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Questions of the existence in a ball of radially symmetric solutions of the equation indicated
in the title with the Dirichlet zero boundary conditions are studied in many publications and,
generally speaking, there was obtained more or less complete answer to these questions. It is
known now that if the dimension of the space d � 3 and 1 < p < (d+2)/(d− 2) or if d = 2
and p > 1, then for any integer l � 0 this problem in a ball or in the entire space x ∈ Rd

has a radially symmetric solution with precisely l zeros as a function of r = |x|. If d � 3
and p � (d + 2)/(d− 2), then the problem in the entire space has no nontrivial solution. For
the ˇrst time, this problem was studied by a variant of the variational method. However, it
is known to the specialists in the ˇeld that it is also interesting to obtain the same results by
using methods of the qualitative theory of ODE. In the present paper, we shall give a simple
proof of the above result in this way. An earlier proof of this result of the other authors is
essentially more complicated than our one.

The investigation has been performed at the Bogoliubov Laboratory of Theoretical Physics,
JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna, 2011



1. INTRODUCTION.
STATEMENTS OF THE MAIN RESULTS

In this paper, for one more time, we shall deal with the existence of nontrivial
solutions of the problem

−Δu + u = |u|p−1u, u = u(r), r = |x|, x ∈ R
d, (1)

u
∣∣
|x|→∞ = 0. (2)

Here d � 2 is integer, Δ is the Laplace operator in R
d, and p > 1. Investigations

of this problem have a long history, and the main results on this subject are

known now. Denote p� =
d + 2
d − 2

if d � 3 or p� = +∞ for d = 2. Then the

result on the existence known currently says that for any p ∈ (1, p�) and integer
l � 0 problem (1)Ä(2) has a radially symmetric solution that, being regarded as
a function of r = |x|, has precisely l zeros in the half-line (0, +∞). If d � 3
and p � p�, then the problem has no nontrivial solution. We refer readers to
papers [6, 11, 12, 14] for historical remarks.

To the author's knowledge, for d = 3 this result for the ˇrst time was obtained
in its complete form by Sansone [11] (in fact, in this paper, the proofs are made
for positive solutions, but they still hold for solutions that alternate sign) and, a
few years later, by Macky [8]. This result for all integer d � 3 is reestablished,
for example, in [14]. For all values of d it was proved by Schekhter [12] and
later reestablished by Kiguradze and Schekhter in [2]. In [5, 6], H. Berestycki and
P. L. Lions obtained a result on existence for nonlinearities f(u) of a very general
kind. Their theorem says that in our case when 1 < p < p� the problem has a
positive solution and an inˇnite sequence of pairwise different solutions.

The ˇrst proofs of the results above were based on minimization methods
with constraints as in [5, 6] and in [11, 14]. Methods of the qualitative theory of
ODEs allowed one to obtain intermediate results not for all values p ∈ (1, p�).
However, in the author's opinion, applications of methods of the qualitative the-
ory of ODEs to problem (1)Ä(2) and to similar ones are of a separate interest. In
particular, they allow one to restore the behavior of solutions of equation (1) on
the (r, u)-plane. In [7], H. Berestycki, P. L. Lions and L.A. Peletier proved the
existence of a positive solution for an arbitrary value of p in this interval (and
for nonlinearities of a more general kind) by methods of ODEs, but some prin-
cipal steps in their approach are based on variational methods. In the important
paper [12] B. L. Schekhter succeeded in proving the existence of a radially sym-
metric solution of (1)Ä(2) with an arbitrary given number of zeros by methods of
ODEs: his result holds for all p ∈ (1, p�) (in fact, he considered problem (3)Ä(4)
below with arbitrary real d).

Concerning the uniqueness of a solution with a given number of zeros, to
our knowledge, for problem (1)Ä(2) only the uniqueness of a positive solution is
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known. For the ˇrst time, this result is due to Kwong [3]. However, his work
seems to be sufˇciently intricate and complicated. A simpler and clear proof of
the same result was obtained by McLeod [9].

So, to our knowledge, the ˇrst complete investigation of the existence of
solutions for problem (1)Ä(2) by methods of the qualitative theory of ODEs was
made by Schekhter [12]. However, his proofs seem to be sufˇciently complicated.
With the present paper, the author wanted to establish a simpler and shorter proof
of the same result (for integer d only) by using the methods of the qualitative
theory of ODEs.

Now, we shall establish the statements of our results. By substitution u =
u(r), problem (1)Ä(2) reduces to the following:

−u′′ − d − 1
r

u′ + u = |u|p−1u, u = u(r), r > 0, (3)

u′(0) = u(+∞) = 0, (4)

where the prime denotes the derivative in r. In addition to problem (3)Ä(4), we
consider

−u′′ − d − 1
r

u′ + u = |u|p−1u, u = u(r), r > r, (5)

u′(r) = u(+∞) = 0, (6)

where r > 0 is a parameter. Our ˇrst main result is as follows.

Theorem 1. Let d � 2 be integer and 1 < p < p�. Then, for any integer l � 0
there exist constants C0 = C0(l) > 0 and r̃ > 0 such that for any r ∈ (0, r̃) and
an arbitrary radially symmetric solution u(r) of problem (5)Ä(6) that possesses
precisely l zeros in (r̄, +∞) one has

sup
r∈(r,+∞)

|u(r)| � C0(l).

Earlier this result was proved in [2, 12]. In our opinion, our proof is simpler
and shorter than the one in [2, 12].

Using Theorem 1, we shall prove the following.

Theorem 2. Let d � 2 be integer and 1 < p < p�. Then, for any integer
l � 0 problem (1)Ä(2) has a radially symmetric solution that, being regarded as
a function of the argument r = |x|, possesses precisely l zeros in (0, +∞).

As we already noted, Theorem 2 was already known earlier, but we shall
prove this result by the methods of the qualitative theory of ODEs, and with this
we shall simplify such a proof presented in [2, 12].

In addition, one can obtain the following a priori estimates of solutions
of equations (1) and (2) with a given number of zeros just as when proving
Theorem 1, with quite elementary modiˇcations only.
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Theorem 3. Let d � 2 be integer and 1 < p < p�. Then, for any integer
l � 0 there exists a constant C0(l) > 0 such that for an arbitrary radially
symmetric solution u(r) of problem (1)Ä(2) with precisely l zeros in the half-line
r ∈ (0, +∞) one has:

sup
r>0

|u(r)| � C0(l).

Now, let us introduce some notation. Let I ⊂ R be an interval and BR =
BR(0) := {x ∈ R

d : |x| < R} be a ball, where 0 < R � +∞. By C(I)
and C(BR) we denote the spaces of continuous bounded functions in I and
BR, respectively, with the uniform norm. Let Lq(BR), q � 1, be the standard
Lebesgue space with the norm

‖g‖Lq(BR) =

⎧⎨
⎩

∫
BR

|g(x)|qdx

⎫⎬
⎭

1
q

.

If g(·) is radially symmetric, then ‖g‖q
Lq(BR) = ωd

R∫
0

|g(r)|qdr, where the

constant ωd > 0 depends only on d. By H1
q (BR), q � 1, we denote the standard

Sobolev space taken with the norm

‖g‖H1
q(BR) =

⎧⎨
⎩

∫
BR

|g(x)|qdx

⎫⎬
⎭

1
q

+

⎧⎨
⎩

∫
BR

|∇u|qdx

⎫⎬
⎭

1
q

.

If g ∈ H1
q (BR) is radially symmetric, then ‖g‖q

H1
q(BR) = ωd

R∫
0

rd−1{|g(r)|q +

|u′(r)|q}dr. By H1
q,r(BR) we denote the subspace of the space H1

q (BR) that
consists of radially symmetric functions. According to [4] (on this subject see
also [14]), any g ∈ H1

2,r(R
d) is continuous at any point x �= 0. Let also H2

q (BR)
be the Sobolev space of functions in BR equipped with the norm

‖g‖H2
q (BR) =

⎧⎨
⎩

∫
BR

|g(x)|qdx

⎫⎬
⎭

1
q

+
d∑

i=1

⎧⎨
⎩

∫
BR

∣∣∣∣ ∂g

∂xi

∣∣∣∣
q

dx

⎫⎬
⎭

1
q

+

d∑
i,j=1

⎧⎨
⎩

∫
BR

∣∣∣∣ ∂2g

∂xi∂xj

∣∣∣∣
q

dx

⎫⎬
⎭

1
q

.

Finally, we denote by C∞
0 (Rd) the linear space of inˇnitely differentiable func-

tions in R
d with compacts supports.
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We shall prove Theorem 1 in the next section 2 and Theorem 2 in section 3.
As was already noted, the proof of Theorem 3 repeats our proof of Theorem 1,
with quite elementary modiˇcations only. Methods of this paper can also be
adapted to a wider class of nonlinearities in (1). Results analogous to Theorems 1,
2 and 3 still hold if in place of problem (1)Ä(2) we consider the following similar
problem in a ball BR(0), where 0 < R < +∞:

−Δu + u = |u|p−1u, u = u(r), r = |x|, x ∈ BR(0), u
∣∣
∂BR(0)

= 0.

2. PROOF OF THEOREM 1

In fact, when we derive our a priori estimates stated by Theorem 1, we use
a simpliˇed variant of a similar derivation in [13] where a system of equations is
considered. Our method is based on the same ideas as in [1].

Lemma 1. Let integer l � 0 be arbitrary. Then, there exists C1 > 0 such
that for any r ∈ (0, 1/2) and an arbitrary solution u(r) of problem (5)Ä(6) that
has precisely l zeros in (0, +∞) one has

|u(1)| + |u′(1)| � C1.

Proof. On the contrary, suppose that there exist sequences rn ∈ (0, 1/2) and
un(r) of values of the parameter r and of solutions of problem (5)Ä(6) with l
zeros such that |un(1)| + |u′

n(1)| → +∞ as n → ∞. We establish the following
three observations. The ˇrst one is as follows. Let u(r) be an arbitrary solution of
problem (5)Ä(6) and I = (a, b) ⊂ (1/2, 1) be an interval such that |u(r)| > D in

I for a constant D > 0. If D is sufˇciently large, then one has b−a <
1

16(l + 1)
,

for any such a solution and an interval.
The proof immediately follows by comparing equation (5) with the equation

−z′′ − 21−d(Dp−1 − 1)z = 0, z = z(r), r ∈ I,

by applying the standard comparison theorem. We ˇx such a constant D > 0.
We have for an arbitrary solution u(r) of equation (5):

E′(r) = −d − 1
r

[u′(r)]2, (7)

where E(r) =
1
2
[u′(r)]2 − 1

2
u2(r) +

1
p + 1

|u(r)|p+1. The second observation is

that, in view of (7), |un(r)| + |u′
n(r)| → +∞ as n → ∞ uniformly with respect

to r ∈ [rn, 1] (because En(r) � En(1) for any r ∈ [rn, 1] where by En(r) we
denoted the function E(r) corresponding to the solution un(r)).
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The third observation, following from the second one, is that |u′
n(r)| → +∞

as n → ∞ uniformly with respect to r ∈ S, where S = {r ∈ [1/2, 1] : |un(r)| �
D}.

Now, it follows from the ˇrst and third observations that for any sufˇciently
large n the solution un(r) has in the interval [1/2, 1] at least (l +1) zeros, which
is a contradiction.�

We have from (7) for an arbitrary solution u(r) of equations (5) and (6) for
r > r:

−1
2
u2(r) +

1
p + 1

|u(r)|p+1 = E(r) � E(r) � −1
2
u2(r) +

1
p + 1

|u(r)|p+1 � 0

and −1
2
u2(r) +

1
p + 1

|u(r)|p+1 > 0 which imply that |u(r)| � |u(r)| for any

r > r. Now, we shall derive the following variant of the Pohozaev identity
obtained for the ˇrst time in [10].

Lemma 2. Let u(r) be a solution of problem (5)Ä(6) taken with r ∈ (0, 1/2].
Then, one has∫

B1\Br

[|∇u(|x|)|2 + u2(|x|)]dx =
∫

B1\Br

|u(|x|)|p+1dx + ωdu(1)u′(1) (8)

and ∫
B1\Br

{
2 − d

2
|∇u(|x|)|2 − d

2
u2(|x|) +

d

p + 1
|u(|x|)|p+1

}
dx+

+
ωdr

d

p + 1
|u(r)|p+1 +

ωd

2
u2(1) =

ωd

2
[u′(1)]2 +

ωdr
d

2
u2(r) +

ωd

p + 1
|u(1)|p+1.

(9)

Proof. To obtain (8), multiply (1) by u(|x|) and integrate the result over
B1 \Br. To obtain (9), multiply equation (5) by rdu′(|x|) and integrate the result
from r to 1.�

Lemma 3. Given integer l � 0, there exists Dl > 0 such that for any
r ∈ (0, 1/2) and an arbitrary solution u(r) of problem (5)Ä(6) that possesses
precisely l zeros in (r, +∞) one has:

‖u‖H1
2(B1\Br) � Dl.

Proof. First, suppose that d = 2. Then, from (9) and Lemma 1,∫
B1\Br

{
d

p + 1
|u(|x|)|p+1 − d

2
u2(|x|)

}
dx � C1, (10)
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where the constant C1 > 0 does not depend on r ∈ (0, 1/2) and u. Therefore,

since
d

2
u2 � d

2(p + 1)
|u|p+1 + C2 for a constant C2 > 0 that does not depend

on u, from (10) and (8) we obtain our claim.

Now, let d � 3. Multiply (8) by
d − 2

2
and add the result to (9). Then,

∫
B1\Br

{
−u2(|x|) +

(
d

p + 1
+

2 − d

2

)
|u(|x|)|p+1

}
dx � C3,

where C3 > 0 does not depend on r ∈ (0, 1/2) and on u. Therefore, since
d

p + 1
− d − 2

2
> 0 and since again u2 � 1

2

(
d

p + 1
+

2 − d

2

)
|u|p+1 + C4,

where C4 > 0 does not depend on u, we deduce that

‖u‖Lp+1(B1\Br) � C5

for a constant C5 > 0 independent of r ∈ (0, 1/2) and of u. Now, in view of
(8), we obtain our claim.�

Lemma 4. Let q ∈ (2, p� +1], if d � 3, or q ∈ (2,∞), if d = 2, be arbitrary.
Then, the constant C > 0 in the embedding inequality

‖g‖Lq(B1\Br) � C‖g‖H1
2,r(B1\Br),

where g ∈ H1
2,r(B1\Br) is arbitrary, does not depend on sufˇciently small r > 0.

Proof. Take arbitrary r ∈ (0, 1/2) and g ∈ H1
2,r(B1 \ Br). As is known

(see [4] and, in addition, [14]), g can be chosen continuous in B1 \ Br. We
set g̃(r) = g(r) for r ∈ (0, r) and g̃(r) = g(r) if r ∈ [r, 1]. Then, there exists
C6 > 0 independent of g ∈ H1

2,r(B1 \Br) such that ‖g̃‖Lq(B1) � C6‖g̃‖H1
2,r(B1).

The latter is equivalent to

‖g̃‖Lq(Br) + ‖g‖Lq(B1\Br) � C7(‖∇g‖L2(B1\Br) + ‖g‖L2(B1\Br) + ‖g̃‖L2(Br)).

From this, since ‖g̃‖L2(Br) � C8(r)‖g̃‖Lq(Br) for a constant C8(r) > 0 that goes
to +0 as r → +0, we obtain our claim.�

Lemma 5. Consider the linear problem

−Δg = f(r) ∈ Ls(B1 \ Br) in B1 \ Br,

g
∣∣
|x|=1

= u(1), g′(r)
∣∣
r=r

= 0,

where f depends only on r, r ∈ (0, 1/2) is sufˇciently small and s > 1. As is
known, there exists C9 = C9(s) > 0 such that ‖g‖H2

s (B1\Br) � C9(‖f‖Ls(B1\Br)+
|u(1)|). In fact, C9 does not depend on sufˇciently small r > 0.
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Proof. It is clear that g depends only on r. We deˇne g̃ as earlier. Then

−Δg̃ = f̃ in B1,

g̃
∣∣
|x|=1

= u(1),

where f̃ = 0 in Br and f̃ = f in B1\Br. We have ‖g̃‖H2
s (B1) �C10(s)(‖f̃‖Ls(B1)

+|u(1)|), where the constant C10 > 0 does not depend on f̃ and r (here we used
the assumption that g′(r) = 0). The latter is equivalent to the following:

‖g‖H2
s (B1\Br) + ‖g̃‖Ls(Br) � C′

10(‖f‖Ls(B1\Br) + |u(1)|),

and we obtain our result.�

Lemma 6. Let H̃2
s (B1 \ Br) denote the subspace of the space H2

s (B1 \ Br)
that consists of radially symmetric functions g from H2

s (B1 \ Br) each of which

is equal to 0 at r = 1 and is such that g′(r) = 0. If
2
d
− 1

s
+

1
q

� 0 for

some q > s, then the constant C11 = C11(s) > 0 in the embedding inequality
‖g‖Lq(B1\Br) � C11‖g‖H2

s (B1\Br), which holds for any g ∈ H̃2
s (B1\Br), does not

depend on sufˇciently small r > 0. By analogy, if
2
d
− 1

s
> 0, then the constant

C12 = C12(s) > 0 in the embedding inequality ‖g‖C(B1\Br) � C12‖g‖H2
s (B1\Br),

that holds for any g ∈ H̃2
s (B1 \Br), does not depend on sufˇciently small r > 0.

Proof. Again, if
2
d
− 1

s
+

1
q

� 0, we have for g̃: ‖g̃‖Lq(B1) � C13‖g̃‖H2
s (B1).

But again,

‖g̃‖H2
s (B1) � ‖g̃‖Ls(Br) + ‖g‖H2

s (B1\Br) � C14(r)‖g̃‖Lq(Br) + ‖g‖H2
s (B1\Br),

where C14(r) > 0 goes to 0 as r → +0. Hence, we obtain our claim (for
sufˇciently small r > 0). The second claim can be proved by analogy.�

Now, we turn to proving Theorem 1. Let d � 3 (for d = 2 the proof can be
made by analogy). According to Lemma 3, there exists C15 > 0 such that

‖u − |u|p−1u‖Ls1(B1\Br) � C15,

where s1 =
2d

p(d − 2)
, for any r > 0 sufˇciently small and for an arbitrary

solution u(r) of equations (5) and (6) that has precisely l zeros in (r̄, +∞).
Therefore, by Lemma 5,

‖u‖H2
s1

(B1\Br) � C16(s1), (11)
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where C16(s1) > 0 does not depend on sufˇciently small r > 0. If q1 :=
2d

d − 2
>

pd

2
, which occurs when 1 < p <

4
d − 2

, then Lemma 6 and (11) imply

Theorem 1. Suppose that
2d

p(d − 2)
� d

2
.

If p =
4

d − 2
, then from (11) according to Lemma 6 the expression u − |u|p−1u

belongs to Ls2(B1 \ Br) with arbitrary large s2 > 1. Therefore, as above, the
solution u is bounded in H̃2

s2
(B1 \ Br) with arbitrary large s2 > 1. Thus, in this

case we obtain the statement we need.

Consider the case
4

d − 2
< p <

d + 2
d − 2

. In this case,

‖u‖Lq2(B1\Br) � C17(s1)‖u‖H̃2
s1

(B1\Br),

where C17(s1) > 0 does not depend on u and sufˇciently small r > 0 and
2
d

+
1
q2

− 1
s1

= 0. Observe that q2 > q1 and denote s2 = q2/p. Then, we have

‖u − |u|p−1u‖Ls2(B1\Br) � C18(s1),

where C18(s1) > 0 does not depend on sufˇciently small r > 0 and u.
Continue this iteration process. Then, we obtain the sequences qn and sn =

qn/p such that the norms of u in Lqn(B1 \Br) and in H2
sn

(B1 \Br) are bounded
uniformly with respect to all sufˇciently small r > 0. Observe that each of these
two sequences strictly increases and that the ˇrst of them does not have a ˇxed

point larger than
2d

d − 2
. Therefore, the ˇrst sequence goes to +∞ as n → ∞ so

that the values sn become unboundedly large for sufˇciently large n. Therefore,

there exists a number n0 such that
2
d
− 1

sn0

� 0, but
2
d
− 1

sn0+1
> 0. Thus, in

view of Lemma 6 and because the number n0 does not depend on r, we obtain
the statement of Theorem 1.�

3. PROOF OF THEOREM 2

A large part of auxiliary results in this section has been already published
earlier. However, we include their proofs for the completeness of our presentation.

Let us prove the existence of a solution u(r) of problem (5)Ä(6) that has
precisely a given number l of zeros in (r, +∞). Consider the Cauchy problem

−u′′ − d − 1
r

u′ + u = |u|p−1u, u = u(r), r > r, (12)

8



u(r) = A > 0, u′(r) = 0, (13)

where A > 0 is a parameter. It easily follows from identity (7) that an arbitrary
solution of problem (12)Ä(13) is bounded, hence, it is global (that is, it can
be continued on the entire half-line (r, +∞)). It can be proved completely as
in the proof of Lemma 1 that for A > 0 sufˇciently large the corresponding
solution of problem (12)Ä(13) has at least (l + 1) zeros in (r, +∞). If A ∈(

0,

(
p + 1

2

)) 1
p−1

, then by identity (7) the corresponding solution has no zeros

because in this case E(r̄) < 0 and it must be E(r) > 0 at such a zero r. Denote

Λl = {A > 0 : u(r) has no less than (l + 1) zeros in (r, +∞)}

and set Al = inf Λl. Then, A �
(

p + 1
2

) 1
p−1

.

Lemma 7. Let u(r) be a non-constant solution of problem (12)Ä(13) such
that u(r1) = 0 for some r1 > r. One has u′(r1) �= 0 so that any zero of such a
solution is isolated. Denote by r0 � r the zero of this solution u smaller than r1

and closest to r1 or set r0 = r if there is no such a zero. Then, u(r) has precisely
one point of extremum r1 in the interval [r0, r1]. In addition, |u(r1)| > 1.

Proof. First of all, u′(r1) �= 0 by the uniqueness theorem because otherwise
we would have a nontrivial solution of equation (12) taken with the initial data
u(r1) = u′(r1) = 0. Now, let r0 < r1 be two closest to each other zeros of our
solution u(r) (the case r0 = r can be considered by analogy). Suppose that there
exist two points of extremum of u(r) in [r0, r1]. Then, there exists a point of
minimum r̂ of |u(r)| in this interval. But according to the maximum principle
|u(r̂)| ∈ (0, 1] so that E(r̂) < 0 which contradicts (7).�

Denote by ul(r) the solution of problem (12)Ä(13) taken with A = Al.

Lemma 8. The solution ul(r) has at most l zeros in (r, +∞).

Proof. On the contrary, suppose that the solution ul(r) has more than l zeros
in (r, +∞). According to Lemma 7, u′

l(rk) �= 0 at any such zero rk . Therefore,
the solution of problem (12)Ä(13) taken with any A > Al sufˇciently close to Al

has more than l zeros in the same interval. This contradiction proves our claim.�
Denote by r1 < r2 < ... < rk and 0 = r0 < r1 < ... < rk−1 the zeros and

the ˇrst k points of extremum of our solution ul(r), respectively. Then,

r0 < r1 < r1 < ... < rk−1 < rk.

The proof of the following technical result was established in [15] and later
reestablished in [14] (in fact, in these two publications a slightly different problem
is considered, but the proof holds in our case).
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Lemma 9. One has k = l.
Proof. According to Lemma 8 k � l. Take an arbitrary A ∈ Λl sufˇciently

close to Al and let u(r) be the corresponding solution of problem (12)Ä(13).
Denote by s1 < s2 < ... < sl+1 and 0 = s0 < s1 < ... < sl the ˇrst (l + 1) zeros
and the points of extremum of this solution u(r) so that

s0 < s1 < s1 < s2 < ... < sl < sl+1.

Let us prove that there exists C > 0 such that

sl � C

for any A ∈ Λl sufˇciently close to Al. According to (7) E(rl) > 0, where
E(r) is introduced with (7) and corresponds here to the solution u(r), because
E(sl+1) > 0 and sl+1 > sl. By (7)

E(r) � E(sl) > 0

for any r ∈ [sl, sl).
Denote by z < z two points in (sl, sl) such that u(z) = h, where h is the

point in the interval (1, |u(sl)|) such that
1
2
h2− 1

p + 1
|h|p+1 =

1
4
− 1

2(p + 1)
> 0,

and
1
2
u2(z) − 1

p + 1
|u(z)|p+1 =

1
8
− 1

4(p + 1)
> 0. By (7), C1 � |u′(r)| � C2

for any r ∈ [z, z], where the constants C1 > 0 and C2 > 0 do not depend on the
above A ∈ Λl. Therefore,

(d − 1)

z∫
z

[u′(r)]2

r
dr � C3s

−1
l .

Hence, by (7),

|u′(r)| � C
1
2
3 s

− 1
2

l

for a constant C3 > 0 independent of A ∈ Λl sufˇciently close to Al and for any
r ∈ [sl, z]. Since |u′′(r)| � C4 in [z, sl], we deduce that

sl − sl � C5s
1
2
l + C6,

where the positive constants C4, C5 and C6 do not depend on the above A ∈ Λl.
By analogy, there exist constants C7 > 0 and C8 > 0 such that

si − si � C8 + C7s
1
2
l and si − si−1 � C8 + C7s

1
2
l , i = 1, 2, ..., l (14)
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for any A ∈ Λl sufˇciently close to Al. Now, summing estimates (14), we obtain

sl � C10 + C9s
1
2
l ,

where the constants C9 > 0 and C10 > 0 do not depend on A ∈ Λl sufˇciently
close to Al. Thus, sl is bounded uniformly with respect to A ∈ Λl sufˇciently
close to Al. In addition, |u′(sk)| � C11 for a constant C11 > 0 independent of
k = 1, 2, ..., l and of the above A ∈ Λl. Thus, indeed, k = l.�

Lemma 10. As in the proof of Lemma 9, we have that |ul(r)| achieves
a maximum at some rl > rl, where |ul(rl)| > 1. In fact |ul(r)| decreases in
(rl, +∞) and ul(+∞) = 0.

Proof. First, suppose that there exists a point of minimum r̂ of |ul(r)| in
(rl, +∞). Then, from (12) by the maximum principle |ul(r̂)| ∈ (0, 1). But then,
El(r̂) < 0, where the function E(r) = El(r) corresponds to the solution ul(r).
Therefore, from (7), any solution of problem (12)Ä(13) with A ∈ Λl sufˇciently
close to Al cannot have more than l zeros in (r, +∞), which is a contradiction.

Now, suppose that ul(r) does not have a point of minimum in (sl, +∞).
Then, this function is monotone and bounded in this interval. Therefore, its
graph has a horizontal asymptote u = c, where c is a constant. From (12), it
must be c = 0 or c = ±1. If c = ±1, then El(r) < 0 for r sufˇciently large,
therefore in this case the solution of equations (12) and (13), taken with A ∈ Λl

sufˇciently close to Al cannot have more than l zeros in (r, +∞), which is a
contradiction. Thus c = 0 and Lemma 10 is proved.�

Note that, from the arguments below Lemma 1, sup
r>r

|ul(r)| = |ul(r)|. Take

now a sequence {rn} of values of r that goes to 0 and let un
l (r) be a solution of

problem (5)Ä(6) taken with r = rn that has precisely l zeros in (rn, +∞) (here
n = 1, 2, 3, ...). Then, according to Theorem 1 there exists a constant C > 0 such
that

‖un
l ‖C(Rd\Brn ) � C

for any number n. In addition, it follows from (7) that ‖[un
l (r)]′‖C(rn,+∞) � C2.

Hence, the sequence {un
l (|x|)} has a subsequence still denoted by {un

l (|x|)}
that converges to a u(·) in C(Bb \ Ba) and weakly in H1

2 (Bb \ Ba), where
0 < a < b < +∞ are arbitrary. In addition, it is easily seen that u ∈ H1

2 (BR(0))
for any R > 0 and that u is radially symmetric. In view of (5), we can also
accept that for any 0 < a < b < +∞ the sequence {[un

l (r)]′} converges to u′(r)
in C([a, b]).

Take an arbitrary ϕ ∈ C∞
0 (Rd) equal to 0 in a neighborhood of the point

x = 0, multiply equation (1), written for un
l (| · |), by ϕ and integrate the result
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over R
d. Then, we obtain∫

Rd

{
∇un

l (|x|)∇ϕ(x) + un
l (|x|)ϕ(x) − |un

l (|x|)|p−1un
l (|x|)ϕ(x)

}
dx = 0

for all sufˇciently large n because each un
l (|x|) is a solution of equation (1) in

the domain R
d \ Brn . Take in this identity the limit n → ∞. Then, we get∫

Rd

{
∇u(|x|)∇ϕ(x) + u(|x|)ϕ(x) − |u(|x|)|p−1u(|x|)ϕ(x)

}
dx = 0.

Take the limit in the latter relation over a sequence of functions ϕm ∈ C∞
0 (Rd),

each of which is equal to zero in a neighborhood of the point x = 0, converging
in H1

2 (Rd) to an arbitrary ϕ(·) ∈ C∞
0 (Rd). Then, we obtain the equality above

for an arbitrary such a function ϕ(·). Therefore, u(| · |) is a weak solution of
equation (1) in R

d bounded in C(Rd). Hence, as is well known, u(| · |) is locally
Héolder continuous and thus, it is a smooth solution of equation (1). As in the
proved part of Theorem 2, the solution u, regarded as a function of the argument
r, has precisely l zeros in (0, +∞) and u(+∞) = 0. Theorem 2 is proved.�
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