ∈ A, can be considered as the numbers of copies of a in the
multiset.

Deˇnition 2. We call a multiset 〈A, x〉, A ⊂ N, Sidon multiset if all its
submultisets 〈B, y〉, where B ⊆ A and yb � xb for all b ∈ B, have distinct sums∑
b∈B

ybb of their elements.

Note that all types of Sidon sets and sum-free sets can be represented as Sidon
multisets with some additional restrictions (e.g., xa � 2, a ∈ A, and

∑
a∈B

ya = 2

for Sidon sets). Sidon multisets satisfy conditions (a) and (b) a priori. Moreover,
any knapsack partition corresponds to a Sidon multiset and vice versa: a knapsack
partition x � n automatically deˇnes a multiset 〈S(x), x〉, while the subsets
S1, S1 ⊂ S(x) and the tuples u, v from Theorem 5 correspond to its submultisets
〈S1, u〉 and 〈S2, v〉, so that (4.1) does not hold for Sidon multisets by deˇnition.
The problem Knapsack Partition is then equivalent to the decision problem Sidon
Multiset: 'Is a given multiset Sidon multiset?' (Polynomial equivalence of the
sizes of these problems as functions of n is proved in [10]).

Let us summarize what we know about vertices and the additive structures
considered. First, V ⊂ V2. Further, we have that V2 is a subclass of the classes of
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Sidon sets of any order and sum-free sets. It coincides with the class of knapsack
partitions and is in one-to-one correspondence with the class of Sidon multisets.
We proved

Theorem 10 [10]. Decision problems Knapsack Partition and Sidon Multiset
are co-NP -complete.

Theorem implies that these problems cannot be solved in polynomial time
unless P = NP, though it does not clarify the complexity level of the PPVR
problem. Nevertheless, the difˇculties we encountered while determining whether
a given partition is a convex combination of arbitrary (� 2) number of partitions
along with Theorem 10 move us to conjecture that the PPVR problem is also
co-NP -hard.

To conclude, we should say that co-NP -completeness of the problem Knap-
sack Partition was proved by reducing to its complement the well-known NP -
complete problem Partition [4]:

Partition. For a given set M with 'weights' w(m) ∈ N of its elements, decide
whether there exists a subset M ′ ⊂ M such that

∑
m∈M ′

w(m) =
∑

m∈M\M ′
w(m).

The problem Knapsack Partition differs from the problem Partition in that
the subsets S1 and S2 are not required to split the set A.

7. CONCLUDING REMARKS

One of the goals of the polyhedral approach to integer partitions is to avoid
enumeration of the enormous amount of partitions by exploring the geometrical
structure of the polytope they form up. Should one know vertices of Pn, the whole
set of partitions of n could be built as their integer-valued convex combinations.
Moreover, one can concentrate on the subset of support vertices since all vertices
can be built from these with the use of recursive application of two special
operations of merging parts. The criterion of Theorem 5, and more easy-to-check
necessary and sufˇcient conditions allowed us to calculate almost all vertices of
Pn for small n's. The data demonstrate that the gaps between the numbers of
support vertices, vertices, and partitions are considerable. Theorem 5 revealed
connections of vertices with several other additive structures. We hope our
discussion of these connections helps to assess the complexity level of the vertex
recognition problem. Two new notions introduced in the paper Å support vertex
and Sidon multiset, deserve, in our opinion, further attention.

This work draws forth new questions. The ˇrst group includes the problems
of characterizing vertices, support vertices, knapsack partitions (Sidon multisets),
as well as those of obtaining necessary and/or sufˇcient conditions for a partition
to belong to these classes. Exploring connections between vertices and facets
would be also valuable.
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The targets of the second group include asymptotic behaviour of functions
k(n), v(n), s(n), estimates on their values, and dependence on the properties
of n. Similar functions can be considered for some special classes of partitions,
e.g., knapsack partitions with distinct parts and so forth. These problems are
most likely to be hard Å we cannot refer to any beneˇcial results, only a few
close in subject can be found in [13] for Sidon sets. Yet, known values of v(n)
and k(n) demonstrate their deˇnite dependence on the evenness of n: for all
odd n's, except a few very small, the intriguing inequalities k(n) > k(n + 1)
and v(n) > v(n + 1) hold. Lots of by hand and computer calculations, as well
as some more formal arguments, impel us to suggest a stronger hypothesis: the
values of v(n) and k(n) are inversely dependent on the number of divisors of n.
If true these facts might have divergent consequences.
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