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About Oscillations in the System of K0 Mesons

This work considers K0-, K̄0-meson mixings and oscillations via K0
1 -, K0

2 -meson states
at strangeness violation by the weak interactions and K0

1 -, K0
2 -meson mixings and oscillations

via KS-, KL-meson states at CP violation by the weak interactions without and with taking
into account decay widths. We work in the framework of the masses mixing scheme. It
is shown that K0

1 -(KS-)meson states appear at big distances from the K0-mesons source
after their decays (τL � τS (τ2 � τ1)) due to oscillations of residual K0

2 (KL) mesons
and then again we see short-living K0

1 (KS) mesons. It is implied that KL ↔ KS meson
oscillations are absent. The case is also considered when at CP violation unitarity is violated,
but orthogonality of KS , KL states remains. The general expressions for probabilities of
meson oscillations (transitions) are given.

The investigation has been performed at the Veksler and Baldin Laboratory of High
Energy Physics, JINR.
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1. INTRODUCTION

Oscillations of K0 mesons (i.e., K0 ↔ K̄0) were theoretically [1] and
experimentally [2] investigated in the 1950s and 1960s. Recently there has
been achieved an understanding that these processes go as a double-stadium
process [3Ä6]. A detailed study of K0 meson mixing and oscillations is very
important since the theory of neutrino oscillations is built in analogy with the
theory of K0 meson oscillations.

Previously it was supposed that P parity is a well number; however, after
theoretical [7] and experimental [8] works it has become clear that in weak inter-
actions P parity is violated. Then in work [9] there was an advanced supposition
that in the weak interactions CP parity is conserved but not P parity. Work [10]
has reported that in KL decays with a probability of about 0.2% there is two-π
decay mode that is a detection of CP -parity violation.

Usually it is supposed that at big distances from K0-meson sources only
KL-meson states remain. Since this meson is a superposition of K0

1 , K0
2 mesons

KL � αK0
1 + βK0

2 (α2 + β2 = 1, β � α) and

KL(t) � αK0
1 (0) e(−imS−ΓS/2)t + βK0

2 (0) e(−imL−ΓL/2)t,

at time t � 1/ΓS almost all KS mesons have time to decay and KL → K0
2

mesons will remain. Then there is the only possibility to generate K0
1 mesons

K0
2 ↔ K0

1 meson oscillations via KS, KL mesons; i.e., in reality at big distances
K0

2 are responsible for generation of K0
1 mesons but not KL mesons since

KL ↔ KS oscillations are absent.
It is necessary to remark that the literature devoted to this subject seldom

mentions K0
1 , K0

2 mesons which appear at violation of strangeness S. However,
taking into account these states is very important since the weak interaction
process with S violation is faster than the weak interaction process with CP
violation; i.e., ˇrst K0

1 , K0
2 mesons are produced and then the KS-, KL-meson

states are produced. It is well seen from a very small probability of CP violation
in the system of K0 mesons. We cannot correctly understand the K0 processes
if we do not take into account the presence of K0

1 -, K0
2 -meson states.

A phenomenological analysis of K0-meson processes was done in [11] (see
also [12]). In this work another approach is used to consider K0-meson processes.
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This work is based on the principles of the quantum ˇeld theory or particle
physics. It is supposed that particles (K0 mesons) during production have no
widths for decomposition; i.e., they can only decay in a usual way, as is the case
in particle physics. This remark is important since in this case particles cannot
form wave packets and the wave packets can then be formed only from a big
number of identical particles (mesons). The supposition that K0 mesons can be
considered as wave packets is a hypothesis and has at present neither experimental
nor theoretical conˇrmation. But at the same time, from our experience in particle
physics we can draw a conclusion that elementary particles have no widths in order
to consider them as wave packets.

In the literature [11, 12] a nonunitary transformation is used at obtaining
of KS, KL states. It is supposed that these states arise at CP violation. The
expression for these states has the following form:

KS = (K0
1 + ε1K

0
2 )/

√
1 + |ε1|2,

KL = (K0
2 + ε1K

0
1 )/

√
1 + |ε1|2,

(1)

and on the contrary

K0
1 = (KS − ε1KL)

√
1 + |ε1|2
1 − ε2

1

,

K0
2 = (KL − ε1KS)

√
1 + |ε1|2
1 − ε2

1

.

(2)

Writing the wave function of KL, KS mesons in the form

KS =
1 − ε1√

2(1 + |ε1|2)
e−imSt−ΓS t

2 ,

KL =
1 − ε1√

2(1 + |ε1|2)
e−imLt−ΓLt

2 ,

(3)

putting expression (3) into expression (2) and then taking the ˇrst term of (2) in
the quadratic form on the absolute value, we obtain (� = 1)

|K0
1 |2 =

|1 − ε1|2
2(1 − |ε1|2)

×

×
(
e−ΓSt + |ε|2 e−ΓLt − 2|ε|e−

(ΓS+ΓL)t
2 cos ((mL − mS)t)

)
. (4)

In expression (4) a cross term appears which is responsible for oscillations. This
term can be interpreted as oscillations between KS, KL states; i.e., these states
are nonorthogonal ones.
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In the framework of quantum mechanics, if the states are wave vectors, then
expression (3) has to be written in the following form:

KS(t) =
1 − ε1√

2(1 + |ε1|2)
e−imSt−ΓS t

2 KS(0),

KL(t) =
1 − ε1√

2(1 + |ε1|2)
e−imLt−ΓLt

2 KL(0),
(5)

then after taking it in the quadratic form on the absolute value we get

|K0
1 |2 =

|1 − ε1|2
2(1 − |ε1|2)

(
e−ΓSt + |ε|2 e−ΓLt

)
. (6)

In expression (6) the interference term is absent; i.e., the oscillations are absent.
Now we have to solve the problem: how do oscillations arise in the quantum

mechanics approach and how do short-living mesons appear at long distances
from K0 source? Come to the solution of this problem.

At ˇrst we consider mixings of K0, K̄0 mesons at violation of strangeness S,
and K0, K̄0 oscillations without and with taking into account the decay widths
of K0

1 , K0
2 mesons. Then we turn to the consideration of K0

1 , K0
2 meson mixings

at CP -parity violation when KS , KL mesons are produced. Further we consider
K0

1 -, K0
2 -meson oscillations via KS , KL mesons without and with taking into

account decay widths of K0
S , K0

L mesons. In conclusion, we discuss the problem:
what is the source of KS (or rather K0

2 , KS) mesons at large distances from the
K0-meson source. Taking into account the widths of meson decays, we will work
in the framework of the commonly accepted approach [13]. It is necessary to
note that the value for KS-, KL- (or more accurately K0

1 -, K0
2 -) meson masses

difference was ˇrst measured in work [14] (for modern value for mKL − mKS

see in [15]).

2. VACUUM MIXINGS AND OSCILLATIONS OF K0, K̄0 MESONS
AT STRANGENESS VIOLATION BY THE WEAK INTERACTIONS
WITHOUT AND WITH TAKING INTO ACCOUNT DECAY WIDTHS

2.1. K0-, K̄0-Vacuum Mixings. K0-, K̄0-meson states are produced in the
strong interaction (i.e., they are eigenstates of these interactions), then the mass
matrix of K0 mesons will have a diagonal form [3Ä6]. Following the traditions,
we will consider the K0-meson mixings and oscillations by using the mass matrix,
and for convenience the masses are used in the linear but not in the quadratic
form. Then the mass matrix has the following form:(

mK0K0 0
0 mK̄0K̄0

)
. (7)
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Because of the weak interactions violating strangeness (s ↔ d), this mass ma-
trix (7) becomes a nondiagonal matrix:(

mK0K0 mK0K̄0

mK̄0K0 mK̄0K̄0

)
→ U−1

(
mK0

1
0

0 mK0
2

)
U, U =

(
cos θ − sin θ
sin θ cos θ

)
. (8)

For obtaining the eigenstates of weak interactions which violate strangeness,
we have to diagonalize this matrix by turning it through angle θ. By using this
procedure, we get

tan 2θ =
2mK0K̄0

| mK0 − mK̄0 | ,

sin 2θ =
2mK0K̄0√

(mK0 − mK̄0)2 + (2mK0K̄0)2
,

(9)

m1,2 = mK1,K2 =
1
2

[
(mK0 + mK̄0)±

±
(
(mK0 − mK̄0)2 + 4m2

K0K̄0

)1/2
]
, (10)

where K0
1 and K0

2 states are eigenstates of the weak interactions violating strange-
ness. Now these states are superposition states of K0, K̄0 mesons:

K0
1 = cos θ K0 − sin θ K̄0,

K0
2 = sin θ K0 + cos θ K̄0,

(11)

and the inverse transformation gives

K0 = cos θ K0
1 + sin θ K0

2 ,

K̄0 = − sin θ K0
1 + cos θ K̄0

2 ,
(12)

since mK0K0 = mK̄0K̄0 , for CPT invariance of the weak interactions this mixing
angle θ will be equal to π/4. Then from expressions (11) and (12) we get

K0
1 =

K0 − K̄0

√
2

, K0
2 =

K0 + K̄0

√
2

, (13)

K0 =
K0

1 + K0
2√

2
, K̄0 =

K0
1 − K0

2√
2

. (13′)

It is necessary to remark that CPK0
1 = K0

1 and CPK0
2 = −K0

2 ; i.e., CP parity
of K0

1 meson is a positive value and it can decay into two π mesons, and CP
parity of K0

2 meson is a negative value and it can decay into three π mesons.
The computation of nondiagonal terms of the mass matrix (8)Ä(10) can be

fulˇlled by using the Feynman diagrams from the ˇgure in the framework of the
standard model of electroweak interactions [12, 16] with KabibboÄKobayashiÄ
Maskawa matrices [17].
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Diagrams for d ↔ s quark transitions, i.e., for K0 ↔ K̄0 transitions via W -boson
exchanges by using KobayashiÄMaskawa matrix

2.2. Vacuum Oscillations of K0 Mesons. Now we come to K0-meson
oscillations. The oscillation of D0, B0 mesons can be considered in an analogous
way. K0, K̄0 mesons besides masses have decay widths ΓK0 , ΓK̄0 and therefore
they will decay into π mesons.

For example, we can consider oscillations of K0 produced from the following
reaction:

π− + p → K0 + Λ. (14)

At the moment t = 0 there are only K0 mesons produced in the strong interac-
tions, and if we take into account expression (12) at another moment t > 0, this
state will be transformed into the following state:

K0(t) =
1
2

[
(K0 + K̄0) e−im1t−Γ1

2 t + (K0 − K̄0) e−im2t−Γ2
2 t

]
, (15)

where Γ1, Γ2, m1, m2 are widths and masses of K0
1 , K0

2 mesons.
If Γ1, Γ2 are equal to zero, then K0, K̄0 oscillations will continue without

stopping and K0, K̄0 will transform into each other with a periodicity of t =
π/(m1 − m2).

The length of K0-meson oscillations at low velocities v is

L = vt =
2πv

| m1 − m2 | =
2πpK0

2mK02mK0K̄0
. (16)

In the standard approach [18, 19] to K0-meson oscillations, it is supposed
that K0 mesons are produced at once in the form of superposition states (12). It
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means that at production of K0, K̄0 mesons their mass matrix has a nondiagonal
form. In order to ˇnd their eigenstates, we have to diagonalize this matrix. Then
we see that their eigenstates are K0

1 , K0
2 mesons; i.e., this case has to produce

K0
1 , K0

2 mesons but not K0, K̄0 mesons.
As a matter of fact, since K0 mesons are eigenstates of the strong interactions,

they cannot be produced in superposition states of K0
1 , K0

2 mesons. K0 mesons
become superposition states of K0

1 , K0
2 mesons when weak interactions transform

them into a superposition of eigenstates. It is important to note that, in contrast
to the strong interactions, the weak interactions will produce K0

1 ,- K0
2 -meson

states. Now we come to a detailed consideration of K0-meson oscillations in the
framework of the mass mixing scheme.

The mass matrix of K0 mesons has the form
(

mK0 0
0 mK̄0

)
. (17)

Strangeness is violated due to the weak interactions and nondiagonal terms appear
in this masses matrix, then it gets the following form (CP is conserved):

(
mK0 mK0K̄0

mK̄0K0 mK̄0

)
. (18)

At diagonalization of this matrix we obtain K0
1 -, K0

2 -meson states and the states
K0, K̄0 are transformed into superposition of K0

1 , K0
2 states (see expression (12)).

Their mixing angle and masses are given by expressions (10)Ä(12).
The expression for sin2 2θ is given by (θ is the angle of mixing)

sin2 2θ =
(2mK0K̄0)2

(mK0 − mK̄0)2 + (2mK0K̄0)2
,

(
mK0

1
0

0 mK0
2

)
. (19)

The evolution of K0
1 -, K0

2 -meson states with masses m1, m2 will be given with
the following expression:

K0
1(t) = e−iE1tK0

1 (0), K0
2 (t) = e−iE2tK0

2(0), (20)

where

E2
k = (p2 + m2

k), k = 1, 2.

If these mesons are moving without interactions, then

K0(t) = cos θ e−iE1tK0
1 (0) + sin θ e−iE2tK0

2 (0),

K̄0(t) = − sin θ e−iE1tK0
1(0) + cos θ e−iE2tK0

2 (0).
(21)
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Using expression (11) for K0
1 and K0

2 and putting them into (21), we obtain

K0(t) =
[

e−iE1t cos2 θ + e−iE2t sin2 θ
]
K0(0)+

+
[

e−iE1t − e−iE2t
]
sin θ cos θ K̄0(0),

K̄0(t) =
[

e−iE1t sin2 θ + e−iE2t cos2 θ
]
K̄0(0)+

+
[

e−iE1t − e−iE2t
]
sin θ cos θ K̄0(0).

(22)

The probability that meson K0 produced at moment t = 0 will be at moment
t �= 0 in the state of K̄0 meson is given by a squared absolute value of the
amplitude in (22); i.e.,

P (K0 → K̄0) =|(K̄0(0) · K0(t)) |2=

=
1
2

sin2 2θ [1 − cos ((E2 − E1)t)] ≡
1
2

[1 − cos ((E2 − E1)t)] , (23)

where θ = π/4. Using expressions for masses of K0
1 , K0

2 mesons, we obtain

mK0
1

= mK0 − Δ, mK0
2

= mK0 + Δm, (24)

where Δ = 2mK0K̄0 . Since mK0 � Δ,

E1 =
√

p2 + m2
K0

1

∼= EK0

(
1 − mK0Δ

E2
K0

)
,

E2 =
√

p2 + m2
K0

2

∼= EK0

(
1 +

mK0Δ
E2

K0

)
,

(25)

E2 − E1 =
2mK0Δ

EK0
=

2Δ
γ

. (26)

Then the length L12 of K0-, K̄0-meson oscillations is

L12 =
γ

2Δ
≡ 2πhcγ

2Δ
. (27)

2.3. The Vacuum K0-meson Oscillations with Taking into Account the
Width of K0

1 -, K0
2 -meson Decays. Taking into account that K0

1 , K0
2 decay

and have decay widths Γ1, Γ2, we can rewrite expressions (20)Ä(26), and then
K0

1 , K0
2 mesons with masses m1, m2 evolve in dependence on time according to

the following law:

K0
1 (t) = e−iE1t−Γ1t

2 K0
1 (0), K0

2 (t) = e−iE2t−Γ2t
2 K0

2(0), (28)

E2 − E1 is given by (25) and it is equal to 2mK0Δ/EK0 :

E2 − E1 � 2mK0Δ
EK0

. (29)
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In this work we suppose that Γk = γΓ0
k, where Γ0

k is K0
k-meson width at rest and

γ = Ek/mk is a usual relativistic factor (k = 1, 2).
If these mesons move without interaction, then

K0(t) = cos θ e−iE1t−Γ1t
2 K0

1 (0) + sin θ e−iE2t−Γ2t
2 K0

2(0),

K̄0(t) = − sin θ e−iE1t−Γ1t
2 K0

1(0) + cos θ e−iE2t−Γ2t
2 K0

2(0).
(30)

Using expression (11) for K0
1 , K0

2 and putting it into (30), we obtain

K0(t) =
[

e−iE1t−Γ1t
2 cos2 θ + e−iE2t−Γ2t

2 sin2 θ
]
K0(0)+

+
[

e−iE1t−Γ1/2 − e−iE2t−Γ2t
2

]
sin θ cos θ K̄0(0),

K̄0(t) =
[

e−iE1t−Γ1t

2 sin2 θ + e−iE2t−Γ2t

2 cos2 θ
]
K̄0(0)+

+
[

e−iE1t−Γ1t
2 − e−iE2t−Γ2t

2

]
sin θ cos θ K̄0(0).

(31)

The probability that meson K0 produced at moment t = 0 will be at moment
t �= 0 in the state of K̄0 meson is given by a squared absolute value of the
amplitude in (31); i.e.,

P (K0 → K̄0) =|(K̄0(0) · K0(t)) |2= cos2 θ sin2 θ×

×
[
e−Γ1t + e−Γ2t − 2 e−

(Γ1+Γ2)t
2 cos ((E2 − E1)t)

]
, (32)

since cos2 θ = sin2 θ = 1/2,

P (K0 → K̄0) =
1
4

[
e−Γ1t + e−Γ2t − 2 e−

(Γ1+Γ2)t
2 cos ((E2 − E1)t)

]
, (33)

where E2 − E1 is determined by expression (29).
Now together with K0-meson oscillations, the K0

1 -, K0
2 -meson decays will

take place. Since Γ1 � Γ2, after some time K0
2 mesons will remain and K0-

meson oscillations will disappear. The above-considered case will be realized
when CP violation is absent. Now we consider the case when CP violation
takes place.

3. K0
1 -, K0

2 -MESON VACUUM MIXINGS AND OSCILLATIONS
AT INDIRECT VIOLATION OF CP INVARIANCE WITHOUT

AND WITH TAKING INTO ACCOUNT WIDTH DECAYS

At ˇrst we consider vacuum mixings of K0
1 , K0

2 mesons, then come to the
consideration of K0

1 -, K0
2 -meson oscillations in cases when width decays are not

taken into account and when width decays are taken into account.
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3.1. The Vacuum Mixings of K0
1 , K0

2 Mesons. In the case of CP violation
just as in the case of K0, K̄0 mesons when they are transformed into superposi-
tions of K0

1 , K0
2 mesons, the K0

1 , K0
2 mesons have to transform into superposition

states of KS and KL mesons.
Following the traditions mentioned above, we will consider mixings and

oscillations of K0
1 , K0

2 mesons by using the mass matrix with masses in the linear
form. Before CP violation the mass matrix of K0

1 , K0
2 has a diagonal form:

(
mK0

1
0

0 mK0
2

)
. (34)

Then because of the presence of CP -parity violation in weak interactions the
mass matrix becomes nondiagonal:

(
mK0

1
m12

m21 mK̄0
2

)
≡ U−1

(
mKS 0

0 mKL

)
U, U =

(
cos β − sin β
sin β cos β

)
. (35)

Diagonalizing this matrix by turning it through angle β, we get

tan 2β =
2m12

| mK0
1
− mK0

2
| ,

sin 2β =
2m12√

(mK0
1
− mK0

2
)2 + (2m12)2

, (36)

mKS ,KL =
1
2

[
(mK0

1
+ mK0

2
) ∓

(
(mK0

1
− mK0

2
)2 + 4m2

12

)1/2
]

. (37)

This procedure leads to appearance of KS , KL states which consist of K0
1 , K0

2

states:

KS = cos β K0
1 − sin β K0

2 ,

KL = sin β K0
1 + cos β K0

2 .
(38)

At inverse transformation we get

K0
1 = cos β KS + sin β KL,

K0
2 = − sin β KS + cos β KL.

(39)

It is necessary to stress that in the above expression we have used unitary transfor-
mation, in contrast to nonunitary transformation which was applied in work [11].

Now come to computation of the value of KS- and KL-meson masses dif-
ference by using K0

1 -, K0
2 -meson mass values from expressions (24) and (37):

mS,L =
1
2

(
2mK0 ∓

√
(2Δ)2 + (2m12)2

)
, (40)
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ΔmLS = mL − mS =
√

(2Δ)2 + (2m12)2. (41)

It is clear that term m12 is much bigger than Δ (see below); i.e.,

Δ � m12. (42)

Then KL- and KS-masses difference is

ΔmLS = mL − mS � 2Δ. (43)

Using expression (43) and value for sin2 β obtained from experiments [10,20] to
determine the value of CP violation (sin2 2β = 2.23 · 10−3), we get

sin2 2β =
(2m12)2

(mK0
1
− mK0

2
)2 + (2m12)2

≡ (2m12)2

(2Δ)2 + (2m12)2
= 2.23 · 10−3. (44)

Taking into account expression (44), we then get the estimation on (2m12)2

(1/2.23 · 10−3 = 448.5):

(2m12)2 � (2Δ)2 · 2.23 · 10−3. (45)

Oscillations of K0
1 , K0

2 mesons will proceed on the background of K0-, K̄0-
meson oscillations, but since the mixing angle β is very small, it is difˇcult to
detect such oscillations. What possibility does the Nature give to detect these
oscillations (transitions)? The decay time of K0

1 into two π mesons is much
smaller than the decay time of K0

2 on three π mesons and therefore at big
distances from the source of K0 mesons mainly K0

2 ≈ KL mesons remain. Then
at the presence of K0

1 → 2π mesons we can obtain information on K0
1 , KS , and

K0
2 , KL mesons, i.e., about violation of CP parity.

Expressions (34)Ä(45) were used for obtaining the estimation on mass change
at CP violation and we did not take into account the phase of CP violation. It
is clear that we have to take into account this phase δ. We can do it by using the
parametrization of KobayashiÄMaskawa matrix [17] proposed by L.Maiani [21].
The expressions for U, U−1 will then have the following form:

U =
(

cos β − sin β e−iδ

sin β eiδ cos β

)
U−1 =

(
cos β sin β e−iδ

− sin β eiδ cos β

)
.

(46)
Now expressions (38) and (39) look like

KS = cos β K0
1 − sin β K0

2 e−iδ,

KL = sin β eiδK0
1 + cos β K0

2 ,
(47)

K0
1 = cos β KS + sin β e−iδKL,

K0
2 = − sin β eiδKS + cos β KL.

(48)
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Now come to consider such oscillations. From exprsessions (24), (40), (43) and
(45) we see that the mass difference between K0

1 , K0
2 mesons and KS, KL

mesons is very small; i.e., practically they are equal. In literature [22] it is
already accepted; i.e., no distinction is made between them.

3.2. The Vacuum Oscillations of K0
1 , K0

2 Mesons. KS , KL mesons with
masses mS and mL evolve in dependence on time by the following expressions:

KS(t) = e−iEStKS(0), KL(t) = e−iELtKL(0), (49)

where
E2

k = (p2 + m2
k), k = S, L. (50)

If these mesons move without interactions, then

K0
1 (t) = cos β e−iEStKS(0) + sin β e−iELt e−iδKL(0),

K0
2 (t) = − sin β e−iESt eiδKS(0) + cos β e−iELtKL(0).

(51)

Using expressions for KS and KL from (47) and using them in (51), we obtain

K0
1 (t) =

[
e−iESt cos2 β + e−iELt sin2 β

]
K0

1 (0)+

+ e−iδ
[
− e−iESt + e−iELt

]
sin β cos β K0

2 (0),

K0
2 (t) =

[
e−iESt sin2 β + e−iELt cos2 β

]
K0

1 (0)+

+ eiδ
[
− e−iESt + e−iELt

]
sin β cos β K0

2 (0).

(52)

The probability that meson K0
1 produced at moment t = 0 will be at moment

t �= 0 in the state of K0
2 meson is given by the squared absolute value of the

amplitude in (52); i.e.,

P (K0
1 → K0

2 ) = P (K0
2 → K0

1) =|(K0
2 (0) · K0

1(t)) |2=

=
1
2

sin2 2β [1 − cos ((EL − ES)t)] . (53)

Using expression (40) for K0
1 -, K0

2 -meson masses, we get

mS =
1
2

(
2mK0 −

√
(2Δ)2 + (2m12)2

)
,

mL =
1
2

(
2mK0 +

√
(2Δ)2 + (2m12)2

)
,

(54)

where Δ = 2mK0K̄0 (see expression (24)). Since Δ � 2m12,

mS � mK0
1
, mL � mK0

2
, (55)
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further taking into account that mK0 � Δ, we obtain

ES =
√

p2 + m2
KS

∼=
√

p2 + m2
K0

1

∼= EK0

(
1 − mK0Δ

E2
K0

)
,

EL =
√

p2 + m2
K0

2

∼=
√

p2 + m2
K0

2

∼= EK0

(
1 +

mK0Δ
E2

K0

)
,

EL − ES
∼=

2mK0Δ
EK0

=
2Δ
γ

. (56)

In this case the length of oscillations RLS is

RLS
∼=

γ

2Δ
. (57)

From expressions (24), (40), (43) and (45) we see that the length of oscillations
has to be of the order of the length of K0-, K̄0-meson oscillations, right up they
are nearly equal (by the way, it is usually presumed).

Now we consider K0
1 -, K0

2 -meson oscillations, taking into account the decay
widths.

3.3. Vacuum Oscillations of K0
1 , K0

2 Mesons with Taking into Account
Decay Widths. If we take into account that KS, KL decay and have the decay
widths ΓS , ΓL, we can rewrite expressions (49)Ä(52), and then KS , KL mesons
with masses mS and mL evolve in dependence on time according to the following
formula:

KS(t) = e−iESt−ΓS t

2 KS(0), KL(t) = e−iELt−ΓLt

2 KL(0), (58)

where
E2

k = (p2 + m2
k), k = S, L.

If mesons are moving without interactions, then

K0
1 (t) = cos β e−iESt−ΓSt

2 KS(0) + sin β e−iδ e−iELt−ΓLt

2 KL(0),

K0
2 (t) = − sin β eiδ e−iESt−ΓS t

2 KS(0) + cos β e−iELt−ΓLt

2 KL(0).
(59)

Using the expressions for KS- and KL-meson states from (38) and using them
in expression (59), we get

K0
1 (t) =

[
e−iESt−ΓS t

2 cos2 β + e−iELt−ΓLt

2 sin2 β
]
K0

1(0)+

+ e−iδ
[

e−iESt−ΓSt

2 − e−iELt−ΓLt

2

]
sin β cos β K0

2 (0),

K0
2 (t) =

[
e−iESt−ΓS t

2 sin2 β + e−iELt−ΓLt

2 cos2 β
]
K0

1(0)+

+ eiδ
[

e−iESt−ΓSt

2 − e−iELt−ΓLt

2

]
sin β cos β K0

2 (0).

(60)
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Then the probability that meson K0
1 produced at moment t = 0 will be at

moment t �= 0 in the state of K0
2 meson is given by the squared absolute value

of the amplitude in (60); i.e.,

P (K0
2 → K0

1 , t) =|(K0
1 (0) · K0

2 (t)) |2=

=
1
4

sin2 2β
[

e−ΓSt + e−ΓLt − 2 e−
(ΓS+ΓL)t

2 cos ((EL − ES)t)
]
�

� ε
[

e−ΓSt + e−ΓLt − 2 e−
(ΓS+ΓL)t

2 cos ((EL − ES)t)
]

(61)

and

P (K0
2 → K0

1 , t) = P (K0
1 → K0

2 , t). (61′)

How can we see oscillations at K0
2 ↔ K0

1 mesons transition? Since there is a big
number of K0

1 mesons, it is difˇcult to see these oscillations because they will be
masked by their background. Then we have to see these oscillations at distances
when the number of K0

1 mesons nK0
1

is smaller than ε:

e−ΓSt1 < ε, t1 > − ln (ε)/ΓS ;

i.e., t1 > 6τs where τs is the decay time of KS mesons. If velocity v of K0

v � c, the distance L1 is

L1 > 6τsc.

Then at t > t1 expression (61) can be rewritten in the following form:

P (K0
2 → K0

1 , t) � ε

[
e−ΓLt+

+ 2 e−s
(ΓS+ΓL)t

2

(
−1 + 2 sin2

(
(EL − ES)

t

2

)) ]
. (61′′)

So, expression (61′′) can be used to register the above oscillations and the length
of such oscillations is determined by expression (64).

And P (K0
1 → K0

1 ) is

P (K0
1 → K0

1 ) =|(K0
1 (0) · K0

1 (t)) |2=

=
[
cos4 β e−ΓSt + sin4 β e−ΓLt + 2 sin2 β cos2 β e−

(ΓS+ΓL)t
2 cos ((EL − ES)t)

]
�

�
[

e−ΓSt + ε2 e−ΓLt + 2ε e−
(ΓS+ΓL)t

2 cos ((EL − ES)t)
]
, (62)
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and P (K0
2 → K0

2) is

P (K0
2 → K0

2 ) =|(K0
2 (0) · K0

2 (t)) |2=

=
[
sin4 β e−ΓSt+cos4 β e−ΓLt+2 sin2 β cos2 β e−

(ΓS+ΓL)t
2 cos ((EL − ES)t)

]
�

�
[
ε2 e−ΓSt + e−ΓLt + 2ε e−

(ΓS+ΓL)t
2 cos ((EL − ES)t)

]
, (62′)

the above has taken into account that cos2 β � 1, sin2 β � ε.
Using expressions (40) and (24) for K0

1 -, K0
2 -meson masses, we obtain the

same expression as in (56):

EL − ES
∼=

2mK0Δ
EK0

=
2Δ
γ

. (63)

Then the length of RLS of K0
1 , K0

2 oscillations is

RLS
∼=

γ

2Δ
≡ 2πhcγ

2Δ
= 0.352γ[m]. (64)

Since the decay mode of KL, KS mesons slightly differs from the decay mode of
K0

1 , K0
2 , we can suppose that ΓS � Γ1 and ΓL � Γ2. In this case expression (62)

gets the following form:

P (K0
1 → K0

2 ) ≡ P (K0
2 → K0

1) =|(K0
2 (0) · K0

1(t)) |2=

=
1
4

sin2 2β
[
e−Γ1t + e−Γ2t − 2 e−

(Γ1+Γ2)t
2 cos ((EL − ES)t)

]
. (65)

3.4. Vacuum Oscillations of K0
2 , K0

1 Mesons in the Case When Unitarity
of Mixing Matrix Is Violated. In expression (46) matrix U is unitary; i.e.,
UU−1 = 1. In principle we can use the nonunitary matrix, i.e., use matrix U and
for back transformation, use matrix UT instead of U−1 (det U = detUT = 1),
then

U =
(

cos β − sin β e−iδ

sin β eiδ cos β

)
, UT =

(
cos β sin β eiδ

− sin β e−iδ cos β

)
. (66)

Now instead of expressions (47) and (48) we get

KS = cos β K0
1 − sin β K0

2 eiδ,

KL = sin β e−iδK0
1 + cos β K0

2 ,
(67)

K0
1 = cos β KS + sin β e−iδKL,

K0
2 = − sin β eiδKS + cos β KL.

(68)
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Now if mesons are moving without interactions, then

K0
1 (t) = cos β e−iESt−ΓSt

2 KS(0) + sin β e−iδ e−iELt−ΓLt

2 KL(0),

K0
2 (t) = − sin β eiδ e−iESt−ΓS t

2 KS(0) + cos β e−iELt−ΓLt

2 KL(0).
(69)

Using the expressions for KS- and KL-meson states from (67) and putting
them into expression (69), we get

K0
1(t) =

[
e−iESt−ΓSt

2 cos2 β + e−iELt−ΓLt

2 e−2iδ sin2 β
]
K0

1(0)+

+
[
−e−iESt−ΓSt

2 eiδ + e−iELt−ΓLt

2 e−iδ
]
sin β cos β K0

2(0),

K0
2(t) =

[
e−iESt−ΓSt

2 e2iδ sin2 β + e−iELt−ΓLt

2 cos2 β
]
K0

1(0)+

+
[
−e−iESt−ΓSt

2 eiδ + e−iELt−ΓLt

2 e−iδ
]
sin β cos β K0

2(0).

(70)

The probability that meson K0
1 produced at moment t = 0 will be at moment

t �= 0 in the state of K0
1 meson is given by the squared absolute value of the

amplitude in (71); i.e.,

P (K0
1 → K0

1 ) =| (K0
1 (0) · K0

1 (t)) |2=
[

cos4 β e−ΓSt + sin4 β e−ΓLt+

. + 2 sin2 β cos2 β e−
(ΓS+ΓL)t

2 cos ((EL − ES)t + 2δ)
]
�

�
[
e−ΓSt + ε2 e−ΓLt + 2ε e−

(ΓS+ΓL)t
2 cos ((EL − ES)t + 2δ)

]
, (71)

and probability of P (K0
2 → K0

2 ) transition is

P (K0
2 → K0

2 ) =| (K0
2 (0) · K0

2 (t)) |2=
[

sin4 β e−ΓSt + cos4 β e−ΓLt+

+ 2 sin2 β cos2 β e−
(ΓS+ΓL)t

2 cos ((EL − ES)t + 2δ)
]
�

�
[
ε2 e−ΓSt + e−ΓLt + 2ε e−

(ΓS+ΓL)t
2 cos ((EL − ES)t + 2δ)

]
. (71′)

Then the probability that meson K0
1 produced at moment t = 0 will be at

moment t �= 0 in the state of K0
2 meson is given by the squared absolute value
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of the amplitude in (70); i.e.,

P (K0
2 → K0

1 , t) =| (K0
2 (0) · K0

1(t)) |2=

=
1
4

sin2 2β

[
e−ΓSt + e−ΓLt − 2 e−

(ΓS+ΓL)t
2 cos ((EL − ES)t + 2δ)

]
�

� ε
[

e−ΓSt + e−ΓLt − 2 e−
(ΓS+ΓL)t

2 cos ((EL − ES)t + 2δ)
]
, (71′′)

and P (K0
2 → K0

1 , t) = P (K0
1 → K0

2 , t) (the above has taken into account that
cos2 β � 1, sin2 β � ε).

The length of oscillations in this case is given by expressions (63), (64).
Expression (71′′) was obtained by using the standard technique of oscillations and
it is analogous to the expression obtained in [11,12] at violation of orthogonality
of KS , KL states.

4. PROBABILITIES of K0 ↔ K̄0 MESON TRANSITIONS
(OSCILLATIONS) VIA KS, KL MESONS

In principle we can consider transition of K0, K̄0 mesons into KS , KL

mesons, then (a = cos β − sin β, b = sin β + cos β):

K0 =
1√
2
[(cos β − sin β)KS + (sin β + cos β)KL] =

1√
2
(aKS + bKL),

(72)

K̄0 =
1√
2
[−(sin β + cos β)KS + (cos β − sin β)KL] =

1√
2
(−bKS + aKL),

at the inverse transformation we get

KS =
1√
2
[(cos β − sin β)K0 − (cos β + sin β)K̄0] =

1√
2
(aK0 − bK̄0),

(73)

KL =
1√
2
[(cos β + sin β)K0 + (cos β − sin β)K̄0] =

1√
2
(bK0 + aK̄0).

It is necessary to stress that in the above expression the normalization was not
lost, while in [11] (see also [12]) there is a need to fulˇl renormalization (there
if the unitarity was lost, then it is necessary to restore it):

K0 =
1√

2(1 + ε)
[KL +

√
1+ | ε |2KS ],

K̄0 =
1√

2(1 − ε)
[KL −

√
1+ | ε |2KS ].

(74)

16



It is necessary especially to stress that a straight transition from K0, K̄0 mesons
to KS , KL mesons is not correct since K0

1 , K0
2 mesons play an important role at

CP violation.
Repeating the above procedure (30)Ä(39) for expressions (46) and (47) by

using expression (58), we get

K0(t) =
1
2

[
e−iESt−ΓSt

2 a2 + e−iELt−ΓLt

2 b2
]
K0(0)+

+
1
2

[
e−iESt−ΓSt

2 − e−iELt−ΓLt

2

]
abK̄0(0), (75)

K̄0(t) =
1
2

[
e−iESt−ΓSt

2 b2 + e−iELt−ΓLt

2 a2
]
K0(0)+

+
1
2

[
e−iESt−ΓSt

2 − e−iELt−ΓLt

2

]
baK̄0(0). (76)

The probability that meson K0 produced at moment t = 0 will be at moment
t �= 0 in the state of K̄0 meson is given by the squared absolute value of the
amplitude in (75), (76); i.e.,

P (K0 → K̄0, t) = P (K̄0 → K0, t) =|(K̄0(0) · K0(t)) |2=

=
1
4
a2b2

[
e−ΓSt + e−ΓLt − 2 e−

(ΓS+ΓL)t
2 cos ((EL − ES)t)

]
. (77)

Then

P (K0 → K0, t) =|(K0(0) · K0(t)) |2=

=
1
4

[
a4 e−ΓSt + b4 e−ΓLt + 2a2b2 e−

(ΓS+ΓL)t
2 cos ((EL − ES)t)

]
. (78)

and

P (K̄0 → K̄0, t) =|(K̄0(0) · K̄0(t)) |2=

=
1
4

[
b4 e−ΓSt + a4 e−ΓLt + 2a2b2 e−

(ΓS+ΓL)t
2 cos ((EL − ES)t)

]
. (79)

From expressions (77)Ä(79) we see that these expressions have no sense since
at transition of K0, K̄0 mesons into superpositions of K0

1 , K0
2 mesons the K0

1

meson states decay very quickly and then K0
2 -meson states remain; i.e., further it

is justiˇed to consider only K0
1 -, K0

2 -meson states. It is necessary to remind that
oscillations between KS, KL mesons are absent.
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5. CONCLUSION

In the literature [11, 12] the nonunitary transformation is used at obtaining
the KS , KL states. It is supposed that these states arise at CP violation. In
expression (4) for |K0

1 |2 cross term is present which is responsible for oscillations.
This term can appear only at violation of orthogonality of KS, KL states. In the
framework of the quantum approach we have to suppose that the KS, KL states are
orthogonal. The problem we are solving in this work is: how do oscillations arise
in the framework of quantum mechanics approach (without violation of unitarity
and orthogonality) and how do short-living mesons appear at long distances from
K0 source? For this aim we have used the standard technique of oscillations.

This work has considered K0, K̄0 mixings and oscillations via K0
1 -, K0

2 -
meson states at strangeness violation by weak interactions and K0

1 -, K0
2 -meson

mixings and oscillations via KS-, KL-meson states at CP violation by the weak
interactions without and with taking into decay widths. We have worked in
the framework of the mass mixing scheme while considering the oscillations.
It has been shown that K0

1 -(KS-)meson states appear at big distances from the
K0-meson source after their decays (τL � τS (τ2 � τ1)) due to oscillations of
residual K0

2 (KL) mesons, then we see again short-living K0
1 (KS) mesons. It

is implied that KL ↔ KS meson oscillations are absent. We have also consid-
ered the case when at CP violation the unitarity is violated but orthogonality
of KS , KL states remains. The general expressions for probabilities of meson
oscillations (transitions) have been given.

It is necessary to remark that usually it is supposed [22] that at long distances

KL � K2 + εK1

mesons are presented and then the probability of CP violation is directly propor-
tional to the parameter of CP violation ε:

P (KL → 2π, t) ∼ ε.

But when we use the standard technique of oscillations at long distances, K2

states remain and K1 states appear as a result of oscillations, i.e., transition of
K2 mesons into K1 mesons. Then

KL = sin β K0
1 + cos β K0

2 ,

where sin β � ε. The probablity P (K0
2 → K0

1 , t) of such transitions, i.e., CP
violation, is proportional to ε2; i.e.,

P (K0
2 → K0

1 , t) ∼ ε2

but not to ε, in contrast to [22].
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