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Representations of Guided Modes of Integrated-Optical Multilayer Thin-Film
Waveguides

We investigate the guided propagation (eigen) modes in the regular multilayer
dielectric waveguides. The waveguide involves several nonmagnetic media with real
dielectric constants, and the description of the corresponding wave equations is done
in terms of transverse and longitudinal ˇeld components in Cartesian coordinates.
In order to allow comparison with various previous approaches, the solutions of
the equations of the guided modes are expressed in terms of both real valued and
complex valued fundamental systems of solutions. For each of them we derive
the appropriate form of the dispersion relation for the TE and TM modes of three-
layer and four-layer waveguides. Stable methods of solving the resulting nonlinear
transcendental algebraic dispersion equations and related systems of linear algebraic
equations are implemented and used for the calculation of the ˇelds of the waveguide
modes.

The investigation has been performed at the Laboratory of Information Tech-
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1. INTRODUCTION

This publication represents the ˇrst stage of the consideration of the method
of comparison of waveguides as a veriˇcation way of the method of adiabatic
modes. This method was published in [1Ä9] with applications to solving some
speciˇc problems. They presented the results of comparing the results obtained by
the method of adiabatic modes with the results of alternative methods of solving
speciˇc problems [1Ä9].

We will consider the material medium, consisting of dielectric subregions that
ˇll in together all three-dimensional space. That means that the dielectric constants
of the subdomains are different and real, and the permeability everywhere is equal
to the permeability of vacuum.

We consider the environment with zero charges and currents. Scalar Max-
well's equations can be obtained from the vector equations. The boundary condi-
tions for the normal components can also be obtained from the boundary condi-
tions for the tangential component (see, [10Ä20]). Material equations in this case
we believe to be linear. Thus, the electromagnetic ˇeld in a space ˇlled with
dielectrics in the Gaussian system of units is described by the equations:

rotE = −1
c

∂B
∂t

, rotH =
1
c

∂D
∂t

, (1.1)

where D = εE, B = μH, E, H are vectors of the electric and magnetic ˇelds,
D Å electric displacement vector, B Å the vector of magnetic induction, c Å
the speed of electromagnetic waves in a vacuum. In this case, the boundary
conditions are valid:

Hτ |1 = Hτ |2 , Eτ |1 = Eτ |2 , (1.2)

and the asymptotic boundary conditions at inˇnity are:

‖E‖ −−−−→
|x|→∞

0, ‖H‖ −−−−→
|x|→∞

0, (1.3)

that ensures the uniqueness of solutions of (1.1)Ä(1.3).
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Fig. 1. Cross section of an integrated-optical structure is formed by a regular three-layer
waveguide (left panel) and a smoothly irregular four-layer waveguide (on the right side of
the ˇgure). The three-layered waveguide is formed by 1Ä3 media, and four-layer Å by
1Ä4 media. On the ˇgure are indicated by: 1 Å framing the environment or cover layer
(air) with a refractive index nc, 2 Å waveguide layer with a refractive index nf , 3 Å
substrate with a refractive index ns, and 4 Å the second waveguide layer with a refractive
index nl; d is a thickness of the ˇrst waveguide layer of integrated-optical structure; h Å
the thickness of the second waveguide layer

The method of adiabatic modes is to describe the individual guided modes
of irregular integrated optical waveguide (see Fig. 1) as:

Ẽ(x, y, z, t) = exp (iωt)
Ev(x; y, z)√

β(y, z)
exp

⎡
⎣−ik0

y,z∫
β(y′, z′) ds (y′, z′)

⎤
⎦ ,

H̃(x, y, z, t) = exp (iωt)
Hv(x; y, z)√

β(y, z)
exp

⎡
⎣−ik0

y,z∫
β(y′, z′) ds (y′, z′)

⎤
⎦ ,

(1.4)

where β(y, z) =
√

β2
y(y, z) + β2

z (y, z) is a length (norm) of two-dimensional vec-

tor ˇeld β(y, z) = (βy(y, z), βz(y, z))t, composed of partial derivatives of eikonal
βy(y, z) = ∂φ/∂y, βz(y, z) = ∂φ/∂z, as well as βy = ky/k0, βz = kz/k0. The

eikonal (phase) φ(y, z) = k0

y,z∫
β(y′, z′) ds (y′, z′) is calculated by integrating

along the rays, after the dispersion relation and the isolated computation of rays
and wave fronts in the horizontal plane [1, 2, 9], where ds =

√
dy2 + dz2 is a

ray length.

Substituting (1.4) into Maxwell's equations (1.1) leads to a system of ordinary
differential equations of second order for the longitudinal components of vector-
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functions Ev(x; y, z) and Hv(x; y, z):

∂2Ez

∂x2
+ χ2Ez = −pyχ

2
z

∂

∂y

(
1
χ2

z

)
Ez − 1

iωε

(
χ2

zpz
∂

∂y

(
1
χ2

z

))
∂Hz

∂x
(1.5)

for quasi TM modes and

∂2Hz

∂x2
+ χ2Hz = −pyχ

2
z

∂

∂y

(
1
χ2

z

)
Hz +

1
iωμ

(
χ2

zpz
∂

∂y

(
1
χ2

z

))
∂Ez

∂x
(1.6)

for quasi-TE modes.
For transverse and vertical components of the vector-valued functions

Ev(x; y, z) and Hv(x; y, z) we thus obtain the analytical expressions in terms
of Ez , Hz and their derivatives with respect to the vertical argument x:

χ2
zHy =

∂2Hz

∂z∂y
− ε

∂2Ez

∂t∂x
and χ2

zEx =
∂2Ez

∂z∂x
− μ

∂2Hz

∂t∂y
(1.7)

for quasi-TM modes and

χ2
zHx =

∂2Hz

∂z∂x
+ ε

∂2Ez

∂t∂y
and χ2

zEy =
∂2Ez

∂z∂y
+ μ

∂2Hz

∂t∂x
(1.8)

for quasi-TE modes. Here we use the notations χ2
z = k2

0εμ+pzpz+∂pz/∂z, χ2 =
χ2

z+pypy+∂py/∂y, py = −ik0βy−(2β)−1∂β/∂y, pz = −ik0βz−(2β)−1∂β/∂z.
In the case of a smoothly irregular integrated optical waveguide, ®the condition
of quasi-classicality¯ is performed [1, 2, 9]

δ = max |∇y, zβ| (k0β
2)−1 � 1, (1.9)

that allows us to solve the problem (1.5)Ä(1.8) by asymptotic method in the
dimensionless small parameter δ.

The study of approximation of zero and ˇrst order problem (1.5)Ä(1.8), and
comparison of our approximations with the models of other authors describing
smoothly irregular waveguides [6, 8, 9], have led us to the formation of a hierarchy
of matrix models describing the propagation of guided modes in a smoothly irreg-
ular waveguides and to the necessity of their detailed study. The most inaccurate
model of this hierarchy is the matrix model of comparison waveguides [6, 8, 9]. In
fact it is a model of regular planar multilayer thin ˇlm waveguides with variable
thickness of the layers. To establish the essential characteristics of the models of
propagating modes and other objects of the study, it is sufˇcient to study details
of the three- and four-layer planar dielectric waveguides.

In various books [11Ä18] and papers [21Ä37] for integrated optics various
forms of reducing Maxwell's equations to different systems of ordinary differ-
ential equations for TE and TM modes are used. At the same time, various
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forms of the conditions for the solvability of these ordinary differential equations,
called dispersion relations, are used. Bearing in mind the subsequent using of the
model of regular planar multilayer thin-ˇlm dielectric waveguides with variable
thickness of the layers to describe irregular waveguides, as well as further com-
parison of obtained in their framework analytical and numerical results with those
of other authors, we consider here all possible systems of ordinary differential
equations for TE and TM modes, as well as all forms of the dispersion equations.
After that, we show that every expression of [11Ä37] coincides with one of our
expressions, and show by numerical calculations that different forms of expres-
sions describe quantitatively equally guided (waveguide) modes of regular planar
multilayer thin-ˇlm dielectric waveguides with variable layer thicknesses.

2. THE REDUCED ORDINARY DIFFERENTIAL EQUATIONS
FOR GUIDED MODES

We shall describe the electromagnetic ˇeld with complex amplitudes to sim-
plify the calculations [1]. We will consider the material medium, consisting of
dielectric subregions that ˇll in together all three-dimensional space. The latter
means, that the dielectric constants of the subdomains are different and real, and
the permeability is everywhere equal to the permeability of vacuum. It follows
that in the absence of external currents and charges, induced currents and charges
are equal to zero.

In equations (1.1): ε = εrε0 is the permittivity of the medium; μ = μ rμ0 is
the permeability of the medium; εr, μr are relative permittivity and permeability,
respectively (in the nonmagnetic medium μr = 1 is assumed); ε0 and μ0 are
dielectric and magnetic constants of vacuum, respectively; ω

√
με = nk0, n

is the index of refraction of the medium (here and further of the layer under
consideration in multilayered dielectric structure); k0 = 2π/λ0, ω is the cyclic
frequency of the electromagnetic ˇeld; E, H are the vectors of the electric and
magnetic ˇelds.

Assume also that all subdomains are endless and are limited by planes parallel
to the plane yOz, so that further ε = ε(x), μ = 1 (see Fig. 2).

Waveguide is formed by media 1Ä3. The ˇgure indications are: 1 is a
framing medium or cover layer (air) with refractive index nc; 2 is a waveguide
layer (ˇlm) with a refractive index nf ; 3 is a substrate with refractive index ns;
d is the thickness of the waveguide layer. Film and substrate are homogeneous
in the x and z directions, the substrate is usually much thicker than the ˇlm.

We consider the propagation of monochromatic polarized electromagnetic ra-
diation in the above three-layer dielectric regular system (see Fig. 2) (assuming
an energy source located inˇnitely far away from the area under consideration).
Under the conditions of the transverse resonance (also known as the quanti-
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Fig. 2. Scheme of a �at three-layer dielectric waveguide

zation conditions of BohrÄSommerfeld [11]), the dielectric system is a regular
three-layer dielectric waveguide capable of supporting guided waveguide modes.
These conditions are reduced to the implementation of the relevant dispersion
relations in the early work on integrated optics called the characteristic equations
(see [11Ä17]).

Maxwell's equations in Cartesian coordinates in the GHS are as follows:

∂Hz

∂y
− ∂Hy

∂z
=

ε

c

∂Ex

∂t
,

∂Ez

∂y
− ∂Ey

∂z
= −μ

c

∂Hx

∂t
,

∂Hx

∂z
− ∂Hz

∂x
=

ε

c

∂Ey

∂t
,

∂Ex

∂z
− ∂Ez

∂x
= −μ

c

∂Hy

∂t
,

∂Hy

∂x
− ∂Hx

∂y
=

ε

c

∂Ez

∂t
,

∂Ey

∂x
− ∂Ex

∂y
= −μ

c

∂Hz

∂t
.

(2.1)

We seek after solutions of equations (2.1) of the class of inˇnite (twice) differ-
entiable functions of four variables, harmonically time-dependent and invariant

under translation along the axis Oy, so that they satisfy relations
∂

∂y
≡ 0,

∂Hi

∂t
= −iωHi,

∂Ej

∂t
= −iωEj . Consideration of these relationships reduces the

5



system (2.1) as follows:

−∂Hy

∂z
= − iωε

c
Ex, −∂Ey

∂z
=

iωμ

c
Hx,

∂Hx

∂z
− ∂Hz

∂x
= − iωε

c
Ey ,

∂Ex

∂z
− ∂Ez

∂x
=

iωμ

c
Hy, (2.2)

∂Hy

∂x
= − iωε

c
Ez ,

∂Ey

∂x
=

iωμ

c
Hz .

The system of equations (2) splits into two independent subsystems for two
different polarizations (they correspond to two types of guided modes: TE modes
and TM modes). In view of k0 = ω

c , the subsystems are as follows:

∂Ex

∂z
− ∂Ez

∂x
= ik0μHy, (2.3)

Ex =
1

ik0ε

∂Hy

∂z
, (2.4)

Ez = − 1
ik0ε

∂Hy

∂x
(2.5)

and
∂Hx

∂z
− ∂Hz

∂x
= ik0εEy, (2.6)

Hx = − 1
ik0μ

∂Ey

∂z
, (2.7)

Hz =
1

ik0μ

∂Ey

∂x
. (2.8)

Substitution of (2.4) and (2.5) into (2.3) leads them to the form of Helmholtz
equation:

1
ik0

∂

∂z

(
1
ε

∂Hy

∂z

)
+

1
ik0

∂

∂x

(
1
ε

∂Hy

∂x

)
= ik0μHy. (2.9)

Similarly, substitution of (2.7) and (2.8) into (2.6) leads them to the form of
Helmholtz equation:

− 1
ik0μ

∂2Ey

∂z2
− 1

ik0μ

∂2Ey

∂x2
= −ik0εEy. (2.10)

We transform two equations to the standard form:(
∂2

∂z2
+

∂2

∂x2
+ k2

0εμ

)
Ey = 0, (2.11)
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(
∂2

∂z2
+ ε

∂

∂x

(
1
ε

∂

∂x

)
+ k2

0εμ

)
Hy = 0. (2.12)

Equation (2.11) is obtained from the wave equation for TE mode with the leading
component Ey, while Eq. (2.12) is obtained from the wave equation for TM
mode with the leading component Hy, so in the theory of planar waveguides
(see [11Ä17]), both of these equations are usually called the wave equations.

The method of separation of variables leads to a factorization of solutions,
resulting in:

Ey(x, y, z, t) = Ey(x) exp{i(ω t ± k0β z)}. (2.13)

Similarly, the solution of Eq. (2.12) has the form:

Hy(x, y, z, t) = Hy(x) exp{i(ω t ± k0β z)}. (2.14)

In this case, from (2.7) and (2.8) we get:

Ex =
1

ik0ε

∂Hy

∂z
=

ik0β

ik0ε
Hy =

β

ε
Hy, (2.15)

Ez = − 1
ik0ε

∂Hy

∂x
. (2.16)

Similarly, from (2.4) and (2.5) we get:

Hx = − ik0β

ik0μ
Ey = −β

μ
Ey, (2.17)

Hz =
1

ik0μ

dEy

dx
. (2.18)

For the solutions of the form (2.13), (2.14), Eqs. (2.11) and (2.12) take the form:

d2Ey

dx2
+ k2

0

(
εμ − β2

)
Ey (x) = 0, (2.19)

ε
d

dx

(
1
ε

dHy

dx

)
+ k2

0

(
εμ − β2

)
Hy (x) = 0. (2.20)

Thus, Eqs. (2.19) and (2.20) for the transverse components Ey and Hy determine
the TE- and TM-polarized solutions of Maxwell's Eqs. (2.1). Expressions (2.16)
and (2.18) deˇne a second pair of tangential components required for the formula-
tion of boundary conditions (1.2). Expressions (2.15) and (2.17) will be required
to write the energy conservation law.

Equivalent reduction of Maxwell's Eqs. (2.1) to a pair of equations for the
longitudinal components Ez and Hz, can be obtained as follows. Let us represent
the solutions of the form

E(x, y, z, t) = Ev(x) exp {i(ω t ± k0β z)}, (2.21)
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H(x, y, z, t) = Hv(x) exp {i(ω t ± k0β z)} (2.22)

in the form:
E = �E⊥ + Ez�ez, H = �H⊥ + Hz�ez.

Let us represent also a three-dimensional operator �∇ in the form:

�∇ = �∇⊥ + �ez
∂

∂z
= �∇⊥ − ik0β�ez ,

�∇⊥ = �ex
∂

∂x
+ �ey

∂

∂y
= �ex

∂

∂x
.

(2.23)

Let us put χ2 = k2
0(εμ − β2), then taking into account the condition ∂/∂y ≡ 0,

the system of Maxwell's equations after additional application of �∇× splits into
two subsystems. Subsystem for the TM modes, recorded in the longitudinal
components, takes the form:

�∇2
⊥Ez + χ2Ez = 0, Hz ≡ 0,

�H⊥ =
iωε

χ2
[(�∇⊥Ez) × �ez],

�E⊥ = −
(

ik0β

χ2

)
�∇⊥Ez .

Subsystem for the TE modes, recorded in the longitudinal components, takes the
form:

�∇2
⊥Hz + χ2Hz = 0, Ez ≡ 0,

�H⊥ = −
(

ik0β

χ2

)
�∇⊥Hz ,

�E⊥ = − iωμ

χ2
[(�∇⊥Hz) × �ez].

If we decompose longitudinal and transverse components further by coordinates,
the above subsystems of equations turn to the following form:
for TM modes

d2Ez

dx2
+ k2

0(εμ − β2)Ez = 0, Hz = 0,

Ex = −
(

ik0β

χ2

)
dEz

dx
, Ey = 0, (2.24)

Hy = −
(

iωε

χ2

)
dEz

dx
, Hx = 0,
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and for TE modes

d2Hz

dx2
+ k2

0(εμ − β2)Hz = 0, Ez = 0,

Hx = −
(

ik0β

χ2

)
dHz

dx
, Hy = 0, (2.25)

Ey =
(

iωμ

χ2

)
dHz

dx
, Ex = 0.

3. THE METHOD OF SOLUTION OF THE REDUCED ODE
FOR TE AND TM MODES OF DECOMPOSITION

OF THE FUNDAMENTAL SYSTEMS OF SOLUTIONS

Shown in Fig. 2 stratiˇed along the axis Ox the dielectric medium admits
a square integrable distributions Ej(x), Hj(x); j = x, y, z if the asymptotic
behavior of these distributions tends to zero with the distance along the axis Ox
of the waveguide layers tending to inˇnity. For this purpose it is necessary that
the dielectric constants of the plates Å the substrate εs and the covering layer
εc Å were lower than dielectric constants εf1 and εfm of the adjacent waveguide
layers, in case the structure consists of the m waveguide layers and two parietal.
In this case, the internal waveguide layers may have a dielectric constant not
higher than εs and εc assuming inside antiwaveguide modes.

Comment. Equations (2.19) and (2.20) for the transverse components, and
similar Eqs. (2.24) and (2.25) for the longitudinal components, are equal to
(within signs) one-dimensional quantum mechanical Schréodinger equation for the
potential well of stepwise or for a system of potential wells separated by an
internal barrier (analog to antiwaveguide layer). Function of potential energy for
such a problem has a mirror symmetric form for the distribution of dielectric
constants of the layers of the planar waveguide.

Solutions (2.21) and (2.22) describe the forward and backward waves prop-
agating along the axis Oz with the speed β times less than the speed of light.
Square-integrable distributions Ej(x), Hj(x); j = x, y, z are solutions of the
Eqs. (2.19) and (2.20) or Eqs. (2.24) and (2.25), corresponding to the discrete
spectrum of values β that lie in the range of ns =

√
εs (and while ns � nc and

εs � εc) to a maximal value nmax = max
1�k�m

nfk =
√

εmax, εmax = max
1�k�m

εfk.

For each ˇxed βj we introduce the notation γj
c = k0

√
β2

j − εc, γj
s = k0

√
β2

j − εs,

as well as γj
k = k0

√
β2

j − εfk for those sectors that have β2
j − εfk � 0. If

β2
j − εfk � 0, we introduce the notation χj

k = k0

√
εfk − β2

j .
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3.1. Expressions for the TE Modes Through the Transverse Electric Field
Component. Let us write explicit expressions of the components Ek

y of the
electric ˇelds of the TE modes with a coefˇcient of phase delay βj through
the general solution of Eq. (2.19) for all dielectric layers with permittivities
εc, εf1, . . . , εfk, . . . , εfm, εs, as well as explicit expressions of the components
Hk

z of the magnetic ˇelds of the TE modes with the help of Eq. (2.18), necessary
to record the tangential boundary conditions at the interfaces of layers.

In those layers, in which β2
j − εfk � 0, the general solution of Eq. (2.19) has

the form:
Ej

k = A+
k exp {γj

kx} + A−
k exp {−γj

kx}. (3.1)

In the parietal layers of the overall solution, only those terms should be kept,
which satisfy the asymptotic boundary conditions at inˇnity (1.3), so that

Ej
s = A+

s exp {γj
sx}, Ej

c = A−
c exp {−γj

cx}. (3.2)

In those layers, in which β2
j − εfk � 0, the general solution of Eq. (2.19) has the

form:
Ej

k = A+
k exp {iχj

kx} + A−
k exp {−iχj

kx}. (3.3)

Respectively, in those layers in which β2
j − εfk � 0, the components Hk

z have
the form:

Hj
k =

γj
k

ik0

(
A+

k exp {γj
kx} − A−

k exp {−γj
kx}

)
. (3.4)

In the parietal layers the expressions of the components Hz have the form:

Hj
s =

γj
s

ik0
A+

s exp {γj
sx}, Hj

c = − γj
c

ik0
A−

c exp {−γj
cx}. (3.5)

In those layers, in which β2
j − εfk � 0, expressions of the components Hk

z are
as follows:

Hj
k =

χj
k

k0

(
A+

k exp {iχj
kx} − A−

k exp {−iχj
kx}

)
. (3.6)

In addition to providing a general solution of (2.19) in the form of (3.3) one can
use the other two equivalent representations:

Ej
k = Ac

k cos {χj
kx} + As

k sin {χj
kx}, (3.7)

then the expressions of the components Hk
z have the form:

Hj
k = − χj

k

ik0

(
Ac

k sin {χj
kx} − As

k cos {χj
kx}

)
. (3.8)
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And also if
Ej

k = Ck cos {χj
kx + φk}, (3.9)

then the expressions of the components Hk
z have the form:

Hj
k = − χj

k

ik0
Ck sin {χj

kx + φk}. (3.10)

Using expressions (3.7) and (3.8) allows the numerical calculations for dielec-
tric waveguides using real arithmetic, which will be seen later. Using expres-
sions (3.9) and (3.10) allows us to write dispersion relations in the most wide-
spread trigonometric form.

3.2. Expressions for TM Modes through the Transverse Magnetic Field
Component. We now write the explicit expressions of the components Hk

y of
the magnetic ˇelds of TM modes with a coefˇcient of phase delay βj through
the general solution of Eq. (2.20) for all dielectric layers with permittivities
εc, εf1, . . . , εfk, . . . , εfm, εs, as well as explicit expressions of the components
of the electric ˇelds of TM modes using Eq. (2.16), necessary to record the
tangential boundary conditions at the interfaces.

In those layers, in which β2
j − εfk � 0, the general solution of Eq. (2.20) has

the form:
Hj

k = B+
k exp {γj

kx} + B−
k exp {−γj

kx}. (3.11)

In the parietal layers of the overall solution, only those terms should be kept,
which satisfy the asymptotic boundary conditions at inˇnity (1.3), so that

Hj
s = B+

s exp {γj
sx}, Hj

c = B−
c exp {−γj

cx}. (3.12)

In those layers, in which β2
j − εfk � 0, the general solution of equation (2.20)

has the form:
Hj

k = B+
k exp {iχj

kx} + B−
k exp {−iχj

kx}. (3.13)

Accordingly, in those layers, in which β2
j − εfk � 0, the expressions of the

components Ek
z are as follows:

Ej
k = − γj

k

ik0εk

(
B+

k exp {γj
kx} − B−

k exp {−γj
kx}

)
. (3.14)

In the parietal layers the expressions of the components Ez are as follows:

Ej
s = − γj

s

ik0εs
B+

s exp
{
γj

sx
}

, Ej
c =

γj
c

ik0εc
B−

c exp {−γj
cx}. (3.15)

In those layers, in which β2
j − εfk � 0, expressions of the components Ek

z are as
follows:

Ej
k = − χj

k

k0εk

(
B+

k exp {iχj
kx} − B−

k exp {−iχj
kx}

)
. (3.16)

11



In addition to providing a general solution of (2.20) in the form of (3.13), one
can use the other two equivalent representations:

Hj
k = Bc

k cos {χj
kx} + Bs

k sin {χj
kx}, (3.17)

then the expressions of the components Ek
z are as follows:

Ej
k =

χj
k

ik0εk

(
Bc

k sin {χj
kx} − Bs

k cos {χj
kx}

)
, (3.18)

and also if
Hj

k = Dk cos {χj
kx + ψk}, (3.19)

then the expressions of the components Ek
z are as follows:

Ej
k =

χj
k

ik0εk
Dk sin {χj

kx + ψk}. (3.20)

Using expressions (3.17) and (3.18) allows the numerical calculations for di-
electric waveguides using real arithmetic, which will be seen later. Using ex-
pressions (3.19) and (3.20) allows us to write dispersion relations in the most
widespread trigonometric form.

3.3. Expressions for the TE Modes in Terms of Longitudinal Magnetic
Field Component. In the same way as was done in 3.2. for the ˇelds of TM
modes through the transverse components of magnetic ˇelds Hk

y , write explicit

expressions for the ˇelds of TE modes in terms of longitudinal components H̃k
z

of magnetic ˇelds of the general solution of equation (2.25) with a coefˇcient of
phase delay βj for the layers with permittivities εc, εf1, . . . , εfk, . . . , εfm, εs, as
well as explicit expressions of the components Ẽk

y of electric ˇelds.

In those layers, where β2
j − εfk � 0, a common solution H̃k

z to Eq. (2.25)
has the form:

H̃j
k = B̃+

k exp {γj
kx} + B̃−

k exp {−γj
kx}. (3.21)

In the parietal layers the solutions have the form:

H̃j
s = B̃+

s exp {γj
sx}, H̃j

c = B̃−
c exp {−γj

cx}. (3.22)

In those layers, in which β2
j − εfk � 0, the general solution of Eq. (2.25) has the

form:
H̃j

k = B̃+
k exp {iχj

kx} + B̃−
k exp {−iχj

kx}. (3.23)

Accordingly, in those layers, in which β2
j − εfk � 0, the expressions the compo-

nents Ẽk
y =

(
iωμk

χ2
k

)
dH̃k

z

dx
have the form:

Ẽj
k = iω

(
μk

γj
k

) (
B̃+

k exp {γj
kx} − B̃−

k exp {−γj
kx}

)
. (3.24)
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In the parietal layers the components Ẽj
y have the form:

Ẽj
s = −iω

(
μs

γj
s

)
B̃+

s exp {γj
sx}, Ẽj

c = iω

(
μc

γj
c

)
B̃−

c exp {−γj
cx}. (3.25)

In those layers, in which β2
j − εfk � 0, expressions of the components Ẽj

y are as
follows:

Ẽj
k = −ω

(
μk

χj
k

) (
B̃+

k exp {iχj
kx} − B̃−

k exp {−iχj
kx}

)
. (3.26)

General solutions of Eq. (2.25) for the components H̃k
z can also be represented

as (3.18):
H̃j

k = B̃c
k cos {χj

kx} + B̃s
k sin {χj

kx}, (3.27)

then the expressions for the components Ẽj
y take the form:

Ẽj
k = −iω

(
μk

χj
k

)(
B̃c

k sin {χj
kx} − B̃s

k cos {χj
kx}

)
(3.28)

And also if
H̃j

k = D̃k cos {χj
kx + ψ̃k}, (3.29)

then the expressions for the components Ẽj
y take the form:

Ẽj
k = −iω

(
μk

χj
k

)
D̃k sin {χj

kx + ψ̃k}. (3.30)

3.4. Expressions for TM Modes in Terms of Longitudinal Electric Field
Components. In the same way as was done in Subsec. 3.1 for the ˇelds of TE
modes by transverse components Ek

y , we write explicit expressions for the ˇelds

of TM modes in terms of longitudinal components Ẽk
z of electric ˇelds with a

coefˇcient of phase delay βj of the general solutions of (2.24) for layers with
permittivities εc, εf1, . . . , εfk, . . . , εfm, εs, as well as explicit expressions of the
components H̃k

y of magnetic ˇelds.

In those layers in which β2
j − εfk � 0, common solution Ek

z to Eq. (2.24)
has the form:

Ẽj
k = Ã+

k exp {γj
kx} + Ã−

k exp {−γj
kx}. (3.31)

In the parietal layers, the solutions have the form:

Ẽj
s = Ã+

s exp {γj
sx}, Ẽj

c = Ã−
c exp {−γj

cx}. (3.32)
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In those layers, in which β2
j − εfk � 0, the general solution of Eq. (2.24) has the

form:

Ẽj
k = Ã+

k exp {iχj
kx} + Ã−

k exp {−iχj
kx}. (3.33)

Accordingly, in those layers, in which β2
j − εfk � 0, the expressions of the

components H̃k
y = −

(
iωεk

χ2
k

)
dẼk

z

dx
are as follows:

H̃j
k = −ik0

(
εkγj

k

χ2
k

) (
Ã+

k exp {γj
kx} − Ã−

k exp {−γj
kx}

)
. (3.34)

In the parietal layers, the expressions of the components H̃j
y are as follows:

H̃j
s = −ik0

(
εsγ

j
s

χ2
s

)
Ã+

s exp {γj
sx}, H̃j

c = ik0

(
εcγ

j
c

χ2
c

)
Ã−

c exp {−γj
cx}.
(3.35)

In those layers, in which β2
j − εfk � 0, expressions of the components H̃j

y are as
follows:

H̃j
k = k0

(
εk

χj
k

)(
Ã+

k exp {iχj
kx} − Ã−

k exp {−iχj
kx}

)
. (3.36)

General solutions of Eq. (2.24) for the components Ẽk
z can be represented as (3.7):

Ẽj
k = Ãc

k cos {χj
kx} + Ãs

k sin {χj
kx}, (3.37)

then the expressions for the components H̃k
y take the form:

H̃j
k = iω

(
εk

χj
k

) (
Ãc

k sin {χj
kx} − Ãs

k cos {χj
kx}

)
. (3.38)

And also if

Ẽj
k = C̃k cos {χj

kx + φ̃k}, (3.39)

then the expressions for the components H̃k
y take the form:

H̃j
k = iω

(
εk

χj
k

)
C̃k sin {χj

kx + φ̃k}. (3.40)
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4. BOUNDARY EQUATIONS FOR THREE-LAYER WAVEGUIDES

4.1. TE Modes, Expressed through the Transverse Component Ey . The
boundaries between layers of three-layer planar waveguide cross the axis Ox at a
point x = a1 between the substrate and the waveguide layer and at a point x = a2

between the waveguide layer and covering layer. On these boundaries for the
TE mode, which is expressed through a transverse component Ey, the boundary
conditions have the form: Eys(a1) = Eyf (a1) and Hzs(a1) = Hzf (a1) at a point
x = a1 and also Eyf (a2) = Eyc(a2) and Hzf (a2) = Hzc(a2) at a point x = a2.
Let us express them in terms of amplitude coefˇcients A±

k :

A+
s exp {γj

sa1} = A+
1 exp {iχj

1a1} + A−
1 exp {−iχj

1a1},

γj
s

ik0
A+

s exp {γj
sa1} =

χj
1

k0

(
A+

1 exp {iχj
1a1} − A−

1 exp {−iχj
1a1}

)
,

A+
1 exp {iχj

1a2} + A−
1 exp {−iχj

1a2} = A−
c exp {−γj

ca2},
χj

1

k0

(
A+

1 exp {iχj
1a2} − A−

1 exp {−iχj
1a2}

)
= − γj

c

ik0
A−

c exp {−γj
ca2}.

The result is a homogeneous system of linear algebraic equations (SLAE) M⊥4
TE(β)

for the unknown amplitude coefˇcients A+
s , A+

1 , A+
1 , A−

c , whose solution gives
us its values in the expressions (3.2), (3.3) and (3.5), (3.6). Notation M⊥4

TE(β)
emphasizes that the system is obtained from the boundary equations for the TE
mode, which is expressed through the transverse (⊥) component Ey , has dimen-
sion 4 and its matrix elements depend on β. Homogeneous SLAE is nontrivial
solvable under the condition of vanishing of its determinant, this condition in
integrated optics is called the dispersion relation. The dispersion relation gives
the dependence of the phase retardation β of the thickness of the waveguide layer
d = a2 − a1 (see Fig. 3).

If, instead of expressions (3.3) and (3.6), we use the expressions (3.7) and
(3.8), the boundary conditions for the tangential components take the form:

A+
s exp {γj

sa1} = Ac
1 cos {χj

1a1} + As
1 sin {χj

1a1},

γj
s

ik0
A+

s exp {γj
sa1} = − χj

1

ik0

(
Ac

1 sin {χj
1a1} − As

1 cos {χj
1a1}

)
,

Ac
1 cos {χj

1a2} + As
1 sin {χj

1a2} = A−
c exp {−γj

ca2},

− χj
1

ik0

(
Ac

1 sin {χj
1a2} − As

1 cos {χj
1a2}

)
= − γj

c

ik0
A−

c exp {−γj
ca2}.

We have obtained a homogeneous SLAE M⊥4Re
TE (β) with real matrix elements,

therefore, if the condition det {M⊥4Re
TE (β)} = 0 is fulˇlled, one can ˇnd its

real-valued solution A+
s , Ac

1, As
1, A−

c . The dispersion equation for this is a real
transcendental algebraic equation for β, its solutions are presented on Fig. 4.
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Fig. 3. Graphs of the dispersion relations for the ˇrst ˇve TE modes of a three-layer
polystyrene waveguide obtained by complex-valued functions of the fundamental system
of solutions

Fig. 4. Graphs of the dispersion relations for the ˇrst ˇve TE modes of a three-layer
polystyrene waveguide obtained using real-valued functions of the fundamental system of
solutions

4.2. TM Modes, Expressed through the Transverse Component Hy . At
the same boundaries for the TM mode, which is expressed through a trans-
verse component Hy, the boundary conditions are fulˇlled: Hys(a1) = Hyf(a1)
and Ezs(a1) = Ezf (a1) at a point x = a1 and also Hyf (a2) = Hyc(a2) and
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Ezf (a2) = Ezc(a2) at a point x = a2. Let us express them in terms of amplitude
coefˇcients B±

k :

B+
s exp {γj

sa1} = B+
1 exp {iχj

1a1} + B−
1 exp {−iχj

1a1},

γj
s

ik0εs
B+

s exp {γj
sa1} =

χj
1

k0ε1

(
B+

1 exp {iχj
1a1} − B−

1 exp {−iχj
1a1}

)
,

B+
1 exp {iχj

1a2} + B−
1 exp {−iχj

1a2} = B−
c exp {−γj

ca2},

χj
1

k0ε1

(
B+

1 exp {iχj
1a2} − B−

1 exp {−iχj
1a2}

)
= − γj

c

ik0εc
B−

c exp {−γj
ca2}.

The result is a homogeneous system of linear algebraic equations (SLAE)
M⊥4

TM (β) for the unknown amplitude coefˇcients B+
s , B+

1 , B+
1 , B−

c , whose
solution gives us its values in the expressions (3.12), (3.13) and (3.15), (3.16).
Notation M⊥4

TM (β) emphasizes that the system is obtained from the boundary
equations for the TM mode, which is expressed through the transverse (⊥) com-
ponent Hy, has dimension 4 and its matrix elements depend on β. Homogeneous
SLAE is nontrivial solvable under the condition of vanishing of its determinant,
this condition in integrated optics is called the dispersion relation. The dispersion
relation gives the dependence of the phase retardation β of the thickness of the
waveguide layer d = a2 − a1.

Fig. 5. Graphs of the dispersion relations for the ˇrst ˇve TM modes of a three-layer
polystyrene waveguide obtained using complex-valued functions of the fundamental system
of solutions
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If, instead of expressions (3.13) and (3.16) we use the expressions (3.17)
and (3.18), the boundary conditions for the tangential components take the form:

B+
s exp {γj

sa1} = Bc
1 cos {χj

1a1} + Bs
1 sin {χj

1a1},

− γj
s

ik0εs
B+

s exp {γj
sa1} =

χj
1

ik0ε1

(
Bc

1 sin {χj
1a1} − Bs

1 cos {χj
1a1}

)
,

Bc
1 cos {χj

1a2} + Bs
1 sin {χj

1a2} = B−
c exp {−γj

ca2},

χj
1

ik0ε1

(
Bc

1 sin {χj
1a2} − Bs

1 cos {χj
1a2}

)
=

γj
c

ik0εc
B−

c exp {−γj
ca2}.

We have obtained a homogeneous SLAE M⊥4Re
TM (β) with real matrix elements,

therefore, if the condition det{M⊥4Re
TM (β)} = 0 is fulˇlled, one can ˇnd its real-

valued solution B+
s , Bc

1, Bs
1 , B−

c . The dispersion equation for this is a real
transcendental algebraic equation for β.

Fig. 6. Graphs of the dispersion relations for the ˇrst ˇve TM modes of a three-layer
polystyrene waveguide obtained using real-valued functions of the fundamental system of
solutions

4.3. TE Modes, Expressed in Terms of the Longitudinal Component Hz .
The boundaries between layers of three-layer planar waveguide still cross the axis
Ox at a point x = a1 between the substrate and the waveguide layer and at a point
x = a2 between the waveguide layer and cladding layer. On these boundaries
for the TE mode, which is expressed through a longitudinal component H̃z, the
boundary conditions have the form: H̃zs(a1) = H̃zf (a1) and Ẽys(a1) = Ẽyf (a1)
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at a point x = a1 and also H̃zf (a2) = H̃zc(a2) and Ẽyf (a2) = Ẽyc(a2) at a
point x = a2. Let us express them in terms of amplitude coefˇcients B̃±

k :

B̃+
s exp {γj

sa1} = B̃+
1 exp {iχj

1a1} + B̃−
1 exp {−iχj

1a1},

−iω

(
μs

γj
s

)
B̃+

s exp {γj
sa1} = −ω

(
μ1

χj
1

)
(B̃+

1 exp {iχj
1a1}−B̃−

1 exp {−iχj
1a1}),

B̃+
1 exp {iχj

1a2} + B̃−
1 exp {−iχj

1a2} = B̃−
c exp {−γj

ca2},

−ω

(
μ1

χj
1

)
(B̃+

1 exp {iχj
1a2} − B̃−

1 exp {−iχj
1a2}) = iω

(
μc

γj
c

)
B̃−

c exp {−γj
ca2}.

The result is a homogeneous system of linear algebraic equations (SLAE)

M̃‖4
TM (β) for the unknown amplitude coefˇcients B̃+

s , B̃+
1 , B̃+

1 , B̃−
c , whose

solution gives us its values in the expressions (3.21)Ä(3.23) and (3.24)Ä(3.26).

Notation M̃‖4
TM (β) emphasizes that the system is obtained from the boundary

equations for the TM mode, which is expressed through the longitudinal compo-
nent H̃z, has dimension 4 and its matrix elements depend on β. Homogeneous
SLAE is nontrivial solvable under the condition of vanishing of its determinant.
The dispersion relation gives the dependence of the phase retardation β of the
thickness of the waveguide layer d = a2 − a1 (see Fig. 5).

Calculations of dispersion curves, made using the expressions obtained through
the waveguide equation for the longitudinal components, coincided with the cal-
culations of dispersion curves for the same waveguide modes, obtained through
the transverse components.

If, instead of expressions (3.23) and (3.26) we use the expressions (3.27)
and (3.28), the boundary conditions for the tangential components take the form:

B̃+
s exp {γj

sa1} = B̃c
1 cos {χj

1a1} + B̃s
1 sin {χj

1a1},

−iω

(
μs

γj
s

)
B̃+

s exp {γj
sa1} = −iω

(
μ1

χj
1

)(
B̃c

1 sin {χj
1a1} − B̃s

1 cos {χj
1a1}

)
,

B̃c
1 cos {χj

1a2} + B̃s
1 sin {χj

1a2} = B̃−
c exp {−γj

ca2},

−ω

(
μ1

χj
1

) (
B̃c

1 sin {χj
1a2} − B̃s

1 cos {χj
1a2}

)
= iω

(
μc

γj
c

)
B̃−

c exp {−γj
ca2}.

We have obtained a homogeneous SLAE M̃‖4Re
TE (β) with real matrix elements,

therefore, if the condition det {M̃‖4Re
TE (β)} = 0 is fulˇlled, one can ˇnd its

real-valued solution B̃+
s , B̃c

1, B̃s
1 , B̃−

c . The dispersion equation for this is a real
transcendental algebraic equation for β, its solutions are presented on Fig. 6.
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In this case calculations of dispersion curves, made using the expressions
obtained through the waveguide equation for the longitudinal components, coin-
cided with the calculations of dispersion curves for the same waveguide modes,
obtained through the transverse components.

4.4. TM Modes, Expressed in Terms of the Longitudinal Component Ez .
At the same boundaries for the TM mode, which is expressed through the

longitudinal component Ez, the boundary conditions have the form: Ezs(a1) =
Ezf (a1) and Hys(a1) = Hyf (a1) at the point x = a1, and also Ezf (a2) =
Ezc(a2) and Hyf(a2) = Hyc(a2) at the point x = a2. Let us express them in
terms of amplitude coefˇcients Ã±

k :

Ã+
s exp {γj

sa1} = Ã+
1 exp {iχj

1a1} + Ã−
1 exp {−iχj

1a1},

iω

(
εs

γj
s

)
Ã+

s exp {γj
sa1} = ω

(
ε1

χj
1

)(
Ã+

1 exp {iχj
1a1} − Ã−

1 exp {−iχj
1a1}

)
,

Ã+
1 exp {iχj

1a2} + Ã−
1 exp {−iχj

1a2} = Ã−
c exp {−γj

ca2},

ω

(
ε1

χj
1

)
(Ã+

1 exp {iχj
1a2}− Ã−

1 exp {−iχj
1a2}) = −iω

(
εc

γj
c

)
Ã−

c exp {−γj
ca2}.

The result is a homogeneous system of linear algebraic equations (SLAE)

M̃‖4
TM (β) for the unknowns Ã+

s , Ã+
1 , Ã+

1 , Ã−
c whose solution gives us the

values of the unknown amplitude coefˇcients in the expressions (3.31)Ä(3.33)

and (3.34)Ä(3.36). Notation M̃‖4
TM (β) emphasizes that the system is obtained

from the boundary equations for the TM mode, which is expressed through the
longitudinal (‖) component Ez , is of dimension 4 and its matrix elements de-
pend on β.

Calculations of the dispersion relations for TM modes, performed using the
expressions obtained through the waveguide equation for the longitudinal compo-
nents, coincided with the calculations of dispersion curves for the same waveguide
modes, obtained through the transverse components.

If, instead of expressions (3.33) and (3.36), we use the expressions (3.37)
and (3.38), the boundary conditions for the tangential components take the form:

Ã+
s exp {γj

sa1} = Ãc
1 cos {χj

1a1} + Ãs
1 sin {χj

1a1},

iω

(
εs

γj
s

)
Ã+

s exp {γj
sa1} = iω

(
ε1

χj
1

) (
Ãc

1 sin {χj
1a1} − Ãs

1 cos {χj
1a1}

)
,

Ãc
1 cos {χj

1a2} + Ãs
1 sin {χj

1a2} = Ã−
c exp {−γj

ca2},
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iω

(
ε1

χj
1

) (
Ãc

1 sin {χj
1a2} − Ãs

1 cos {χj
1a2}

)
= −iω

(
εc

γj
c

)
Ã−

c exp {−γj
ca2}.

We have obtained a homogeneous linear algebraic equations M̃‖4Re
TM (β) with

real-matrix elements, therefore, if the condition det {M̃‖4Re
TM (β)} = 0 is valid,

one can ˇnd its real-valued solutions Ã+
s , Ãc

1, Ãs
1, Ã−

c . The dispersion equation
in this case is a real transcendental algebraic equation for β.

And in this case also calculations of dispersion curves for TM modes, ob-
tained through the longitudinal components, coincided with the calculations of
dispersion curves for the same waveguide modes, obtained through the transverse
components.

5. BOUNDARY EQUATIONS FOR FOUR-LAYER WAVEGUIDES

5.1. TE Modes, Expressed through the Transverse Component Ey . The
boundaries between layers of a four-planar waveguide cross the axis Ox at a
point x = a1 between the substrate and the ˇrst waveguide layer, at a point
x = a2 between the ˇrst waveguide layer and the second waveguide layer and at
a point x = a3 between the second waveguide layer and the covering. On these
boundaries for the TE mode, which is expressed through a transverse component
Ey, the boundary conditions are valid: Eys(a1) = Eyf (a1) and Hzs(a1) =
Hzf (a1) at a point x = a1, Ey1(a2) = Ey2(a2) and Hz1(a2) = Hz2(a2) at a
point x = a2, and also Ey2(a3) = Eyc(a3) and Hz2(a3) = Hzc(a3) at a point
x = a3. Let us express them in terms of amplitude coefˇcients A±

k :

A+
s exp {γj

sa1} = A+
1 exp {iχj

1a1} + A−
1 exp {−iχj

1a1},

γj
s

ik0
A+

s exp {γj
sa1} =

χj
1

k0

(
A+

1 exp {iχj
1a1} − A−

1 exp {−iχj
1a1}

)
,

A+
1 exp {iχj

1a2} + A−
1 exp {−iχj

1a2} = A+
2 exp {iχj

2a2} + A−
2 exp {−iχj

2a2},

χj
1

k0

(
A+

1 exp {iχj
1a2} − A−

1 exp {−iχj
1a2}

)
=

=
χj

2

k0

(
A+

2 exp {iχj
2a2} − A−

2 exp {−iχj
2a2}

)
,

A+
2 exp {iχj

2a3} + A−
2 exp {−iχj

2a3} = A−
c exp {−γj

ca3},

χj
2

k0

(
A+

2 exp {iχj
2a3} − A−

2 exp {−iχj
2a3}

)
= − γj

c

ik0
A−

c exp {−γj
ca3}.
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The result is a homogeneous system of linear algebraic equations (SLAE) M⊥6
TE(β)

for the unknowns A+
s , , A+

1 , A+
1 , A+

2 , A+
2 , A−

c whose solution gives us the val-
ues of the unknown amplitude coefˇcients in the expressions (3.2), (3.3) and
(3.5), (3.6). Notation M⊥6

TE(β) emphasizes that the system is obtained from the
boundary equations for the TE mode, which is expressed through the transverse
(⊥) component Ey, is of dimension 6 and its matrix elements depend on β.
Homogeneous SLAE is nontrivial solvable under the condition of vanishing of its
determinant. This dispersion relation gives the dependence of the phase retarda-
tion β of the thickness of the ˇrst waveguide layer d = a2 − a1 and the thickness
of the second waveguide layer h = a3 − a2.

If, instead of expressions (3.3) and (3.6), we use the expressions (3.7) and
(3.8), the boundary conditions for the tangential components take the form:

A+
s exp {γj

sa1} = Ac
1 cos {χj

1a1} + As
1 sin {χj

1a1},

γj
s

ik0
A+

s exp {γj
sa1} = − χj

1

ik0

(
Ac

1 sin {χj
1a1} − As

1 cos {χj
1a1}

)
,

Ac
1 cos {χj

1a2} + As
1 sin {χj

1a2} = Ac
2 cos {χj

2a2} + As
2 sin {χj

2a2},

− χj
1

ik0

(
Ac

1 sin {χj
1a2} − As

1 cos {χj
1a2}

)
=

= − χj
2

ik0

(
Ac

2 sin {χj
2a2} − As

2 cos {χj
2a2}

)
,

Ac
2 cos {χj

2a3} + As
2 sin {χj

2a3} = A−
c exp {−γj

ca3},

− χj
2

ik0

(
Ac

2 sin {χj
2a3} − As

2 cos {χj
2a3}

)
= − γj

c

ik0
A−

c exp {−γj
ca3}.

We have obtained a homogeneous SLAE M⊥6Re
TE (β) with real matrix elements,

therefore, if the condition det {M⊥6Re
TE (β)} = 0 is valid, one can ˇnd its real-

valued solution A+
s , Ac

1, As
1, Ac

2, As
2, A−

c . The dispersion equation for this is a
real transcendental algebraic equation for β.

5.2. TM Modes, Expressed through the Transverse Component Hy . At
the same boundaries for the TM mode, which is expressed through a transverse
component Hy, the boundary conditions have the form: Hys(a1) = Hyf(a1)
and Ezs(a1) = Ezf (a1) at a point x = a1, Hy1(a2) = Hy2(a2) and Ez1(a2) =
Ez2(a2) at a point x = a2, and also Hy2(a3) = Hyc(a3) and Ez2(a3) = Ezc(a3)
at a point x = a3. Let us express them in terms of amplitude coefˇcients B±

k :

B+
s exp {γj

sa1} = B+
1 exp {iχj

1a1} + B−
1 exp {−iχj

1a1},
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γj
s

ik0εs
B+

s exp {γj
sa1} =

χj
1

k0ε1

(
B+

1 exp {iχj
1a1} − B−

1 exp {−iχj
1a1}

)
,

B+
1 exp {iχj

1a2} + B−
1 exp {−iχj

1a2} = B+
2 exp {iχj

2a2} + B−
2 exp {−iχj

2a2},

χj
1

k0ε1

(
B+

1 exp {iχj
1a2} − B−

1 exp {−iχj
1a2}

)
=

=
χj

2

k0ε2

(
B+

2 exp {iχj
2a2} − B−

2 exp {−iχj
2a2}

)
,

B+
2 exp {iχj

2a3} + B−
2 exp {−iχj

2a3} = B−
c exp {−γj

ca3},

χj
2

k0ε2

(
B+

2 exp {iχj
2a3} − B−

2 exp {−iχj
2a3}

)
= − γj

c

ik0εc
B−

c exp {−γj
ca3}.

The result is a homogeneous system of linear algebraic equations M⊥6
TM (β) for

the unknown B+
s , B+

1 , B+
1 , B+

2 , B+
2 , B−

c , whose solution gives us the values of
the unknown amplitude coefˇcients in the expressions (3.12), (3.13) and (3.15),
(3.16). Homogeneous SLAE is nontrivial solvable under the condition of vanish-
ing of its determinant, this condition gives the dependence of the phase retarda-
tion β of TM mode on the thickness of the waveguide layers: d = a2 − a1 and
h = a3 − a2.

Graph of the dispersion curve for the TM mode repeats the features of the
graphic of the dispersion curve for the TE mode shown in Fig. 7.

Fig. 7. Dispersion curve of three-layer d = 0÷ 4(λ) and four-layer d = 4λ, h = 0÷ 1(λ)
planar regular waveguide, calculated for ’… mode
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If, instead of expressions (3.13) and (3.16) we use the expressions (3.17)
and (3.18), the boundary conditions for the tangential components take the form:

B+
s exp {γj

sa1} = Bc
1 cos {χj

1a1} + Bs
1 sin {χj

1a1},

− γj
s

ik0εs
B+

s exp {γj
sa1} =

χj
1

ik0ε1

(
Bc

1 sin {χj
1a1} − Bs

1 cos {χj
1a1}

)
,

Bc
1 cos {χj

1a2} + Bs
1 sin {χj

1a2} = Bc
2 cos {χj

2a2} + Bs
2 sin {χj

2a2},

χj
1

ik0ε1

(
Bc

1 sin {χj
1a2} − Bs

1 cos {χj
1a2}

)
=

=
χj

2

ik0ε2

(
Bc

2 sin {χj
2a2} − Bs

2 cos {χj
2a2}

)
,

Bc
2 cos {χj

2a3} + Bs
2 sin {χj

2a3} = B−
c exp {−γj

ca3},
χj

2

ik0ε2

(
Bc

2 sin {χj
2a3} − Bs

2 cos {χj
2a3}

)
=

γj
c

ik0εc
B−

c exp {−γj
ca3}.

We have obtained a homogeneous SLAE M⊥6Re
TM (β) with real matrix ele-

ments, therefore, if the condition det {M⊥6Re
TM (β)} = 0 is valid, one can ˇnd its

real-valued solution B+
s , Bc

1, Bs
1 , Bc

2, Bs
2, B−

c . The dispersion equation in this
case is also a real transcendental algebraic equation for β.

In this case, the timetable of the dispersion curve for the TM mode repeats
the features of the graph of the dispersion curve for the TE mode shown in Fig. 8.

Fig. 8. Dispersion curve of four-layer d = 4λ, h = 0 ÷ 1(λ) planar regular waveguide,
calculated for ’… mode
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5.3. TE Modes, Expressed in Terms of the Longitudinal Component Hz .
The boundaries between layers of three-layer planar waveguide still cross the

axis Ox at a point x = a1 between the substrate and the ˇrst waveguide layer, at
a point x = a2 between the ˇrst waveguide layer and the second waveguide layer
and at a point x = a3 between the second waveguide layer and cladding layer.
On the boundaries for the TE mode, which is expressed through the longitudinal
component H̃z, the boundary conditions have the form: H̃zs(a1) = H̃z1(a1) and
Ẽys(a1) = Ẽy1(a1) at a point x = a1, H̃z1(a2) = H̃z2(a2) and Ẽy1(a2) =
Ẽy2(a2) at a point x = a2,and also H̃z2(a3) = H̃zc(a3) and Ẽy2(a3) = Ẽyc(a3)
at a point x = a3. Let us express them in terms of amplitude coefˇcients B̃±

k :

B̃+
s exp {γj

sa1} = B̃+
1 exp {iχj

1a1} + B̃−
1 exp {−iχj

1a1},

− iω

(
μs

γj
s

)
B̃+

s exp {γj
sa1} =

= −ω

(
μ1

χj
1

) (
B̃+

1 exp {iχj
1a1} − B̃−

1 exp {−iχj
1a1}

)
,

B̃+
1 exp {iχj

1a2} + B̃−
1 exp {−iχj

1a2} = B̃+
2 exp {iχj

2a2} + B̃−
2 exp {−iχj

2a2},

− ω

(
μ1

χj
1

)
(B̃+

1 exp {iχj
1a2} − B̃−

1 exp {−iχj
1a2}) =

= −ω

(
μ2

χj
2

) (
B̃+

2 exp {iχj
2a2} − B̃−

2 exp {−iχj
2a2}

)
,

B̃+
2 exp {iχj

2a3} + B̃−
2 exp {−iχj

2a3} = B̃−
c exp {−γj

ca3},

− ω

(
μ2

χj
2

) (
B̃+

2 exp {iχj
2a3} − B̃−

2 exp {−iχj
2a3}

)
=

= iω

(
μc

γj
c

)
B̃−

c exp {−γj
ca3}.

The result is a homogeneous system of linear algebraic equations M̃‖6
TM (β)

for the unknown B̃+
s , B̃+

1 , B̃+
1 , B̃+

2 , B̃+
2 , B̃−

c , whose solution gives us the
values of the unknown amplitude coefˇcients in the expressions (3.21)Ä(3.23) and
(3.24)Ä(3.26). Homogeneous SLAE is nontrivial solvable under the condition of
vanishing of its determinant, this condition gives the dependence of the phase
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retardation β of TE mode on the thickness of the waveguide layers: d = a2 − a1

and h = a3 − a2.
Calculations of the dispersion curves for TE modes, performed using the

expressions obtained through the waveguide equation for the longitudinal compo-
nents, coincided with the calculations of dispersion curves for the same waveguide
modes, obtained through the transverse components.

If, instead of expressions (3.23) and (3.26) we use the expressions (3.27)
and (3.28), the boundary conditions for the tangential components take the form:

B̃+
s exp {γj

sa1} = B̃c
1 cos {χj

1a1} + B̃s
1 sin {χj

1a1},

−iω

(
μs

γj
s

)
B̃+

s exp {γj
sa1} = −iω

(
μ1

χj
1

)(
B̃c

1 sin {χj
1a1} − B̃s

1 cos {χj
1a1}

)
,

B̃c
1 cos {χj

1a2} + B̃s
1 sin {χj

1a2} = B̃c
2 cos {χj

2a2} + B̃s
2 sin {χj

2a2},

− iω

(
μ1

χj
1

)
(B̃c

1 sin {χj
1a2} − B̃s

1 cos {χj
1a2}) =

= −iω

(
μ2

χj
2

) (
B̃c

2 sin {χj
2a2} − B̃s

2 cos {χj
2a2}

)
,

B̃c
2 cos {χj

2a3} + B̃s
2 sin {χj

2a3} = B̃−
c exp {−γj

ca3},

−iω

(
μ2

χj
2

)(
B̃c

2 sin {χj
2a3} − B̃s

2 cos {χj
2a3}

)
= iω

(
μc

γj
c

)
B̃−

c exp {−γj
ca3}.

We have obtained a homogeneous SLAE M̃‖6Re
TE (β) with real matrix ele-

ments, therefore, if the condition det {M̃‖6Re
TE (β)} = 0 is valid, one can ˇnd its

real-valued solution B̃+
s , B̃c

1, B̃s
1 , B̃c

2, B̃s
2, B̃−

c . The dispersion equation in this
case is also a real transcendental algebraic equation for β.

In this case calculations of dispersion curves for TE-modes, obtained through
the longitudinal components, coincided with the calculations of dispersion curves
for the same waveguide modes, obtained through the transverse components.

5.4. TM Modes, Expressed in Terms of the Longitudinal Component Ez .
At the same boundaries for the TM mode, which is expressed through the longitu-
dinal component Ez , the boundary conditions have the form: Ezs(a1) = Ez1(a1)
and Hys(a1) = Hy1(a1) at a point x = a1, Ez1(a2) = Ez2(a2) and Hy1(a2) =
Hy2(a2) at a point x = a2, and also Ez2(a3) = Ezc(a3) and Hy2(a3) = Hyc(a3)
at a point x = a3. Let us express them in terms of amplitude coefˇcients Ã±

k :

Ã+
s exp {γj

sa1} = Ã+
1 exp {iχj

1a1} + Ã−
1 exp {−iχj

1a1},
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iω

(
εs

γj
s

)
Ã+

s exp {γj
sa1} = ω

(
ε1

χj
1

)(
Ã+

1 exp {iχj
1a1} − Ã−

1 exp {−iχj
1a1}

)
,

Ã+
1 exp {iχj

1a2} + Ã−
1 exp {−iχj

1a2} = Ã+
2 exp {iχj

2a2} + Ã−
2 exp {−iχj

2a2},

ω

(
ε1

χj
1

) (
Ã+

1 exp {iχj
1a2} − Ã−

1 exp {−iχj
1a2}

)
=

= ω

(
ε2

χj
2

)(
Ã+

2 exp {iχj
2a2} − Ã−

2 exp {−iχj
2a2}

)
,

Ã+
2 exp {iχj

2a3} + Ã−
2 exp {−iχj

2a3} = Ã−
c exp {−γj

ca3},

ω

(
ε2

χj
2

) (
Ã+

2 exp {iχj
2a3} − Ã−

2 exp {−iχj
2a3}

)
=

= −iω

(
εc

γj
c

)
Ã−

c exp {−γj
ca3}.

The result is a homogeneous system of linear algebraic equations (SLAE)

M̃‖6
TM (β) for the unknowns Ã+

s , Ã+
1 , Ã+

1 , Ã+
2 , Ã+

2 , Ã−
c , whose solution gives us

the values of the unknown amplitude coefˇcients in the expressions (3.31)Ä(3.33)

and (3.34)Ä(3.36). Notation M̃‖6
TM (β) emphasizes that the system is obtained

from the boundary equations for the TM mode, which is expressed through the
longitudinal (‖) component Ez, is of dimension 6 and its matrix elements depend
on β.

Calculations of the dispersion curves for TM modes, performed using the
expressions obtained through the waveguide equation for the longitudinal compo-
nents, coincided with the calculations of dispersion curves for the same waveguide
modes, obtained through the transverse components.

If, instead of expressions (3.33) and (3.36) we use the expressions (3.37)
and (3.38), the boundary conditions for the tangential components take the form:

Ã+
s exp {γj

sa1} = Ãc
1 cos {χj

1a1} + Ãs
1 sin {χj

1a1},

iω

(
εs

γj
s

)
Ã+

s exp {γj
sa1} = iω

(
ε1

χj
1

) (
Ãc

1 sin {χj
1a1} − Ãs

1 cos {χj
1a1}

)
,

Ãc
1 cos {χj

1a2} + Ãs
1 sin {χj

1a2} = Ãc
2 cos {χj

2a2} + Ãs
2 sin {χj

2a2},
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iω

(
ε1

χj
1

) (
Ãc

1 sin {χj
1a2} − Ãs

1 cos {χj
1a2}

)
=

= iω

(
ε2

χj
2

)(
Ãc

2 sin {χj
2a2} − Ãs

2 cos {χj
2a2}

)
,

Ãc
2 cos {χj

2a3} + Ãs
2 sin {χj

2a3} = Ã−
c exp {−γj

ca3},

iω

(
ε2

χj
2

) (
Ãc

2 sin {χj
2a3} − Ãs

2 cos {χj
2a3}

)
= −iω

(
εc

γj
c

)
Ã−

c exp {−γj
ca3}.

We have obtained a homogeneous SLAE M̃‖6Re
TM (β) with real matrix ele-

ments, therefore, if the condition det {M̃‖6Re
TM (β)} = 0 is valid, one can ˇnd its

real-valued solution Ã+
s , Ãc

1, Ãs
1, Ãc

2, Ãs
2, Ã−

c . The dispersion equation in this
case is also a real transcendental algebraic equation for β.

In this case also calculations of dispersion curves for TM modes, obtained
through the longitudinal components, coincided with the calculations of dispersion
curves for the same waveguide modes, obtained through the transverse compo-
nents.

6. THREE-LAYER WAVEGUIDE DISPERSION RELATIONS IN THE
TRIGONOMETRIC FORM

6.1. TE Modes in the Record through the Transverse Components. So-
lutions in the substrate and cover layer are of the form (3.2) and (3.5), in the
waveguide layer solutions have the form (3.9) and (3.10). The boundary condi-
tions for a three-layer waveguide at the points x = a1 and x = a2 are written
as:

A+
s exp {γj

sa1} = C1 cos {χj
1a1 + φ1}, (6.1)

γj
s

ik0
A+

s exp {γj
sa1} = − χj

1

ik0
C1 sin {χj

1a1 + φ1}, (6.2)

C1 cos {χj
1a2 + φ1} = A−

c exp {−γj
ca2}, (6.3)

− χj
1

ik0
C1 sin {χj

1a2 + φ1} = − γj
c

ik0
A−

c exp {−γj
ca2}. (6.4)

We divide Eq. (6.2) to Eq. (6.1) and obtain

γj
s

ik0
= − χj

1

ik0
tg {χj

1a1 + φ1}. (6.5)
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We divide Eq. (6.4) to Eq. (6.3) and we obtain

− χj
1

ik0
tg {χj

1a2 + φ1} = − γj
c

ik0
. (6.6)

Equality (6.5) is equivalent to

tg {χj
1a1 + φ1} = − γj

s

χj
1

≡ −tg (φs
1), (6.7)

and the equality (6.6) is equivalent to

tg {χj
1a2 + φ1} =

γj
c

χj
1

≡ tg (φc
1) . (6.8)

Introducing the left-hand side of expression (6.8) into the form tg {χj
1a2 +φ1} =

tg {χj
1(a2 − a1) + χj

1a1 + φ1} and applying the transformation tg (A ± B) =

tg (A) ± tg (B)
1 ∓ tg (A)tg (B)

to the relations (6.7) and (6.8) several times, we obtain the

result relation

tg (χf (a2 − a1)) = tg (φc
1 + φs

1) ≡ tg

(
arctg

(
γj

c

χj
1

)
+ arctg

(
γj

s

χj
1

))
. (6.9)

Relation (6.9) is equivalent to the relation det {M⊥4
TE(β)} = 0 in Subsec. 4.1 and

they both hold for all solutions of the roots βj(d) of the dispersion equation (6.9).
From relation (6.9) follows the dispersion relation in the form:

χfd = arctg
(

γm
c

χm
1

)
+ arctg

(
γm

s

χm
1

)
+ mπ, (6.10)

often used in the literature on planar optics [21Ä28]. Relation (6.10) satisˇes
every root βm(d) of the dispersion equation for TE modes with the number m of
its phase shift mπ.

6.2. TM Modes in the Record through the Transverse Components.
Solutions in the substrate and cover layer are of the form (3.12) and (3.15), and
in the waveguide layer solutions have the form (3.19) and (3.20). The boundary
conditions for a three-layer waveguide at the points x = a1 and x = a2 are
written as:

B+
s exp {γj

sa1} = D1 cos {χj
1a1 + ψ1}, (6.11)

− γj
s

ik0εs
B+

s exp {γj
sa1} =

χj
1

ik0ε1
D1 sin {χj

1a1 + ψ1}, (6.12)
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D1 cos {χj
1a2 + ψ1} = B−

c exp {−γj
ca2}, (6.13)

χj
1

ik0ε1
D1 sin {χj

1a2 + ψ1} =
γj

c

ik0εc
B−

c exp {−γj
ca2}. (6.14)

We divide equality (6.12) to equality (6.11) and transform it to

tg {χj
1a1 + ψ1} = − ε1γ

j
s

εsχ
j
1

≡ −tg (ψs
1), (6.15)

we divide equality (6.14) to equality (6.13) and transform it to

tg {χj
1a2 + ψ1} =

ε1γ
j
c

εcχ
j
1

≡ tg (ψc
1). (6.16)

Introducing the left-hand side of (6.16) into the form tg {χj
1a2+ψ1} = tg {χj

1(a2−

a1)+χj
1a1+ψ1} and applying the transformation tg (A±B) =

tg (A) ± tg (B)
1 ∓ tg (A)tg (B)

to the relations (6.15) and (6.16) several times, we obtain the result relation

tg (χf (a2 − a1)) = tg (ψc
1 + ψs

1) ≡

≡ tg

(
arctg

(
ε1γ

j
c

εcχ
j
1

)
+ arctg

(
ε1γ

j
s

εsχ
j
1

))
. (6.17)

Relation (6.17) is equivalent to the relation det {M⊥4
TM (β)} = 0 in Subsec. 4.2

and they both hold for all the roots βj(d) of the solutions of dispersion Eq. (6.17).
Relation (6.17) implies the dispersion relation in the form:

χfd = arctg
(

ε1γ
m
c

εcχm
1

)
+ arctg

(
ε1γ

m
s

εsχm
1

)
+ mπ, (6.18)

often used in the literature on planar optics [21Ä28]. Relation (6.18) satisˇes
every root βm(d) of the dispersion equation for TM modes with the number m
of its phase shift mπ.

6.3. TE Modes in the Record through the Longitudinal Components.
Solutions in the substrate and cover layer are of the form (3.22) and (3.25), and
in the waveguide layer solutions have the form (3.29) and (3.30). The boundary
conditions for a three-layer waveguide at the points x = a1 and x = a2 are
written as:

B̃+
s exp {γj

sa1} = D̃1 cos {χj
1a1 + ψ̃1}, (6.19)

−iω

(
μs

γj
s

)
B̃+

s exp {γj
sa1} = −iω

(
μ1

χj
1

)
D̃c

1 sin {χj
1a1 + ψ̃1}, (6.20)
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D̃1 cos {χj
1a2 + ψ̃1} = B̃−

c exp {−γj
ca2}, (6.21)

−iω

(
μ1

χj
1

)
D̃c

1 sin {χj
1a2 + ψ̃1} = iω

(
μc

γj
c

)
B̃−

c exp {−γj
ca2}. (6.22)

We divide relation (6.20) to relation (6.19) and transform it to

tg {χj
1a1 + ψ̃1} = −

(
χj

1γ
j
s

χ2
s

)
≡ −tg (ψ̃s

1), (6.23)

then divide relation (6.14) to relation (6.13) and transform it to

tg {χj
1a2 + ψ̃1} =

(
χj

1γ
j
c

χ2
c

)
≡ tg (ψ̃c

1). (6.24)

Introducing the left-hand side of (6.24) in the form tg {χj
1a2 + ψ̃1} = tg {χj

1(a2−

a1)+χj
1a1+ ψ̃1} and applying the transformation tg (A±B) =

tg (A) ± tg (B)
1 ∓ tg (A)tg (B)

to the relations (6.23) and (6.24) several times, we obtain the result relation

tg (χf (a2 − a1)) = tg (ψ̃c
1 + ψ̃s

1) ≡

≡ tg

(
arctg

(
χj

1γ
j
c

χ2
c

)
+ arctg

(
χj

1γ
j
s

χ2
s

))
. (6.25)

Relation (6.25) is equivalent to the relation det {M‖4
TE(β)} = 0 in Subsec. 4.3 and

they both hold for all solutions of the roots βj(d) of the dispersion equation (6.25).
Relation (6.25) implies the dispersion relation in the form:

χfd + arctg
(

χm
1

γm
c

)
+ arctg

(
χm

1

γm
s

)
= mπ, (6.26)

often used in the literature on planar optics [21Ä28]. Relation (6.26) satisˇes
every root βm(d) of the dispersion relation for TE modes with the number m of
its phase shift mπ (see Fig. 9).

6.4. TM Modes in the Record through the Longitudinal Components.
Solutions in the substrate and cover layer are of the form (3.22) and (3.25), and
in the waveguide layer, solutions have the form (3.29) and (3.30). The boundary
conditions for a three-layer waveguide at the points x = a1 and x = a2 are
written as:

Ã+
s exp {γj

sa1} = C̃1 cos {χj
1a1 + φ̃1}, (6.27)

iω

(
εs

γj
s

)
Ã+

s exp {γj
sa1} = iω

(
ε1

χj
1

)
C̃1 sin {χj

1a1 + φ̃1}, (6.28)
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Fig. 9. Dispersion curves for the ˇrst ˇve TE and TM modes of polystyrene waveguide
on a glass substrate (nc = 1.000, ns = 1.515, nf = 1.590 for λ = 0.633 μm), calculated
using the trigonometric forms of the characteristic equation

C̃1 cos {χj
1a2 + φ̃1} = Ã−

c exp {−γj
ca2}, (6.29)

iω

(
ε1

χj
1

)
C̃1 sin {χj

1a2 + φ̃1} = −iω

(
εc

γj
c

)
Ã−

c exp {−γj
ca2}. (6.30)

We divide equality (6.28) to equality (6.27) and transform it to

tg {χj
1a1 + φ̃1} =

(
εsχ

j
1

ε1γ
j
s

)
≡ tg (φ̃s

1), (6.31)

then we divide equality (6.30) to equality (6.29) and transform it to

tg {χj
1a2 + φ̃1} = −

(
εcχ

j
1

ε1γ
j
c

)
≡ −tg(φ̃c

1). (6.32)

Introducing the left-hand side of (6.32) in the form tg {χj
1a2 + φ̃1} = tg {χj

1(a2−

a1)+χj
1a1+ φ̃1} and applying the transformation tg (A±B) =

tg (A) ± tg (B)
1 ∓ tg (A)tg (B)

to the relations (6.31) and (6.32) several times, we obtain the result relation

tg (χf (a2 − a1)) = tg (φ̃c
1 + φ̃s

1) ≡

≡ tg

(
−arctg

(
εcχ

j
1

ε1γ
j
c

)
− arctg

(
εsχ

j
1

ε1γ
j
s

))
. (6.33)
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Relation (6.33) is equivalent to relation det {M‖4
TM (β)} = 0 in Subsec. 4.4 and

they both hold for all solutions of the roots βj(d) of the dispersion relation (6.33).
Relation (6.33) implies the dispersion relation in the form:

χfd + arctg
(

εcχ
m
1

ε1γm
c

)
+ arctg

(
εsχ

m
1

ε1γm
s

)
= mπ, (6.34)

often used in the literature on planar optics [23Ä28]. Relation (6.34) satisˇes
every root βm(d) of the dispersion relation for TM modes with the number m of
its phase shift mπ (see Fig. 10).

Fig. 10. Dispersion curves for the ˇrst ˇve TE and TM modes of tantalum waveguide on
a glass substrate (nc = 1.000, ns = 2.150, nf = 1.590 for λ = 0.633 μm), calculated
using the trigonometric forms of the characteristic equation

7. THE DISPERSION RELATIONS OF THE FOUR-LAYER WAVEGUIDE
IN THE TRIGONOMETRIC FORM

7.1. TE Modes in the Record through the Transverse Components. So-
lutions in the substrate and cover layer are of the form (3.2) and (3.5), and in
the waveguide layer solutions have the form (3.9) and (3.10). The boundary
conditions for a three-layer waveguide in the points x = a1, x = a2 and x = a3

are written as:
A+

s exp {γj
sa1} = C1 cos {χj

1a1 + φ1}, (7.1)

γj
s

ik0
A+

s exp {γj
sa1} = − χj

1

ik0
C1 sin {χj

1a1 + φ1}, (7.2)
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C1 cos {χj
1a2 + φ1} = C2 cos {χj

2a2 + φ2}, (7.3)

− χj
1

ik0
C1 sin {χj

1a2 + φ1} = − χj
2

ik0
C2 sin {χj

2a2 + φ2}, (7.4)

C2 cos {χj
2a3 + φ2} = A−

c exp {−γj
ca3}, (7.5)

− χj
2

ik0
C2 sin {χj

2a3 + φ2} = − γj
c

ik0
A−

c exp {−γj
ca3}. (7.6)

We divide equality (7.2) to equality (7.1) and obtain

tg {χj
1a1 + φ1} = − γj

s

χj
1

≡ −tg (φs
1), (7.7)

we divide equality (7.4) to equality (7.3) and we obtain

(χj
1) tg {χj

1a2 + φ1} = (χj
2) tg {χj

2a2 + φ2}. (7.8)

Then we divide equality (7.6) to equality (7.5) and obtain

tg {χj
2a3 + φ2} =

γj
c

χj
2

≡ tg (φc
2). (7.9)

Representing the left and right sides of (7.8) as

tg {χj
1a2 + φ1} = tg {χj

1(a2 − a1) + χj
1a1 + φ1} (7.10)

and
tg {χj

2a2 + φ2} = tg {χj
2(a2 − a3) + χj

2a3 + φ2}, (7.11)

as well as applying the transformation tg (A ± B) =
tg (A) ± tg (B)
1 ∓ tg (A)tg (B)

several

times to the relations (7.7) and (7.9)Ä(7.11), we obtain the result relation

tg (φc
2 + χ2(a2 − a3)) =

χj
1

χj
2

tg (χ1(a2 − a1) − φs
1). (7.12)

Relation (7.12) is equivalent to relation det {M⊥6
TE(β)} = 0 in Subsec. 5.1 and

they both hold for all the roots βj(d) of the solutions of dispersion relation (7.12).
Relation (7.12) implies the dispersion relation in the form:

χm
2 h = arctg

(
γm

c

χm
2

)
− arctg

(
χm

1

χm
2

tg
(

(χm
1 d) − arctg

γm
s

χm
1

))
+ mπ, (7.13)
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often used in the literature on planar optics [29Ä32]. Relation (7.13) satisˇes
every root βm(d) of the dispersion relation for TE modes with the number m of
its phase shift mπ.

In works [33Ä34] the characteristic equations were ˇrst solved numerically
for real refractive indices, and in [21] for complex refractive indices. Our calcu-
lations [3, 6, 9, 37] coincided with the results [21, 33Ä34].

7.2. TM Modes in the Record through the Transverse Components.
Solutions in the substrate and cover layer are of the form (3.12) and (3.15), and
in the waveguide layer, solutions have the form (3.19) and (3.20). The boundary
conditions for a three-layer waveguide in the points x = a1, x = a2 and x = a3

are written as:
B+

s exp {γj
sa1} = D1 cos{χj

1a1 + ψ1}, (7.14)

− γj
s

ik0εs
B+

s exp {γj
sa1} =

χj
1

ik0ε1
D1 sin {χj

1a1 + ψ1}, (7.15)

D1 cos {χj
1a2 + ψ1} = D2 cos {χj

2a2 + ψ2}, (7.16)

χj
1

ik0ε1
D1 sin {χj

1a2 + ψ1} =
χj

2

ik0ε2
D2 sin {χj

2a2 + ψ2}, (7.17)

D2 cos {χj
2a3 + ψ2} = B−

c exp {−γj
ca3}, (7.18)

χj
2

ik0ε2
D2 sin {χj

2a3 + ψ2} =
γj

c

ik0εc
B−

c exp {−γj
ca3}. (7.19)

We divide equality (7.15) to equality (7.14) and transform it to

tg {χj
1a1 + ψ1} = − ε1γ

j
s

εsχ
j
1

≡ −tg (ψ)
1, (7.20)

divide equality (7.17) to equality (7.16) and transform it to(
χj

1

ε1

)
tg {χj

1a2 + ψ1} =

(
χj

2

ε2

)
tg {χj

2a2 + ψ2}. (7.21)

Then we divide equality (7.19) to equality (7.18) and transform it to

tg {χj
2a3 + ψ2} =

ε2γ
j
c

εcχ
j
2

≡ tg (ψc
2). (7.22)
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Introducing the tangents to the left and right sides of (7.21) as

tg {χj
1a2 + ψ1} = tg {χj

1(a2 − a1) + χj
1a1 + ψ1} (7.23)

and
tg {χj

2a2 + ψ2} = tg {χj
2(a2 − a3) + χj

2a3 + ψ2} (7.24)

and applying the transformation tg (A ± B) =
tg (A) ± tg (B)
1 ∓ tg (A)tg (B)

to the rela-

tions (7.20) and (7.22)Ä(7.24) several times, we obtain the result relation

tg (ψc
2 + χ2(a2 − a3)) =

ε2χ
j
1

ε1χ
j
2

tg (χ1(a2 − a1) − ψs
1). (7.25)

Relation (7.25) is equivalent to relation det {M⊥6
TM (β)} = 0 in Subsec. 5.2. and

they both hold for all solutions of the roots βj(d) of the dispersion equation (7.25).
Relation (7.25) implies the dispersion relation in the form:

χm
2 h = arctg

(
ε2γ

m
c

εcχm
2

)
+

+ arctg
(

ε2χ
m
1

ε1χm
2

tg
(

(χm
1 d) − arctg

ε1γ
m
s

εsχm
1

))
+ mπ, (7.26)

often used in the literature on planar optics [29Ä32]. Relation (7.26) is satisˇed
for every root βm(d) of the dispersion equation for TM-modes with the number
m of its phase shift mπ. In this case our calculations [3, 6, 9, 37] also coincided
with the results of studies [21, 33Ä34].

7.3. TE Modes in the Record through the Longitudinal Components.
Solutions in the substrate and cover layer are of the form (3.22) and (3.25), and
in the waveguide layer solutions have the form (3.29) and (3.30). The boundary
conditions for a three-layer waveguide in the points x = a1, x = a2 and x = a3

are written as:
B̃+

s exp {γj
sa1} = D̃1 cos {χj

1a1 + ψ̃1}, (7.27)

−iω

(
μs

γj
s

)
B̃+

s exp {γj
sa1} = −iω

(
μ1

χj
1

)
D̃c

1 sin {χj
1a1 + ψ̃1}, (7.28)

D̃1 cos {χj
1a2 + ψ̃1} = D̃2 cos {χj

2a2 + ψ̃2}, (7.29)

−iω

(
μ1

χj
1

)
D̃c

1 sin {χj
1a2 + ψ̃1} = −iω

(
μ2

χj
2

)
D̃c

2 sin {χj
2a2 + ψ̃2}, (7.30)

D̃2 cos {χj
2a3 + ψ̃2} = B̃−

c exp {−γj
ca3}, (7.31)
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−iω

(
μ2

χj
2

)
D̃c

2 sin {χj
2a3 + ψ̃2} = iω

(
μc

γj
c

)
B̃−

c exp {−γj
ca3}. (7.32)

We divide equality (7.28) to equality (7.27) and transform it to

tg {χj
1a1 + ψ̃1} =

(
χj

1

γj
s

)
≡ tg (ψ̃s

1), (7.33)

divide equality (7.30) to equality (7.29) and transform it to(
μ1

χj
1

)
tg {χj

1a2 + ψ̃1} =

(
μ2

χj
2

)
tg {χj

2a2 + ψ̃2}, (7.34)

then we divide equality (7.32) to equality (7.31) and transform it to

tg {χj
2a3 + ψ̃2} = −

(
χj

2

γj
c

)
≡ −tg (ψ̃c

2). (7.35)

Introducing the tangents to the left and right sides of (7.34) as

tg {χj
1a2 + ψ̃1} = tg {χj

1(a2 − a1) + χj
1a1 + ψ̃1} (7.36)

and
tg {χj

2a2 + ψ̃2} = tg {χj
2(a2 − a3) + χj

2a3 + ψ̃2}, (7.37)

and applying the transformation tg (A ±B) =
tg (A) ± tg (B)
1 ∓ tg (A)tg (B)

several times to

the relations (7.33) and (7.35)Ä(7.37), we obtain the result relation

tg (−ψ̃c
2 + χ2(a2 − a3)) =

μ1χ
j
2

μ2χ
j
1

tg (χ1(a2 − a1) + ψ̃s
1). (7.38)

Relation (7.38) is equivalent to relation det
{
M‖6

TE(β)
}

= 0 in Subsec. 5.3, and

they both hold for all solutions of the roots βj(d) of the dispersion equation (7.38).
Relation (7.38) implies the dispersion relation in the form:

χm
2 h + arctg

(
χj

2

γj
c

)
+ arctg

(
χj

2

χj
1

tg

(
(χm

1 d) + arctg
χj

1

γj
s

))
= mπ, (7.39)

we have not seen in the literature on planar optics. Relation (7.39) is satisˇed for
every root βm(d) of the dispersion equation for TE modes with the number m of
its phase shift mπ.

Calculations made according to the relations (7.39) coincided with the cal-
culations carried out according to the relations (7.13) and with the calculations
of [33, 34].
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7.4. TM Modes in the Record through the Longitudinal Components.
Solutions in the substrate and cover layer are of the form (3.22) and (3.25), and
in the waveguide layer solutions have the form (3.29) and (3.30). The boundary
conditions for a three-layer waveguide at the points x = a1, x = a2 and x = a3

can be written as:

Ã+
s exp {γj

sa1} = C̃1 cos {χj
1a1 + φ̃1}, (7.40)

iω

(
εs

γj
s

)
Ã+

s exp {γj
sa1} = iω

(
ε1

χj
1

)
C̃1 sin {χj

1a1 + φ̃1}, (7.41)

C̃1 cos{χj
1a2 + φ̃1} = C̃2 cos {χj

2a2 + φ̃2}, (7.42)

iω

(
ε1

χj
1

)
C̃1 sin {χj

1a2 + φ̃1} = iω

(
ε2

χj
2

)
C̃2 sin {χj

2a2 + φ̃2}, (7.43)

C̃2 cos {χj
2a3 + φ̃2} = Ã−

c exp {−γj
ca3}, (7.44)

iω

(
ε2

χj
2

)
C̃2 sin {χj

2a3 + φ̃2} = −iω

(
εc

γj
c

)
Ã−

c exp {−γj
ca3}. (7.45)

We divide equation (7.41) to equality (7.40) and transform it to

tg {χj
1a1 + φ̃1} =

(
εsχ

j
1

ε1γ
j
s

)
≡ tg (φ̃s

1), (7.46)

divide equality (7.43) to equality (7.42) and transform it to(
ε1

χj
1

)
tg {χj

1a2 + φ̃1} =

(
ε2

χj
2

)
tg {χj

2a2 + φ̃2}, (7.47)

and divide equality (7.45) to equality (7.44) and transform it to

tg {χj
2a3 + φ̃2} = −

(
εcχ

j
2

ε2γ
j
c

)
≡ −tg (φ̃c

2). (7.48)

Introducing the tangents to the left and right sides of (7.34) as

tg {χj
1a2 + φ̃1} = tg {χj

1(a2 − a1) + χj
1a1 + φ̃1} (7.49)

and
tg {χj

2a2 + φ̃2} = tg {χj
2(a2 − a3) + χj

2a3 + φ̃2} (7.50)
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and applying the transformation tg (A ±B) =
tg (A) ± tg (B)
1 ∓ tg (A)tg (B)

several times to

the relations (7.49) and (7.50), we obtain the result relation

tg (−φ̃c
2 + χ2(a2 − a3)) =

ε1χ
j
2

ε2χ
j
1

tg (χ1(a2 − a1) + φ̃s
1). (7.51)

Relation (7.51) is equivalent to relation det {M‖6
TM (β)} = 0 in Subsec. 5.4, and

they both hold for all solutions of the roots βj(d) of the dispersion equation (7.51).
Relation (7.51) implies the dispersion relation in the form:

χm
2 h + arctg

(
χj

2εc

γj
cε2

)
−

− arctg

(
ε1χ

j
2

ε2χ
j
1

tg

(
(χm

1 d) + arctg
χj

1εs

γj
sε1

))
= mπ, (7.52)

we have not seen in the literature on planar optics. Relation (7.52) satisˇes every
root βm(d) of the dispersion relation for TM modes with the number m of its
phase shift mπ.

Calculations made according to the relations (7.52), coincided with the cal-
culations carried out according to the relations (7.26), and with the calculations
of [33, 34].

8. FIELDS OF GUIDED MODES

In Subsec. 4.1, Figure 4 shows the dispersion curves of the ˇrst ˇve TE
modes and the ˇrst ˇve TM modes of a three-layer polistirol waveguide on a
glass substrate. These dependencies are calculated as zeros of the determinant
of linear algebraic equations with real matrix elements for undeˇned ˇelds, the
amplitude coefˇcients and the solutions are real functions β(d). Substitution
of the calculated value of β(d) into the matrix M⊥4Re

TE (β) makes the nontrivial
solvability of homogeneous SLAE

M⊥4Re
TE (β) �A = �0. (7.53)

There is a real solution A+
s , Ac

1, As
1, A−

c of system (7.53). These real coefˇcients
are multiplied by the real-valued functions of the fundamental system of solutions
of (3.7), (3.8), as a result we obtain a real-valued amplitude of the vertical
distribution of the three nonzero ˇeld components of the waveguide modes, whose
graphs are shown in Figs. 11, 12.
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Fig. 11. Vertical distribution of components Ey, Hz, Hx of the ˇelds of waveguide
mode TE1, corresponding to point 1 in Fig. 4, and the ˇelds of waveguide mode TE1,
corresponding to point 2 in Fig. 4

Fields of TM modes are given by a system of linear algebraic equations

M⊥4Re
TM (β) �B = �0. (7.54)

The vanishing of the determinant of this matrix det {M⊥4Re
TM (β)} = 0 gives the

dispersion curves for TM modes of a three-layer waveguide. Figure 6 shows
the ˇrst ˇve dispersion curves of three-layer polystyrene waveguide on a glass
substrate. After the substitution of computed β(d) into a matrix M⊥4

TM (β), sys-
tem (7.54) admits a real solution B+

s , Bc
1, Bs

1, B−
c . These real coefˇcients are

multiplied by the real-valued functions of the fundamental system of solutions
of (3.7), (3.8), as a result we obtain a real-valued amplitude of the vertical dis-
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Fig. 12. Vertical distribution of components Ey, Hz, Hx of the ˇelds of waveguide
mode TE1, corresponding to point 3 in Fig. 4, and the ˇelds of waveguide mode TE1,
corresponding to point 4 in Fig. 4

tribution of the three nonzero ˇeld components of waveguide TM modes whose
graphs are shown in Figs. 13, 14.

In case the ˇeld of guided modes were expressed through complex-valued
functions of the fundamental system of solutions of (3.3) and (3.6), the amplitude
coefˇcients of the ˇelds should be calculated from the SLAE

M⊥4
TE(β) �A = �0. (7.55)

The vanishing of the determinant of this matrix det {M⊥4
TE(β)} = 0 gives the

dispersion curves of TE modes of three-layer waveguide. Figure 5 shows the ˇrst
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Fig. 13. Vertical distribution of components Hy, Ez, Ex of the ˇelds of waveguide mode
TM0, corresponding to points 1 and 2 in Fig. 6

ˇve dispersion curves of three-layer polystyrene waveguide on a glass substrate.
After the substitution of computed β(d) into the complex-valued matrix M⊥4

TE(β),
system (7.55) admits a complex-valued solution A+

s , A+
1 , A+

1 , A−
c . These com-

plex coefˇcients are multiplied by complex-valued function of the fundamental
system of solutions of (3.3) and (3.6), as a result we get a complex-valued ampli-
tude of the vertical ˇeld distribution of waveguide TE modes. Figure 15 shows
graphs of the real and imaginary parts of the component Ey , and Figure 16 shows
graphs of the real and imaginary parts of the component Hz.

In the case where the ˇeld of waveguide TM modes of a three-layer waveguide
is written in terms of complex-valued function of the fundamental system of so-
lutions of (3.12) and (3.13), the amplitude coefˇcients of the ˇelds are calculated
from the SLAE

M⊥4
TM (β) �B = �0. (7.56)
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Fig. 14. Vertical distribution of components Hy, Ez, Ex of the ˇelds of waveguide mode
TM0, corresponding to points 3 and 4 in Fig. 6

Dispersion curves of TM modes of a three-layer waveguide are given by the
solutions of the characteristic equation det {M⊥4

TM (β)} = 0. Figure 7 shows the
ˇrst ˇve dispersion curves of TM modes, a three-layer polystyrene waveguide
on a glass substrate. After the substitution of computed β(d) into the complex-
valued matrix M⊥4

TM (β), the system (7.56) admits a complex-valued solution
B+

s , B+
1 , B+

1 , B−
c . These complex coefˇcients are multiplied by complex-valued

functions of the fundamental system of solutions (3.12) and (3.13), as a result we
obtain a complex-valued amplitude of the vertical ˇeld distribution of waveguide
TM modes. Figure 17 shows graphs of the real and imaginary parts of the
component Hy, and Figure 18 shows graphs of the real and imaginary parts of
the component Ez .

On ˇgures 19.1Ä19.6 are presented the ˇelds, calculated for the TE1 mode, in
the vicinity of the transition from the ˇrst waveguide layer to the other waveguide
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Fig. 15. Graphs of the real and imaginary parts of the component Ey of the waveguide
mode TE4 polystyrene waveguide

Fig. 16. Graphs of the real and imaginary parts of the component Hz of the waveguide
mode TE4 polystyrene waveguide

layer in the interval from d = 4λ , h = 0λ to d = 4λ, h = 0.15λ, corresponding
to the dispersion relation of a four-layer regular waveguide.

Field components Hz do not provide additional visual information, so we
omit them in this work. A more detailed energy and phase analysis of the
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Fig. 17. Graphs of the real and imaginary parts of the component Hy of the waveguide
mode TM4 polystyrene waveguide

Fig. 18. Graphs of the real and imaginary parts of the component Ez of the waveguide
mode TM4 polystyrene waveguide

evolution of ˇelds in the vicinity d = 4λ, h = 0 ÷ 1(λ) of the dispersion curve
of a three-layer and four-layer planar regular waveguide will be held in one of
the following papers in the comparison of different approximate models of the
irregular waveguide.
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9. DISCUSSION AND CONCLUSIONS

In most publications on the planar waveguide, dispersion relations (the char-
acteristic equation) are used in the form (6.10), (6.18) and (7.13), (7.26). In [12],
the expression of the characteristic equation in the form det {M(β)} = 0 is pre-
sented and is approved without proper reasoning that it implies the trigonometric
form of the dispersion relation.

In most books [11Ä20] on planar optics, waveguide modes are calculated by
the solutions of wave equations for the transverse components of electromagnetic
ˇeld modes. In [38], a method for calculating the guided modes through the
longitudinal components is presented.

In all the cases, described in [11Ä20, 38Ä40], characteristic equation of a
dielectric planar waveguide is derived from Maxwell's equations without cor-
respondence with ˇeld equations. In these cases waveguide modes ˇelds are
computed in one way or another, with the normalization of the amplitude on
the incident ˇeld amplitude or without normalization, using methods that do not
ensure the stability of the amplitude coefˇcients for changes in the parameters of
the waveguide.

In the case of numerical simulation of smoothly irregular waveguides in sub-
sequent stages of the problem stated in Section 1, we have to use computational
methods for solving systems of linear algebraic equations that are resistant to
changes in the parameters of the waveguide. In order the developed for this
purpose algorithms and computer programs reproduce the simulation results of
regular waveguides, we have at this stage to use the A.N. Tikhonov regular-
ized algorithm for solving systems of linear algebraic equations with imprecise
data [6, 9, 41].
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