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�μ¨¸± ¸¨£´ ÉÊ· Ë §μ¢μ£μ ¶¥·¥Ìμ¤  ¨ ±·¨É¨Î¥¸±μ° ÉμÎ±¨
¢ ¸Éμ²±´μ¢¥´¨ÖÌ ÉÖ¦¥²ÒÌ ¨μ´μ¢

� ¸¸³ É·¨¢ ÕÉ¸Ö μ¡Ð¨¥ ¸¢μ°¸É¢  ±·¨É¨Î¥¸±¨Ì Ö¢²¥´¨°, ¸¢Ö§ ´´Ò¥ ¸ ¶μ´ÖÉ¨Ö³¨ ®¸±¥°-
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¨´±²Õ§¨¢´Ò³ ¸¶¥±É· ³ Î ¸É¨Í, ¨§³¥·¥´´Ò³ ¢ ¸Éμ²±´μ¢¥´¨ÖÌ ÉÖ¦¥²ÒÌ ¨μ´μ¢ ´  RHIC
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1/2
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Ö¤¥·, ¨¸¶μ²Ó§Ê¥É¸Ö ¤²Ö Ì · ±É¥·¨¸É¨±¨ Ö¤¥·´μ° ¸·¥¤Ò ¸ ¶μ³μÐÓÕ Ê¤¥²Ó´μ° É¥¶²μ¥³±μ¸É¨
(c) ¨ Ë· ±É ²Ó´μ° · §³¥·´μ¸É¨ (δ, ε). 	¡¸Ê¦¤ ¥É¸Ö ±¨´¥³ É¨Î¥¸± Ö μ¡² ¸ÉÓ ¶·¨ ¸Éμ²±´μ-
¢¥´¨¨ Ö¤¥·, ´ ¨¡μ²¥¥ ¶·¥¤¶μÎÉ¨É¥²Ó´ Ö ¤²Ö ¶μ¨¸±  ¸¨£´ ÉÊ· Ë §μ¢μ£μ ¶¥·¥Ìμ¤  ¢ Ö¤¥·´μ°
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The general concepts in the critical phenomena related with the notions of ®scaling¯ and
®universality¯ are considered. Behavior of various systems near a phase transition is dis-
played. Search for clear signatures of the phase transition of the nuclear matter and location
of the critical point in heavy-ion collisions (HIC) is discussed. The experimental data on

inclusive spectra measured in HIC at RHIC and SPS over a wide range of energies s
1/2
NN =

9Ä200 GeV are analyzed in the framework of z-scaling. A microscopic scenario of the
constituent interactions is presented. Dependence of the energy loss on the momentum of
the produced hadron, energy and centrality of the collision is studied. Self-similarity of the
constituent interactions described in terms of momentum fractions is used to characterize the
nuclear medium by ®speciˇc heat¯ and colliding nuclei by fractal dimensions. Preferable kine-
matical regions to search for signatures of the phase transition of the nuclear matter produced
in HIC are discussed. Discontinuity of the ®speciˇc heat¯ is assumed to be a signature of the
phase transition and the critical point.

The investigation has been performed at the Veksler and Baldin Laboratory of High
Energy Physics, JINR.
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INTRODUCTION

Search for clear signatures of the phase transition and location of the critical
point in heavy-ion collisions is the main goal of the Beam Energy Scan Programs
at SPS and RHIC [1, 2]. The programs are aimed at gaining a better understanding
of the properties of the nuclear matter produced in the interactions of heavy
nuclei. The existing experimental data have already revealed a striking similarity
in the behavior of the inclusive spectra at the energies where the measurements
have been performed till now. This is traditionally related with the ideas of self-
similarity of hadron interactions which is a very fruitful concept to study collective
phenomena in the hadron and nuclear matter [3, 4]. Important manifestation of
this concept is a notation of scaling itself. Scaling in general means self-similarity
at different scales. The physical content meant by it can be of a different origin.
Some of the scaling features constitute pillars of modern critical phenomena.
A brief overview of the examples associated with the existence of phase transitions
in solids, liquids, and gases is given in Sec. 1. Another category of scaling laws
re�ects the features not related to the phase transitions (self-similarity in point
explosion, laminar �uid �ow, etc.). Properties of z-scaling (see [5Ä10] and
references therein), which in a sense pertains to the both mentioned groups, are
discussed in Sec. 2. It is treated as manifestation of the self-similarity property of
the structure of colliding objects (hadrons, nuclei), the interaction mechanism of
their constituents, and the process of constituent fragmentation into real hadrons.
Features of z-scaling in pp and AA collisions are presented in Secs. 3 and 4. The
validity of z-scaling is conˇrmed in the region which is far from the boundary of
the phase transition or the region where the Critical Point (CP) can be located.
Nevertheless, the z-scaling approach can be a suitable tool to search for the phase
transitions and the critical point in the hadron and nuclear matter as well. The
parameters of z-scaling c, δ, and εF have a physical interpretation of the heat
capacity of the produced matter, a fractal dimension of the structure of hadrons
or nuclei, and a fractal dimension of the fragmentation process, respectively.
Although z-scaling gives us no direct information on existence of the phase
transition or the critical point, change of its parameters could indicate the vicinity
of the critical phenomena. The possibilities of using z-scaling for this type of
investigations are discussed in Sec. 5.
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1. SCALING & PHASE TRANSITION

This section is devoted to the consideration of self-similarity of various
systems near the phase transition. The concepts developed to understand the
critical phenomena are ®scaling¯ and ®universality¯. Scaling means that the
system near the critical point exhibiting self-similar properties is invariant under
transformation of the scale. According to universality, quite different systems
behave in a remarkably similar way near the respective critical point [11].

The scaling theory was ˇrst introduced by B. Widom [12] to describe the
behavior of simple �uids near critical points, and later extended to describe the
scaling equation of the state of liquidÄgas and other systems including ferro-
magnetic, order-disorder alloys, ferroelectrics, superconductors, as well as the
systems exhibiting super�uidity. Later the scaling hypothesis was independently
developed by several scientists, including Widom, Domb and Hunter, Kadanoff,
Patashinskii and Pokrovskii, and Fisher (see [13Ä24] and references therein). The
scaling hypothesis has two categories of predictions, both of which have been
remarkably well veriˇed by the wealth of experimental data in diverse situations.
The ˇrst category is a set of equations, called scaling laws (Widom, Rushbrooke,
Fisher, Grifˇths, Josephson, Coopersmith), that serve to relate various critical-
point exponents (α, β, γ, δ, ν, η, φ, ζ) [12, 25Ä30]. The scaling theory based on
the assumption that the singular part of the particular thermodynamic potential is
asymptotically a generalized homogeneous function (GHF) if the system is close
enough to the critical point. It also means that all derivatives of the potential
near CP are generalized homogeneous functions (heat capacity, compressibility,
susceptibility, etc.). The second category of predictions is a sort of data collapse.
It means that data can be ®collapsed¯ onto a single curve.

A classical example of this is the Guggenheim plot shown in Fig. 1 Å the
temperature dependence of the scaled density ρ/ρc = (ρL + ρG)/2ρc ∼ |T/Tc|β
for different �uids (Ne, Ar, Kr, Xe, N2, O2, CO, CH4). The critical exponent β
was found to be equal to ≈ 1/3. As is seen from Fig. 1, the data ®collapse¯ onto
a single curve according to the law of the corresponding state over a wide range
of ratios 0 < ρ/ρc < 2.5 and 0.55 < T/Tc < 1.

The universality hypothesis reduces the great variety of critical phenomena
to a small number of equivalence classes, the so-called universality classes [14],
which depend only on few fundamental parameters. All the systems belonging to
the given universality class have the same critical exponents and the corresponding
scaling functions become identical near the critical point. The universality has
its origin in the long-range character of the �uctuations. Close to the transition
point, the behavior of the cooperative phenomena becomes independent of the
microscopic details of the considered system. For the short-range interacting
equilibrium systems, the fundamental parameters determining the universality
class are the symmetry of the order parameter and the dimensionality of space.
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Fig. 1. The coexistence curve (the scaled density ρ/ρc vs. the scaled temperature T/Tc)
for different �uids [30]. The solid curve is ˇtted with the cubic equation ρ/ρc ∼ |T/Tc|1/3

Fig. 2. a) Variation of the drag coefˇcient ζ with Reynolds number Re for sphere [32].
Points are the experimental data. The uniform �ow passes over the circular cylinder at
Re = 0.16 (b), Re = 26 (c), and Re = 2000 (d) [33]
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The concept of universality remains the major tool to study the great variety of
non-equilibrium phase transitions as well (see [31] and references therein). It is
known that the scaling functions vary more widely between different universality
classes than the exponents. Thus, universal scaling functions offer a sensitive and
accurate test for the system universality class. The universal scaling functions
have also demonstrated the robustness of the given universality class.

The dependence of drag coefˇcient ς on Reynolds number Re for a circular
sphere by the uniform �ow is shown in Fig. 2, a [32]. Both the laminar �ow
and the turbulent one are described by the universal dimensionless function.
Discontinuity of ς = ς(Re) near the point Re ≈ 3 · 106 indicates the phase
transition from the laminar �ow to the turbulent one.

Some regimes of water �ows around the cylinder at different Re are shown
in Figs. 2, b, c, d. This example conˇrms that the self-similarity is common for
the both types of the �ows.

As an example of the critical behavior of the system we have shown the
anomaly in the temperature dependence of the speciˇc heat c ∼ |T − Tλ|−α

under saturated vapor pressure for 4He close to the ®λ-point¯ [10] in Fig. 3. The
temperature scales are expanded by a factor of 103. The critical-point exponent α
is extremely small and therefore the divergence of the speciˇc heat corresponds
to the logarithmic law. Discontinuty of the speciˇc heat is clearly seen at highest
temperature resolution.

Impurities and defects exert strong in�uence upon the phase transition and
physical properties of systems (for example, crystals, liquids, etc.). So, the

Fig. 3. Speciˇc heat of 4He as a function of T − Tλ [11]
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Fig. 4. Speciˇc heat of ferroelectric crystal (CH2NH2COOH)3H2SO4 undergoing radiation
as a function of the temperature [34]. The dose of irradiation is shown in megaroentgens

possibilities of crystal properties modiˇcation due to directed implantation of
impurities or ionizing irradiation in�uence of defects on the anomalies of the
crystal properties in the region of the phase transitions and on the domain structure
of ferroelectric crystals are widely studied [34].

Figure 4 shows the temperature dependence of the speciˇc heat of the ferro-
electric crystal (CH2NH2COOH)3H2SO4 undergoing γ radiation. The dramatic
ionizing irradiation in�uence upon phase transitions is seen in Fig. 4. It results in
super�uous thermal capacity and decreasing the critical temperature well deter-
mined at a low dose (0.1Ä0.5 MR) and smearing the temperature dependence of
the speciˇc heat at a large irradiation dose (1 MR). The observed features, as well
as the other ones (dielectric susceptibility, pyroelectric coefˇcients, piezoelectric
modules, etc.), are related to structural modiˇcation of a crystal [34].

2. z-SCALING

The z-scaling belongs to the scaling laws with applications not limited to
the regions near the phase transition. The scaling regularity concerns hadron
production in the high-energy proton (antiproton) and nucleus collisions [5Ä10].
It manifests itself in the fact that the inclusive spectra of various types of particles
are described with the universal scaling function. The function Ψ(z) depends
on single variable z in a wide range of the transverse momentum, registration
angles, collision energies, and centralities. The scaling variable is expressed by
the formula

z = z0Ω−1. (1)
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Here z0 and Ω are functions of kinematic variables:

z0 =
√

s⊥
(dNch/dη|0)cmN

, (2)

Ω = (1 − x1)δ1 (1 − x2)δ2(1 − ya)εF (1 − yb)εF . (3)

The quantity z0 is proportional to the transverse kinetic energy of the selected
binary constituent subprocess required for the production of inclusive particle
m and its partner (antiparticle). The multiplicity density dNch/dη|0 of charged
particles in the central region η = 0, the nucleon mass mN , and parameter c
completely determine the functional relationship of the dimensionless variable
z0. The parameter c has the meaning of ®speciˇc heat capacity¯ of the medium
produced in the collisions.

The quantity Ω is proportional to a relative number of the conˇgurations at
the constituent level which include the binary subprocesses corresponding to the
momentum fractions x1 and x2 of colliding hadrons (nuclei) and to the momentum
fractions ya and yb of the secondary objects just produced in these subprocesses.
The parameters δ1 and δ2 are fractal dimensions of the colliding objects, and
εF stands for the fractal dimension of the fragmentation process. The selected
binary subprocess, which results in production of the inclusive particle and its
recoil partner (antiparticle), is deˇned by the maximum of Ω(x1, x2, ya, yb) with
the kinematic constraint

(x1P1 + x2P2 − p/ya)2 = M2
X . (4)

Here MX = x1M1 + x2M2 + m/yb is the mass of the recoil system in the
subprocess. The 4-momenta of the colliding objects and the inclusive parti-
cle are P1, P2, and p, respectively. Equation (4) accounts for the locality of
the interaction at the constituent level and sets a restriction on the momentum
fractions x1, x2, ya, yb of particles via the kinematics of the constituent interac-
tions. A microscopic scenario of constituent interactions is based on dependencies
of the momentum fractions on the collision energy, transverse momentum, and
centrality.

The scaling variable z has a property of the fractal measure, it grows in
the power manner with the increasing resolution Ω−1 with respect to the con-
stituent subprocesses. The scaling function Ψ(z) is expressed in terms of the
experimentally measurable quantities Å the inclusive cross section Ed 3σ/dp 3,
the multiplicity density dN/dη, and the total inelastic cross section σin Å for the
inclusive reaction P1+P2 → p+X . It is determined by the following expression:

Ψ(z) =
π

(dN/dη)σin
J−1E

d3σ

dp3
. (5)
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Here J is Jacobian for the transition from the variables {pT , y} to {z, η}. The
function Ψ(z) satisˇes the normalization condition

∞∫

0

Ψ(z)dz = 1. (6)

Equation (6) allows us to interpret Ψ(z) as probability density of the production
of the inclusive particle with the corresponding value of variable z.

3. SCALING IN pp COLLISIONS

The self-similarity properties of the particle production in protonÄproton col-
lisions provide the basis for analyzing protonÄnucleus and nucleusÄnucleus inter-
actions, and veriˇcations of the theory. Figure 5 shows spectra of the hadrons
produced in protonÄproton interactions in z presentation. The kinematic region
covers a wide range of the collision energies, registration angles, and transverse
momenta. The scale factors are introduced to split the data into different groups.
The solid line is a ˇtting curve for these data. The derived representation shows
the universality of the shape of the scaling curve Ψ(z) for different types of
hadrons. The found regularity (the shape of the function Ψ(z) and its scal-
ing behavior in the wide kinematic range at constant values of the parameters
δ, εF , and c) is treated as manifestation of the self-similarity of the structure of

Fig. 5. Inclusive spectra of the hadrons produced in protonÄproton collisions in the z-
presentation. The symbols denote the experimental data obtained in the experiments
performed at CERN, FNAL, and BNL [6, 7]
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colliding objects, interaction mechanism of their constituents, and processes of
fragmentation into real registered particles. The fractal dimension εF of the frag-
mentation process varies for different types of hadrons. The scale transformation
z → αF z, Ψ → α−1

F Ψ results in the compatibility of the corresponding scaling
curves in the plane {z, Ψ}. The normalization condition (6) is conserved by the
transformation.

As is seen from Fig. 5, the scaling function Ψ(z) exhibits two kinds of
behavior: one in the low-z and the other one in the high-z region. The low-z
region corresponds to saturation of the scaling function with the typical �attening-
out. The behavior of Ψ(z) at low z depends only on parameter c. This parameter
is determined from the multiplicity dependence of the spectra. The region of
low z (the transverse momentum < 100 MeV) and of high multiplicity density
is preferable (even in protonÄproton interactions) to study the collective effects
and observe the phase transition in the hadron matter. The low-z region is best
suited for studying the collective phenomena in the systems of hadrons and their
constituents. The region of high z (a high transverse momentum) is characterized
by the power behavior of Ψ(z) ∼ z−β with the constant value of slope β. At high
z, the observed power behavior of the scaling function points to self-similarity in
constituent interactions at small scales. The asymptotic behavior of Ψ(z) imposes
restrictions on the behavior of the cross sections at high pT . The restrictions can
be used to perform the global QCD ˇt and construct quark and gluon distribution
functions in the regions where the experimental data are missing.

The parameters δ, εF , and c, introduced to construct variable z, are determined
from analyses of many different sets of experimental data [5Ä10]. They are shown
to be constant and independent of the kinematic quantities Å the collision energy,
angle and transverse momenta of the inclusive particle, and multiplicity density.
A possible change of the parameters can be used as a signature of new phenomena
in the kinematic regions not yet explored experimentally. This is primarily true
for the low (z < 0.01) and high (z > 10) regions of the variable z. In the
intermediate region (0.01 < z < 10), the shape of Ψ(z) is well determined
from the data in the kinematic range which is now accessible for experiments
at the current accelerators. Note that extension of the z range does not require
obligatory increase in the collision energy. It is possible when rare events are

specially selected for super low z (e.g., pT < 100 MeV/c at s
1/2
NN = 200 GeV)

or super high z (e.g., pT > 4 GeV/c at s
1/2
NN = 9.2 GeV or pT > 30 GeV/c at

s
1/2
NN = 200 GeV). A more stringent restriction on the scaling behavior of Ψ(z)

at high z would bear witness to self-similarity at scales smaller than 10−4 fm
related with the notion of fractal space-time. In the new LHC energy range, a
check of the regularities found earlier over the whole z range is of interest: either
the indicated properties of z-scaling will be conˇrmed or a deviation from the
universal behavior of Ψ(z) will be observed.
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4. SCALING IN AA COLLISIONS

The phase transitions and other collective effects must show up in a larger
space volume in the collisions of heavy nuclei than in protonÄproton interactions.
It is expected that they in�uence the production mechanism of particles, i.e., in-
teraction of nuclear constituents, as well as the fragmentation process in the ˇnal

Fig. 6. Inclusive spectra of the charged hadrons produced in Au+Au collisions in the

central rapidity range, at different centralities and energies s
1/2
NN = 200 GeV (a) and

9.2 GeV (b). Symbols are the data obtained by the STAR collaboration [35, 36]. c) The

scaled presentation of the preliminary data at s
1/2
NN = 9.2 GeV. The solid line is a ˇtted

curve for the data at s
1/2
NN = 62.4, 130, and 200 GeV [35, 39, 40]. d) Dependence of

fraction ya on the transverse momentum, centrality, and collision energy [36]
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state. The modiˇcation of the latter is due to the speciˇc properties (high den-
sity and temperature in a larger volume) of the medium produced in the nuclear
collisions.

The inclusive spectra of the charged hadrons produced in Au +Au colli-

sions at different centralities and energies s
1/2
NN = 200 and 9.2 GeV are shown

in Figs. 6, a and b. The data [35, 36] were obtained by the STAR collaboration
at the RHIC. A consistent description of the data in z-presentation has been ob-
tained by the condition that the fractal dimension of the nucleus δA is expressed
in terms of the nucleon fractal dimension δ and the atomic number of nucleus
δA = Aδ [5]. It has been found that the speciˇc heat (parameter c) is independent
of the centrality of the collision and decreases with increase of the atomic number
of the nucleus. A strong suppression of the function Ψ(z) with the increasing
centrality in nuclear collisions has been found for the centrality-independent value
of εAA. The suppression is enhanced with the increasing transverse momentum
pT . The universal shape of Ψ(z) for A + A collisions can be restored if the
dependence of the fractal dimension εAA of the fragmentation process on the
event centrality (multiplicity density) is assumed. It was taken in the following
form:

εAA = ε0(dNch/dη) + εpp. (7)

The value of εpp is the same as for protonÄproton collisions. The coefˇcient ε0

depends on the collision energy. Similar behavior has been observed for the

interaction of nuclei (Cu, Au, and Pb) at other energies s
1/2
NN = 17.3, 62.4,

and 130 GeV [37, 38]. Illustration of the unique shape of the scaling function Ψ(z)
obtained under the above conditions is shown in Fig. 6, c. In the low-z region,
saturation of Ψ(z) similar to that revealed in protonÄproton collisions [6, 7] has
been observed. The saturation region (z < 0.1) is of interest to study the events
with large multiplicities. In the region of small z (low pT ), the effect of the
Coulomb nuclear ˇeld modiˇes the spectra of charged particles. Therefore, more
precise information on the behavior of the function Ψ(z) in this region can be
obtained from the analysis of spectra of neutral particles (for example, neutral
strange K0

S mesons and Λ0 hyperons).
The shape of the scaling function at low z (low pT ) is governed by the

parameter c which is interpreted as the speciˇc heat of the produced medium. The

value of c was found to be constant in Au +Au collisions at s
1/2
NN = 9.2, 62.4, 130,

and 200 GeV. Discontinuity of this parameter would be assumed as a signature
of the phase transition or vicinity of the critical point.

Figure 6, d shows the pT -dependence of the fraction ya on centrality in

Au +Au collisions at s
1/2
NN = 9.2 and 200 GeV. The behavior of ya demonstrates

monotonic growth with pT . It means that the energy loss ΔE ∼ 1−ya associated
with the production of a high-pT hadron is smaller than for the hadron with a
lower transverse momentum. The decrease of ya with centrality corresponds to a
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larger energy loss in central collisions as compared with peripheral interactions.
The energy loss grows with the collision energy. For central Au+ Au collisions

at pT ≈ 3 GeV/c, it is estimated to be about 55% at s
1/2
NN = 9.2 GeV and 90% at

s
1/2
NN = 200 GeV, respectively.

5. SEARCH FOR PHASE TRANSITION IN HEAVY-ION COLLISIONS

In this section we discuss possibilities of using z-scaling approach to search
for critical phenomena in relativistic collisions of heavy nuclei. The endeavor for
a unique description of the spectra of the hadrons produced in A+A interactions
by universal scaling function Ψ(z) gives strong restriction on the parameters of
z-scaling. A sharp change (or discontinuity) of the fractal dimensions δA, εAA

or heat capacity c is offered as a signature of new effects, in particular of the
phase transition. Such effects can be, however, smeared by a large energy
loss especially in the central collisions of heavy nuclei. The growth of εAA

with the collision centrality (multiplicity) corresponds to the increased energy
losses of the secondary particles in the produced medium at their fragmentation.
This contributes to difˇculties in the localization of the region where the phase
transition or the critical point could be expected. The problem can be partially
evaded in the cumulative region where the energy losses are small.

This holds for the hard cumulative processes corresponding to the region
x1A1, x2A2 > 1 with production of the high transverse momentum particles.
Such processes were not investigated earlier. The transition into the cumulative
region at ˇxed centrality is considered as an essential condition of searching for
the phase transition and localization of the critical point.

A microscopic scenario of the interaction between hadrons and nuclei at
the level of the interacting constituents, developed within the framework of
z-scaling, predicts the dependence of the energy losses on the collision energy
and centrality, transverse momentum and type of the inclusive particle, and order
of cumulativity.

Figure 7 illustrates the microscopic scenario for the pion production in

Au +Au collisions at the energy s
1/2
NN = 9.2 and 200 GeV, where the pT -

dependences of the following quantities are depicted: the fraction x1A1 of the
nucleon momentum carried by the interacting constituent (a); the momentum frac-
tion ya of the scattered constituent carried away by the inclusive particle (b); the
mass MX of the recoil system in the constituent interaction which balances the
production of the inclusive particle (c). Study of the dependence of the cumu-
lative number x1A1 on centrality is of special interest. As seen from Fig. 7, a,
the cumulative region x1A1, x2A2 > 1 is attainable only at lower energies. The
relationship between the cumulative number and the centrality at the energy
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Fig. 7. Dependence of the fractions x1A1 (a), ya (b), and recoil mass MX (c) on the
transverse momentum of the inclusive particle produced in Au+Au collisions at different

energy s
1/2
NN = 9.2 and 200 GeV, centrality, and |y| < 0.5 [41]

s
1/2
NN = 9.2 GeV is weaker than at s

1/2
NN = 200 GeV over the entire indicated

range of the transverse momentum pT . This is related with the energy loss
ΔE ∼ 1 − ya by the production of the inclusive particle. The decrease of the
energy loss with the increasing pT is very signiˇcant especially at lower energies
and high transverse momenta (Fig. 7, b) which corresponds to the cumulative re-
gion x1A1 > 1 (Fig. 6, a). Here the reduction of the collision energy results in
effective reduction in energy losses of the secondary particles upon their frag-
mentation into the observed hadrons. However, very small collision energy is
undesirable because it tends to decrease the inclusive channels of the reaction.
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As seen from Fig. 7, a, the kinematical region, which corresponds to the
cumulative numbers 1Ä2, covers the momentum range pT = 4Ä8 GeV/c for the

pions produced in Au+ Au collisions at s
1/2
NN = 9.2 GeV close to an angle of

90◦ in the NÄN center-of-mass system. Changes and correlations among the
parameters δA, εAA, and c are expected in this region. Here the fractal dimension
δA can be sensitive to particle-like �uctuations (�uctons) of the colliding nuclei.
The fragmentation properties of the particles produced in the collisions of �uctons
could in�uence the value of fragmentation dimension εAA. Information on the
properties of the produced medium in the collisions of the cumulated nuclei
could change the known value of the speciˇc heat c. The sensitivity of the fractal
dimensions and speciˇc heat to �ucton interactions can be enhanced with the
increased order of cumulativity (x1A1, x2A2). Determining the dependence of
the fractal dimensions on the order of cumulativity, we can study the structure
of the �uctons themselves. We expect that the fractal dimension δA will grow
with the order of cumulativity. It should be greater for the �ucton substructure
(the local cumulation of the nuclear matter in the nucleus) than for the ordinary
nucleus. The found relation δA = Aδ for nuclei may be violated and in the
cumulative region it can be as follows: δA = Adδ, d > 1.

The most stringent condition in the cumulative region is multiplicity which
can be used to select events to control the properties of the medium in which
the �ucton interactions take place. It is expected that the transition into the
cumulative region with high multiplicity events may involve additional selection
of events with higher density of the nuclear matter. The smaller energy loss with
additional compression of the nuclear matter can allow us to ˇnd more accurate
localization of the critical point and detection of the phase transition.

The transverse momentum dependence of the mass MX of the nonregistered
recoil system is shown in Fig. 7, c. The values of MX grow steeply with the

transverse momentum at the energy s
1/2
NN = 9.2 GeV when compared with their

increase at s
1/2
NN = 200 GeV. Similarly to the cumulative number in Fig. 6, a,

the sensitivity of the recoil mass to centrality is small at lower energy. The

relatively large values of MX at the energy s
1/2
NN = 9.2 GeV for high transverse

momenta re�ect peculiarities of the cumulative region and evoke connections with
the notion of a cumulative jet.

CONCLUSION

Search for clear signatures of the phase transition of the nuclear matter and
location of the critical point in heavy-ion collisions at SPS and RHIC has been
discussed. The experimental data on the inclusive spectra of hadrons measured

in Au +Au collisions at RHIC over a wide range of the collision energy s
1/2
NN =

9Ä200 GeV were analyzed in the framework of z-scaling. The requirement of
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the universal description of the hadron spectra in nuclear collisions at different
energies and centralities gives restrictions on the values of the parameters of z-
scaling and their dependences on the multiplicity density. The parameters δA,
εAA, and c are interpreted as the fractal dimension of the nuclear structure,
fractal dimension of the fragmentation process, and the heat capacity of the
produced medium, respectively. The scaling regularity re�ects the self-similarity
property of the structure of the colliding objects, interaction mechanism of their
constituents, and process of fragmentation. The microscopic scenario of the
constituent interactions in the framework of z-scaling approach was discussed.
The dependences of the constituent energy loss, order of cumulativity, and the
mass of the recoil system on the momentum of the produced hadron, energy and
centrality of the collision have been studied. It is motivated by the fact that the
hadron production in the cumulative region (x1A1, x2A2 > 1) is a preferable
regime to search for signatures of the phase transition and the critical point in
heavy-ion collisions. In our opinion, the most optimal energy region for these

experimental studies corresponds to the energies s
1/2
NN = 10Ä40 GeV covered by

the Beam Energy Scan Programs carried out at the accelerators SPS (CERN) and
RHIC (BNL).
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