E2-2011-48

Kh. M. Beshtoev

ABOUT OSCILLATIONS IN THE SYSTEM OF K^{0} MESONS

Об осцилляциях в системе K^{0}-мезонов
Рассматриваются смешивания и осцилляции K^{0}-, \bar{K}^{0}-мезонов через K_{1}^{0}-, K_{2}^{0} мезонные состояния при нарушении странности в слабых взаимодействиях, а также смешивания и осцилляции K_{1}^{0}-, K_{2}^{0}-мезонов через K_{S}-, K_{L}-мезонные состояния при нарушении $C P$-четности в слабых взаимодействиях без учета и с учетом ширин распадов. Мы работаем в рамках схемы массовых смешиваний. Показано, что на больших расстояниях от источника K^{0}-мезонов K_{1}^{0}-мезонные состояния после их распада ($\tau_{L} \gg \tau_{S}$ ($\tau_{2} \gg \tau_{1}$)) появляются за счет осцилляций оставшихся K_{2}^{0}-мезонов, и тогда мы можем увидеть короткоживущие K_{1}^{0}-мезоны по их распадам на два π-мезона. Предполагается, что осцилляции мезонов $K_{L} \leftrightarrow K_{S}$ отсутствуют. Также рассматривается случай, когда при $C P$-нарушении унитарность нарушается, но ортогональность $K_{S^{-}}, K_{L}$-состояний сохраняется. Получены общие выражения для вероятностей мезонных осцилляций (переходов).

Работа выполнена в Лаборатории физики высоких энергий им. В. И. Векслера и А. М. Балдина ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна, 2011

Beshtoev Kh. M.
E2-2011-48
About Oscillations in the System of K^{0} Mesons
This work considers K^{0}-, \bar{K}^{0}-meson mixings and oscillations via K_{1}^{0}-, K_{2}^{0}-meson states at strangeness violation by the weak interactions and K_{1}^{0}-, K_{2}^{0}-meson mixings and oscillations via $K_{S^{-}}, K_{L}$-meson states at $C P$ violation by the weak interactions without and with taking into account decay widths. We work in the framework of the masses mixing scheme. It is shown that $K_{1}^{0}-\left(K_{S^{-}}\right)$meson states appear at big distances from the K^{0}-mesons source after their decays $\left(\tau_{L} \gg \tau_{S}\left(\tau_{2} \gg \tau_{1}\right)\right.$) due to oscillations of residual $K_{2}^{0}\left(K_{L}\right)$ mesons and then again we see short-living $K_{1}^{0}\left(K_{S}\right)$ mesons. It is implied that $K_{L} \leftrightarrow K_{S}$ meson oscillations are absent. The case is also considered when at $C P$ violation unitarity is violated, but orthogonality of K_{S}, K_{L} states remains. The general expressions for probabilities of meson oscillations (transitions) are given.

The investigation has been performed at the Veksler and Baldin Laboratory of High Energy Physics, JINR.

1. INTRODUCTION

Oscillations of K^{0} mesons (i.e., $K^{0} \leftrightarrow \bar{K}^{0}$) were theoretically [1] and experimentally [2] investigated in the 1950s and 1960s. Recently there has been achieved an understanding that these processes go as a double-stadium process [3-6]. A detailed study of K^{0} meson mixing and oscillations is very important since the theory of neutrino oscillations is built in analogy with the theory of K^{0} meson oscillations.

Previously it was supposed that P parity is a well number; however, after theoretical [7] and experimental [8] works it has become clear that in weak interactions P parity is violated. Then in work [9] there was an advanced supposition that in the weak interactions $C P$ parity is conserved but not P parity. Work [10] has reported that in K_{L} decays with a probability of about 0.2% there is two- π decay mode that is a detection of $C P$-parity violation.

Usually it is supposed that at big distances from K^{0}-meson sources only K_{L}-meson states remain. Since this meson is a superposition of K_{1}^{0}, K_{2}^{0} mesons $K_{L} \simeq \alpha K_{1}^{0}+\beta K_{2}^{0}\left(\alpha^{2}+\beta^{2}=1, \beta \gg \alpha\right)$ and

$$
K_{L}(t) \simeq \alpha K_{1}^{0}(0) \mathrm{e}^{\left(-i m_{S}-\Gamma_{S} / 2\right) t}+\beta K_{2}^{0}(0) \mathrm{e}^{\left(-i m_{L}-\Gamma_{L} / 2\right) t}
$$

at time $t \gg 1 / \Gamma_{S}$ almost all K_{S} mesons have time to decay and $K_{L} \rightarrow K_{2}^{0}$ mesons will remain. Then there is the only possibility to generate K_{1}^{0} mesons $K_{2}^{0} \leftrightarrow K_{1}^{0}$ meson oscillations via K_{S}, K_{L} mesons; i.e., in reality at big distances K_{2}^{0} are responsible for generation of K_{1}^{0} mesons but not K_{L} mesons since $K_{L} \leftrightarrow K_{S}$ oscillations are absent.

It is necessary to remark that the literature devoted to this subject seldom mentions K_{1}^{0}, K_{2}^{0} mesons which appear at violation of strangeness S. However, taking into account these states is very important since the weak interaction process with S violation is faster than the weak interaction process with $C P$ violation; i.e., first K_{1}^{0}, K_{2}^{0} mesons are produced and then the $K_{S^{-}}, K_{L^{-}}$-meson states are produced. It is well seen from a very small probability of $C P$ violation in the system of K^{0} mesons. We cannot correctly understand the K^{0} processes if we do not take into account the presence of K_{1}^{0}-, K_{2}^{0}-meson states.

A phenomenological analysis of K^{0}-meson processes was done in [11] (see also [12]). In this work another approach is used to consider K^{0}-meson processes.

This work is based on the principles of the quantum field theory or particle physics. It is supposed that particles (K^{0} mesons) during production have no widths for decomposition; i.e., they can only decay in a usual way, as is the case in particle physics. This remark is important since in this case particles cannot form wave packets and the wave packets can then be formed only from a big number of identical particles (mesons). The supposition that K^{0} mesons can be considered as wave packets is a hypothesis and has at present neither experimental nor theoretical confirmation. But at the same time, from our experience in particle physics we can draw a conclusion that elementary particles have no widths in order to consider them as wave packets.

In the literature $[11,12]$ a nonunitary transformation is used at obtaining of K_{S}, K_{L} states. It is supposed that these states arise at $C P$ violation. The expression for these states has the following form:

$$
\begin{align*}
& K_{S}=\left(K_{1}^{0}+\varepsilon_{1} K_{2}^{0}\right) / \sqrt{1+\left|\varepsilon_{1}\right|^{2}} \\
& K_{L}=\left(K_{2}^{0}+\varepsilon_{1} K_{1}^{0}\right) / \sqrt{1+\left|\varepsilon_{1}\right|^{2}} \tag{1}
\end{align*}
$$

and on the contrary

$$
\begin{align*}
& K_{1}^{0}=\left(K_{S}-\varepsilon_{1} K_{L}\right) \frac{\sqrt{1+\left|\varepsilon_{1}\right|^{2}}}{1-\varepsilon_{1}^{2}} \\
& K_{2}^{0}=\left(K_{L}-\varepsilon_{1} K_{S}\right) \frac{\sqrt{1+\left|\varepsilon_{1}\right|^{2}}}{1-\varepsilon_{1}^{2}} \tag{2}
\end{align*}
$$

Writing the wave function of K_{L}, K_{S} mesons in the form

$$
\begin{align*}
K_{S} & =\frac{1-\varepsilon_{1}}{\sqrt{2\left(1+\left|\varepsilon_{1}\right|^{2}\right)}} \mathrm{e}^{-i m_{S} t-\frac{\Gamma_{S} t}{2}} \\
K_{L} & =\frac{1-\varepsilon_{1}}{\sqrt{2\left(1+\left|\varepsilon_{1}\right|^{2}\right)}} \mathrm{e}^{-i m_{L} t-\frac{\Gamma_{L} t}{2}} \tag{3}
\end{align*}
$$

putting expression (3) into expression (2) and then taking the first term of (2) in the quadratic form on the absolute value, we obtain $(\hbar=1)$

$$
\begin{align*}
\left|K_{1}^{0}\right|^{2}= & \frac{\left|1-\varepsilon_{1}\right|^{2}}{2\left(1-\left|\varepsilon_{1}\right|^{2}\right)} \times \\
& \times\left(\mathrm{e}^{-\Gamma_{S} t}+|\epsilon|^{2} \mathrm{e}^{-\Gamma_{L} t}-2|\epsilon| \mathrm{e}^{-\frac{\left(\Gamma_{S}+\Gamma_{L}\right) t}{2}} \cos \left(\left(m_{L}-m_{S}\right) t\right)\right) \tag{4}
\end{align*}
$$

In expression (4) a cross term appears which is responsible for oscillations. This term can be interpreted as oscillations between K_{S}, K_{L} states; i.e., these states are nonorthogonal ones.

In the framework of quantum mechanics, if the states are wave vectors, then expression (3) has to be written in the following form:

$$
\begin{align*}
& K_{S}(t)=\frac{1-\varepsilon_{1}}{\sqrt{2\left(1+\left|\varepsilon_{1}\right|^{2}\right)}} \mathrm{e}^{-i m_{S} t-\frac{\Gamma_{S} t}{2}} K_{S}(0) \\
& K_{L}(t)=\frac{1-\varepsilon_{1}}{\sqrt{2\left(1+\left|\varepsilon_{1}\right|^{2}\right)}} \mathrm{e}^{-i m_{L} t-\frac{\Gamma_{L} t}{2}} K_{L}(0) \tag{5}
\end{align*}
$$

then after taking it in the quadratic form on the absolute value we get

$$
\begin{equation*}
\left|K_{1}^{0}\right|^{2}=\frac{\left|1-\varepsilon_{1}\right|^{2}}{2\left(1-\left|\varepsilon_{1}\right|^{2}\right)}\left(\mathrm{e}^{-\Gamma_{S} t}+|\epsilon|^{2} \mathrm{e}^{-\Gamma_{L} t}\right) \tag{6}
\end{equation*}
$$

In expression (6) the interference term is absent; i.e., the oscillations are absent.
Now we have to solve the problem: how do oscillations arise in the quantum mechanics approach and how do short-living mesons appear at long distances from K^{0} source? Come to the solution of this problem.

At first we consider mixings of K^{0}, \bar{K}^{0} mesons at violation of strangeness S, and K^{0}, \bar{K}^{0} oscillations without and with taking into account the decay widths of K_{1}^{0}, K_{2}^{0} mesons. Then we turn to the consideration of K_{1}^{0}, K_{2}^{0} meson mixings at $C P$-parity violation when K_{S}, K_{L} mesons are produced. Further we consider K_{1}^{0}-, K_{2}^{0}-meson oscillations via K_{S}, K_{L} mesons without and with taking into account decay widths of K_{S}^{0}, K_{L}^{0} mesons. In conclusion, we discuss the problem: what is the source of K_{S} (or rather K_{2}^{0}, K_{S}) mesons at large distances from the K^{0}-meson source. Taking into account the widths of meson decays, we will work in the framework of the commonly accepted approach [13]. It is necessary to note that the value for $K_{S^{-}}, K_{L^{-}}$(or more accurately K_{1}^{0},,K_{2}^{0}-) meson masses difference was first measured in work [14] (for modern value for $m_{K_{L}}-m_{K_{S}}$ see in [15]).

2. VACUUM MIXINGS AND OSCILLATIONS OF K^{0}, \bar{K}^{0} MESONS AT STRANGENESS VIOLATION BY THE WEAK INTERACTIONS WITHOUT AND WITH TAKING INTO ACCOUNT DECAY WIDTHS

2.1. K^{0}-, \bar{K}^{0}-Vacuum Mixings. K^{0}-, \bar{K}^{0}-meson states are produced in the strong interaction (i.e., they are eigenstates of these interactions), then the mass matrix of K^{0} mesons will have a diagonal form [3-6]. Following the traditions, we will consider the K^{0}-meson mixings and oscillations by using the mass matrix, and for convenience the masses are used in the linear but not in the quadratic form. Then the mass matrix has the following form:

$$
\left(\begin{array}{cc}
m_{K^{0} K^{0}} & 0 \tag{7}\\
0 & m_{\bar{K}^{0} \bar{K}^{0}}
\end{array}\right) .
$$

Because of the weak interactions violating strangeness $(s \leftrightarrow d)$, this mass matrix (7) becomes a nondiagonal matrix:

$$
\left(\begin{array}{ll}
m_{K^{0} K^{0}} & m_{K^{0} \bar{K}^{0}} \tag{8}\\
m_{\bar{K}^{0} K^{0}} & m_{\bar{K}^{0} \bar{K}^{0}}
\end{array}\right) \rightarrow U^{-} 1\left(\begin{array}{cc}
m_{K_{1}^{0}} & 0 \\
0 & m_{K_{2}^{0}}
\end{array}\right) U, U=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) .
$$

For obtaining the eigenstates of weak interactions which violate strangeness, we have to diagonalize this matrix by turning it through angle θ. By using this procedure, we get

$$
\begin{gather*}
\tan 2 \theta=\frac{2 m_{K^{0} \bar{K}^{0}}}{\mid m_{K^{0}-m_{\bar{K}^{0}}}}, \\
\sin 2 \theta=\frac{2 m_{K^{0} \bar{K}^{0}}}{\sqrt{\left(m_{K^{0}}-m_{\bar{K}^{0}}\right)^{2}+\left(2 m_{K^{0} \bar{K}^{0}}\right)^{2}}} \tag{9}\\
m_{1,2}=m_{K_{1}, K_{2}}=\frac{1}{2}\left[\left(m_{K^{0}}+m_{\bar{K}^{0}}\right) \pm\right. \\
 \tag{10}\\
\left. \pm\left(\left(m_{K^{0}}-m_{\bar{K}^{0}}\right)^{2}+4 m_{K^{0} \bar{K}^{0}}^{2}\right)^{1 / 2}\right]
\end{gather*}
$$

where K_{1}^{0} and K_{2}^{0} states are eigenstates of the weak interactions violating strangeness. Now these states are superposition states of K^{0}, \bar{K}^{0} mesons:

$$
\begin{align*}
& K_{1}^{0}=\cos \theta K^{0}-\sin \theta \bar{K}^{0} \\
& K_{2}^{0}=\sin \theta K^{0}+\cos \theta \bar{K}^{0} \tag{11}
\end{align*}
$$

and the inverse transformation gives

$$
\begin{gather*}
K^{0}=\cos \theta K_{1}^{0}+\sin \theta K_{2}^{0} \\
\bar{K}^{0}=-\sin \theta K_{1}^{0}+\cos \theta \bar{K}_{2}^{0} \tag{12}
\end{gather*}
$$

since $m_{K^{0} K^{0}}=m_{\bar{K}^{0} \bar{K}^{0}}$, for $C P T$ invariance of the weak interactions this mixing angle θ will be equal to $\pi / 4$. Then from expressions (11) and (12) we get

$$
\begin{array}{ll}
K_{1}^{0}=\frac{K^{0}-\bar{K}^{0}}{\sqrt{2}}, & K_{2}^{0}=\frac{K^{0}+\bar{K}^{0}}{\sqrt{2}} \\
K^{0}=\frac{K_{1}^{0}+K_{2}^{0}}{\sqrt{2}}, & \bar{K}^{0}=\frac{K_{1}^{0}-K_{2}^{0}}{\sqrt{2}}
\end{array}
$$

It is necessary to remark that $C P K_{1}^{0}=K_{1}^{0}$ and $C P K_{2}^{0}=-K_{2}^{0}$; i.e., $C P$ parity of K_{1}^{0} meson is a positive value and it can decay into two π mesons, and $C P$ parity of K_{2}^{0} meson is a negative value and it can decay into three π mesons.

The computation of nondiagonal terms of the mass matrix (8)-(10) can be fulfilled by using the Feynman diagrams from the figure in the framework of the standard model of electroweak interactions $[12,16]$ with Kabibbo-KobayashiMaskawa matrices [17].

Diagrams for $d \leftrightarrow s$ quark transitions, i.e., for $K^{0} \leftrightarrow \bar{K}^{0}$ transitions via W-boson exchanges by using Kobayashi-Maskawa matrix
2.2. Vacuum Oscillations of K^{0} Mesons. Now we come to K^{0}-meson oscillations. The oscillation of D^{0}, B^{0} mesons can be considered in an analogous way. K^{0}, \bar{K}^{0} mesons besides masses have decay widths $\Gamma_{K^{0}}, \Gamma_{\bar{K}^{0}}$ and therefore they will decay into π mesons.

For example, we can consider oscillations of K^{0} produced from the following reaction:

$$
\begin{equation*}
\pi^{-}+p \rightarrow K^{0}+\Lambda \tag{14}
\end{equation*}
$$

At the moment $t=0$ there are only K^{0} mesons produced in the strong interactions, and if we take into account expression (12) at another moment $t>0$, this state will be transformed into the following state:

$$
\begin{equation*}
K^{0}(t)=\frac{1}{2}\left[\left(K^{0}+\bar{K}^{0}\right) \mathrm{e}^{-i m_{1} t-\frac{\Gamma_{1}}{2} t}+\left(K^{0}-\bar{K}^{0}\right) \mathrm{e}^{-i m_{2} t-\frac{\Gamma_{2}}{2} t}\right] \tag{15}
\end{equation*}
$$

where $\Gamma_{1}, \Gamma_{2}, m_{1}, m_{2}$ are widths and masses of K_{1}^{0}, K_{2}^{0} mesons.
If Γ_{1}, Γ_{2} are equal to zero, then K^{0}, \bar{K}^{0} oscillations will continue without stopping and K^{0}, \bar{K}^{0} will transform into each other with a periodicity of $t=$ $\pi /\left(m_{1}-m_{2}\right)$.

The length of K^{0}-meson oscillations at low velocities v is

$$
\begin{equation*}
L=v t=\frac{2 \pi v}{\left|m_{1}-m_{2}\right|}=\frac{2 \pi p_{K^{0}}}{2 m_{K^{0}} 2 m_{K^{0} \bar{K}^{0}}} . \tag{16}
\end{equation*}
$$

In the standard approach $[18,19]$ to K^{0}-meson oscillations, it is supposed that K^{0} mesons are produced at once in the form of superposition states (12). It
means that at production of K^{0}, \bar{K}^{0} mesons their mass matrix has a nondiagonal form. In order to find their eigenstates, we have to diagonalize this matrix. Then we see that their eigenstates are K_{1}^{0}, K_{2}^{0} mesons; i.e., this case has to produce K_{1}^{0}, K_{2}^{0} mesons but not K^{0}, \bar{K}^{0} mesons.

As a matter of fact, since K^{0} mesons are eigenstates of the strong interactions, they cannot be produced in superposition states of K_{1}^{0}, K_{2}^{0} mesons. K^{0} mesons become superposition states of K_{1}^{0}, K_{2}^{0} mesons when weak interactions transform them into a superposition of eigenstates. It is important to note that, in contrast to the strong interactions, the weak interactions will produce K_{1}^{0},- K_{2}^{0}-meson states. Now we come to a detailed consideration of K^{0}-meson oscillations in the framework of the mass mixing scheme.

The mass matrix of K^{0} mesons has the form

$$
\left(\begin{array}{cc}
m_{K^{0}} & 0 \tag{17}\\
0 & m_{\bar{K}^{0}}
\end{array}\right) .
$$

Strangeness is violated due to the weak interactions and nondiagonal terms appear in this masses matrix, then it gets the following form ($C P$ is conserved):

$$
\left(\begin{array}{cc}
m_{K^{0}} & m_{K^{0} \bar{K}^{0}} \tag{18}\\
m_{\bar{K}^{0} K^{0}} & m_{\bar{K}^{0}}
\end{array}\right) .
$$

At diagonalization of this matrix we obtain $K_{1}^{0}-, K_{2}^{0}$-meson states and the states K^{0}, \bar{K}^{0} are transformed into superposition of K_{1}^{0}, K_{2}^{0} states (see expression (12)). Their mixing angle and masses are given by expressions (10)-(12).

The expression for $\sin ^{2} 2 \theta$ is given by (θ is the angle of mixing)

$$
\sin ^{2} 2 \theta=\frac{\left(2 m_{K^{0} \bar{K}^{0}}\right)^{2}}{\left(m_{K^{0}}-m_{\bar{K}^{0}}\right)^{2}+\left(2 m_{K^{0} \bar{K}^{0}}\right)^{2}}, \quad\left(\begin{array}{cc}
m_{K_{1}^{0}} & 0 \tag{19}\\
0 & m_{K_{2}^{0}}
\end{array}\right) .
$$

The evolution of K_{1}^{0}-, K_{2}^{0}-meson states with masses m_{1}, m_{2} will be given with the following expression:

$$
\begin{equation*}
K_{1}^{0}(t)=\mathrm{e}^{-i E_{1} t} K_{1}^{0}(0), \quad K_{2}^{0}(t)=\mathrm{e}^{-i E_{2} t} K_{2}^{0}(0) \tag{20}
\end{equation*}
$$

where

$$
E_{k}^{2}=\left(p^{2}+m_{k}^{2}\right), \quad k=1,2
$$

If these mesons are moving without interactions, then

$$
\begin{gather*}
K^{0}(t)=\cos \theta \mathrm{e}^{-i E_{1} t} K_{1}^{0}(0)+\sin \theta \mathrm{e}^{-i E_{2} t} K_{2}^{0}(0) \\
\bar{K}^{0}(t)=-\sin \theta \mathrm{e}^{-i E_{1} t} K_{1}^{0}(0)+\cos \theta \mathrm{e}^{-i E_{2} t} K_{2}^{0}(0) \tag{21}
\end{gather*}
$$

Using expression (11) for K_{1}^{0} and K_{2}^{0} and putting them into (21), we obtain

$$
\begin{align*}
K^{0}(t) & =\left[\mathrm{e}^{-i E_{1} t} \cos ^{2} \theta+\mathrm{e}^{-i E_{2} t} \sin ^{2} \theta\right] K^{0}(0)+ \\
& +\left[\mathrm{e}^{-i E_{1} t}-\mathrm{e}^{-i E_{2} t}\right] \sin \theta \cos \theta \bar{K}^{0}(0), \\
\bar{K}^{0}(t) & =\left[\mathrm{e}^{-i E_{1} t} \sin ^{2} \theta+\mathrm{e}^{-i E_{2} t} \cos ^{2} \theta\right] \bar{K}^{0}(0)+ \tag{22}\\
& +\left[\mathrm{e}^{-i E_{1} t}-\mathrm{e}^{-i E_{2} t}\right] \sin \theta \cos \theta \bar{K}^{0}(0)
\end{align*}
$$

The probability that meson K^{0} produced at moment $t=0$ will be at moment $t \neq 0$ in the state of \bar{K}^{0} meson is given by a squared absolute value of the amplitude in (22); i.e.,

$$
\begin{align*}
P\left(K^{0}\right. & \left.\rightarrow \bar{K}^{0}\right)=\left|\left(\bar{K}^{0}(0) \cdot K^{0}(t)\right)\right|^{2}= \\
& =\frac{1}{2} \sin ^{2} 2 \theta\left[1-\cos \left(\left(E_{2}-E_{1}\right) t\right)\right] \equiv \frac{1}{2}\left[1-\cos \left(\left(E_{2}-E_{1}\right) t\right)\right] \tag{23}
\end{align*}
$$

where $\theta=\pi / 4$. Using expressions for masses of K_{1}^{0}, K_{2}^{0} mesons, we obtain

$$
\begin{equation*}
m_{K_{1}^{0}}=m_{K^{0}}-\Delta, \quad m_{K_{2}^{0}}=m_{K^{0}}+\Delta m, \tag{24}
\end{equation*}
$$

where $\Delta=2 m_{K^{0} \bar{K}^{0}}$. Since $m_{K^{0}} \gg \Delta$,

$$
\begin{gather*}
E_{1}=\sqrt{p^{2}+m_{K_{1}^{0}}^{2}} \cong E_{K^{0}}\left(1-\frac{m_{K^{0}} \Delta}{E_{K^{0}}^{2}}\right) \\
E_{2}=\sqrt{p^{2}+m_{K_{2}^{0}}^{2}} \cong E_{K^{0}}\left(1+\frac{m_{K^{0}} \Delta}{E_{K^{0}}^{2}}\right) \tag{25}\\
E_{2}-E_{1}=\frac{2 m_{K^{0}} \Delta}{E_{K^{0}}}=\frac{2 \Delta}{\gamma} \tag{26}
\end{gather*}
$$

Then the length L_{12} of K^{0}-, \bar{K}^{0}-meson oscillations is

$$
\begin{equation*}
L_{12}=\frac{\gamma}{2 \Delta} \equiv \frac{2 \pi h c \gamma}{2 \Delta} \tag{27}
\end{equation*}
$$

2.3. The Vacuum K^{0}-meson Oscillations with Taking into Account the Width of $K_{1}^{0}-, K_{2}^{0}$-meson Decays. Taking into account that K_{1}^{0}, K_{2}^{0} decay and have decay widths Γ_{1}, Γ_{2}, we can rewrite expressions (20)-(26), and then K_{1}^{0}, K_{2}^{0} mesons with masses m_{1}, m_{2} evolve in dependence on time according to the following law:

$$
\begin{equation*}
K_{1}^{0}(t)=\mathrm{e}^{-i E_{1} t-\frac{\Gamma_{1} t}{2}} K_{1}^{0}(0), \quad K_{2}^{0}(t)=\mathrm{e}^{-i E_{2} t-\frac{\Gamma_{2} t}{2}} K_{2}^{0}(0) \tag{28}
\end{equation*}
$$

$E_{2}-E_{1}$ is given by (25) and it is equal to $2 m_{K^{0}} \Delta / E_{K^{0}}$:

$$
\begin{equation*}
E_{2}-E_{1} \simeq \frac{2 m_{K^{0}} \Delta}{E_{K^{0}}} \tag{29}
\end{equation*}
$$

In this work we suppose that $\Gamma_{k}=\gamma \Gamma_{k}^{0}$, where Γ_{k}^{0} is K_{k}^{0}-meson width at rest and $\gamma=E_{k} / m_{k}$ is a usual relativistic factor $(k=1,2)$.

If these mesons move without interaction, then

$$
\begin{gather*}
K^{0}(t)=\cos \theta \mathrm{e}^{-i E_{1} t-\frac{\Gamma_{1} t}{2}} K_{1}^{0}(0)+\sin \theta \mathrm{e}^{-i E_{2} t-\frac{\Gamma_{2} t}{2}} K_{2}^{0}(0), \\
\bar{K}^{0}(t)=-\sin \theta \mathrm{e}^{-i E_{1} t-\frac{\Gamma_{1} t}{2}} K_{1}^{0}(0)+\cos \theta \mathrm{e}^{-i E_{2} t-\frac{\Gamma_{2} t}{2}} K_{2}^{0}(0) . \tag{30}
\end{gather*}
$$

Using expression (11) for K_{1}^{0}, K_{2}^{0} and putting it into (30), we obtain

$$
\begin{align*}
K^{0}(t) & =\left[\mathrm{e}^{-i E_{1} t-\frac{\Gamma_{1} t}{2}} \cos ^{2} \theta+\mathrm{e}^{-i E_{2} t-\frac{\Gamma_{2} t}{2}} \sin ^{2} \theta\right] K^{0}(0)+ \\
& +\left[\mathrm{e}^{-i E_{1} t-\Gamma_{1} / 2}-\mathrm{e}^{-i E_{2} t-\frac{\Gamma_{2} t}{2}}\right] \sin \theta \cos \theta \bar{K}^{0}(0), \\
\bar{K}^{0}(t) & =\left[\mathrm{e}^{-i E_{1} t-\frac{\Gamma_{1} t}{2}} \sin ^{2} \theta+\mathrm{e}^{-i E_{2} t-\frac{\Gamma_{2} t}{2}} \cos ^{2} \theta\right] \bar{K}^{0}(0)+ \tag{31}\\
& +\left[\mathrm{e}^{-i E_{1} t-\frac{\Gamma_{1} t}{2}}-\mathrm{e}^{-i E_{2} t-\frac{\Gamma_{2} t}{2}}\right] \sin \theta \cos \theta \bar{K}^{0}(0) .
\end{align*}
$$

The probability that meson K^{0} produced at moment $t=0$ will be at moment $t \neq 0$ in the state of \bar{K}^{0} meson is given by a squared absolute value of the amplitude in (31); i.e.,

$$
\begin{align*}
P\left(K^{0} \rightarrow \bar{K}^{0}\right)=\mid & \left.\left(\bar{K}^{0}(0) \cdot K^{0}(t)\right)\right|^{2}=\cos ^{2} \theta \sin ^{2} \theta \times \\
& \times\left[\mathrm{e}^{-\Gamma_{1} t}+\mathrm{e}^{-\Gamma_{2} t}-2 \mathrm{e}^{-\frac{\left(\Gamma_{1}+\Gamma_{2}\right) t}{2}} \cos \left(\left(E_{2}-E_{1}\right) t\right)\right] \tag{32}
\end{align*}
$$

since $\cos ^{2} \theta=\sin ^{2} \theta=1 / 2$,

$$
\begin{equation*}
P\left(K^{0} \rightarrow \bar{K}^{0}\right)=\frac{1}{4}\left[\mathrm{e}^{-\Gamma_{1} t}+\mathrm{e}^{-\Gamma_{2} t}-2 \mathrm{e}^{-\frac{\left(\Gamma_{1}+\Gamma_{2}\right) t}{2}} \cos \left(\left(E_{2}-E_{1}\right) t\right)\right] \tag{33}
\end{equation*}
$$

where $E_{2}-E_{1}$ is determined by expression (29).
Now together with K^{0}-meson oscillations, the K_{1}^{0}-, K_{2}^{0}-meson decays will take place. Since $\Gamma_{1} \gg \Gamma_{2}$, after some time K_{2}^{0} mesons will remain and K^{0} meson oscillations will disappear. The above-considered case will be realized when $C P$ violation is absent. Now we consider the case when $C P$ violation takes place.

3. K_{1}^{0}-, K_{2}^{0}-MESON VACUUM MIXINGS AND OSCILLATIONS AT INDIRECT VIOLATION OF $C P$ INVARIANCE WITHOUT AND WITH TAKING INTO ACCOUNT WIDTH DECAYS

At first we consider vacuum mixings of K_{1}^{0}, K_{2}^{0} mesons, then come to the consideration of K_{1}^{0}-, K_{2}^{0}-meson oscillations in cases when width decays are not taken into account and when width decays are taken into account.
3.1. The Vacuum Mixings of K_{1}^{0}, K_{2}^{0} Mesons. In the case of $C P$ violation just as in the case of K^{0}, \bar{K}^{0} mesons when they are transformed into superpositions of K_{1}^{0}, K_{2}^{0} mesons, the K_{1}^{0}, K_{2}^{0} mesons have to transform into superposition states of K_{S} and K_{L} mesons.

Following the traditions mentioned above, we will consider mixings and oscillations of K_{1}^{0}, K_{2}^{0} mesons by using the mass matrix with masses in the linear form. Before $C P$ violation the mass matrix of K_{1}^{0}, K_{2}^{0} has a diagonal form:

$$
\left(\begin{array}{cc}
m_{K_{1}^{0}} & 0 \tag{34}\\
0 & m_{K_{2}^{0}}
\end{array}\right)
$$

Then because of the presence of $C P$-parity violation in weak interactions the mass matrix becomes nondiagonal:

$$
\left(\begin{array}{cc}
m_{K_{1}^{0}} & m_{12} \tag{35}\\
m_{21} & m_{\bar{K}_{2}^{0}}
\end{array}\right) \equiv U^{-} 1\left(\begin{array}{cc}
m_{K_{S}} & 0 \\
0 & m_{K_{L}}
\end{array}\right) U, U=\left(\begin{array}{cc}
\cos \beta & -\sin \beta \\
\sin \beta & \cos \beta
\end{array}\right)
$$

Diagonalizing this matrix by turning it through angle β, we get

$$
\begin{gather*}
\tan 2 \beta=\frac{2 m_{12}}{\left|m_{K_{1}^{0}}-m_{K_{2}^{0}}\right|}, \\
\sin 2 \beta=\frac{2 m_{12}}{\sqrt{\left(m_{K_{1}^{0}}-m_{K_{2}^{0}}\right)^{2}+\left(2 m_{12}\right)^{2}}}, \tag{36}\\
m_{K_{S}, K_{L}}=\frac{1}{2}\left[\left(m_{K_{1}^{0}}+m_{K_{2}^{0}}\right) \mp\left(\left(m_{K_{1}^{0}}-m_{K_{2}^{0}}\right)^{2}+4 m_{12}^{2}\right)^{1 / 2}\right] . \tag{37}
\end{gather*}
$$

This procedure leads to appearance of K_{S}, K_{L} states which consist of K_{1}^{0}, K_{2}^{0} states:

$$
\begin{align*}
K_{S} & =\cos \beta K_{1}^{0}-\sin \beta K_{2}^{0} \\
K_{L} & =\sin \beta K_{1}^{0}+\cos \beta K_{2}^{0} \tag{38}
\end{align*}
$$

At inverse transformation we get

$$
\begin{gather*}
K_{1}^{0}=\cos \beta K_{S}+\sin \beta K_{L} \\
K_{2}^{0}=-\sin \beta K_{S}+\cos \beta K_{L} \tag{39}
\end{gather*}
$$

It is necessary to stress that in the above expression we have used unitary transformation, in contrast to nonunitary transformation which was applied in work [11].

Now come to computation of the value of $K_{S^{-}}$and K_{L}-meson masses difference by using $K_{1}^{0}-, K_{2}^{0}$-meson mass values from expressions (24) and (37):

$$
\begin{equation*}
m_{S, L}=\frac{1}{2}\left(2 m_{K^{0}} \mp \sqrt{(2 \Delta)^{2}+\left(2 m_{12}\right)^{2}}\right) \tag{40}
\end{equation*}
$$

$$
\begin{equation*}
\Delta m_{L S}=m_{L}-m_{S}=\sqrt{(2 \Delta)^{2}+\left(2 m_{12}\right)^{2}} \tag{41}
\end{equation*}
$$

It is clear that term m_{12} is much bigger than Δ (see below); i.e.,

$$
\begin{equation*}
\Delta \gg m_{12} . \tag{42}
\end{equation*}
$$

Then $K_{L^{-}}$and K_{S}-masses difference is

$$
\begin{equation*}
\Delta m_{L S}=m_{L}-m_{S} \simeq 2 \Delta \tag{43}
\end{equation*}
$$

Using expression (43) and value for $\sin ^{2} \beta$ obtained from experiments [10,20] to determine the value of $C P$ violation $\left(\sin ^{2} 2 \beta=2.23 \cdot 10^{-3}\right.$), we get

$$
\begin{equation*}
\sin ^{2} 2 \beta=\frac{\left(2 m_{12}\right)^{2}}{\left(m_{K_{1}^{0}}-m_{K_{2}^{0}}\right)^{2}+\left(2 m_{12}\right)^{2}} \equiv \frac{\left(2 m_{12}\right)^{2}}{(2 \Delta)^{2}+\left(2 m_{12}\right)^{2}}=2.23 \cdot 10^{-3} \tag{44}
\end{equation*}
$$

Taking into account expression (44), we then get the estimation on $\left(2 m_{12}\right)^{2}$ $\left(1 / 2.23 \cdot 10^{-3}=448.5\right)$:

$$
\begin{equation*}
\left(2 m_{12}\right)^{2} \simeq(2 \Delta)^{2} \cdot 2.23 \cdot 10^{-3} \tag{45}
\end{equation*}
$$

Oscillations of K_{1}^{0}, K_{2}^{0} mesons will proceed on the background of $K^{0}-, \bar{K}^{0}-$ meson oscillations, but since the mixing angle β is very small, it is difficult to detect such oscillations. What possibility does the Nature give to detect these oscillations (transitions)? The decay time of K_{1}^{0} into two π mesons is much smaller than the decay time of K_{2}^{0} on three π mesons and therefore at big distances from the source of K^{0} mesons mainly $K_{2}^{0} \approx K_{L}$ mesons remain. Then at the presence of $K_{1}^{0} \rightarrow 2 \pi$ mesons we can obtain information on K_{1}^{0}, K_{S}, and K_{2}^{0}, K_{L} mesons, i.e., about violation of $C P$ parity.

Expressions (34)-(45) were used for obtaining the estimation on mass change at $C P$ violation and we did not take into account the phase of $C P$ violation. It is clear that we have to take into account this phase δ. We can do it by using the parametrization of Kobayashi-Maskawa matrix [17] proposed by L. Maiani [21]. The expressions for U, U^{-1} will then have the following form:

$$
U=\left(\begin{array}{cc}
\cos \beta & -\sin \beta \mathrm{e}^{-i \delta} \tag{46}\\
\sin \beta \mathrm{e}^{i \delta} & \cos \beta
\end{array}\right) \quad U^{-1}=\left(\begin{array}{cc}
\cos \beta & \sin \beta \mathrm{e}^{-i \delta} \\
-\sin \beta \mathrm{e}^{i \delta} & \cos \beta
\end{array}\right) .
$$

Now expressions (38) and (39) look like

$$
\begin{align*}
& K_{S}=\cos \beta K_{1}^{0}-\sin \beta K_{2}^{0} \mathrm{e}^{-i \delta} \\
& K_{L}=\sin \beta \mathrm{e}^{i \delta} K_{1}^{0}+\cos \beta K_{2}^{0} \tag{47}\\
& K_{1}^{0}=\cos \beta K_{S}+\sin \beta \mathrm{e}^{-i \delta} K_{L} \tag{48}\\
& K_{2}^{0}=-\sin \beta \mathrm{e}^{i \delta} K_{S}+\cos \beta K_{L}
\end{align*}
$$

Now come to consider such oscillations. From exprsessions (24), (40), (43) and (45) we see that the mass difference between K_{1}^{0}, K_{2}^{0} mesons and K_{S}, K_{L} mesons is very small; i.e., practically they are equal. In literature [22] it is already accepted; i.e., no distinction is made between them.
3.2. The Vacuum Oscillations of K_{1}^{0}, K_{2}^{0} Mesons. K_{S}, K_{L} mesons with masses m_{S} and m_{L} evolve in dependence on time by the following expressions:

$$
\begin{equation*}
K_{S}(t)=\mathrm{e}^{-i E_{S} t} K_{S}(0), \quad K_{L}(t)=\mathrm{e}^{-i E_{L} t} K_{L}(0) \tag{49}
\end{equation*}
$$

where

$$
\begin{equation*}
E_{k}^{2}=\left(p^{2}+m_{k}^{2}\right), \quad k=S, L \tag{50}
\end{equation*}
$$

If these mesons move without interactions, then

$$
\begin{align*}
& K_{1}^{0}(t)=\cos \beta \mathrm{e}^{-i E_{S} t} K_{S}(0)+\sin \beta \mathrm{e}^{-i E_{L} t} \mathrm{e}^{-i \delta} K_{L}(0), \\
& K_{2}^{0}(t)=-\sin \beta \mathrm{e}^{-i E_{S} t} \mathrm{e}^{i \delta} K_{S}(0)+\cos \beta \mathrm{e}^{-i E_{L} t} K_{L}(0) . \tag{51}
\end{align*}
$$

Using expressions for K_{S} and K_{L} from (47) and using them in (51), we obtain

$$
\begin{align*}
K_{1}^{0}(t) & =\left[\mathrm{e}^{-i E_{S} t} \cos ^{2} \beta+\mathrm{e}^{-i E_{L} t} \sin ^{2} \beta\right] K_{1}^{0}(0)+ \\
& +\mathrm{e}^{-i \delta}\left[-\mathrm{e}^{-i E_{S} t}+\mathrm{e}^{-i E_{L} t}\right] \sin \beta \cos \beta K_{2}^{0}(0), \\
K_{2}^{0}(t) & =\left[\mathrm{e}^{-i E_{S} t} \sin ^{2} \beta+\mathrm{e}^{-i E_{L} t} \cos ^{2} \beta\right] K_{1}^{0}(0)+ \tag{52}\\
& +\mathrm{e}^{i \delta}\left[-\mathrm{e}^{-i E_{S} t}+\mathrm{e}^{-i E_{L} t}\right] \sin \beta \cos \beta K_{2}^{0}(0) .
\end{align*}
$$

The probability that meson K_{1}^{0} produced at moment $t=0$ will be at moment $t \neq 0$ in the state of K_{2}^{0} meson is given by the squared absolute value of the amplitude in (52); i.e.,

$$
\begin{align*}
P\left(K_{1}^{0} \rightarrow K_{2}^{0}\right)=P\left(K_{2}^{0} \rightarrow K_{1}^{0}\right)=\mid & \left.\left(K_{2}^{0}(0) \cdot K_{1}^{0}(t)\right)\right|^{2}= \\
& =\frac{1}{2} \sin ^{2} 2 \beta\left[1-\cos \left(\left(E_{L}-E_{S}\right) t\right)\right] \tag{53}
\end{align*}
$$

Using expression (40) for K_{1}^{0}-, K_{2}^{0}-meson masses, we get

$$
\begin{align*}
& m_{S}=\frac{1}{2}\left(2 m_{K^{0}}-\sqrt{(2 \Delta)^{2}+\left(2 m_{12}\right)^{2}}\right), \tag{54}\\
& m_{L}=\frac{1}{2}\left(2 m_{K^{0}}+\sqrt{(2 \Delta)^{2}+\left(2 m_{12}\right)^{2}}\right),
\end{align*}
$$

where $\Delta=2 m_{K^{0} \bar{K}^{0}}$ (see expression (24)). Since $\Delta \gg 2 m_{12}$,

$$
\begin{equation*}
m_{S} \simeq m_{K_{1}^{0}}, \quad m_{L} \simeq m_{K_{2}^{0}} \tag{55}
\end{equation*}
$$

further taking into account that $m_{K^{0}} \gg \Delta$, we obtain

$$
\begin{gather*}
E_{S}=\sqrt{p^{2}+m_{K_{S}}^{2}} \cong \sqrt{p^{2}+m_{K_{1}^{0}}^{2}} \cong E_{K^{0}}\left(1-\frac{m_{K^{0}} \Delta}{E_{K^{0}}^{2}}\right), \\
E_{L}=\sqrt{p^{2}+m_{K_{2}^{0}}^{2}} \cong \sqrt{p^{2}+m_{K_{2}^{0}}^{2}} \cong E_{K^{0}}\left(1+\frac{m_{K^{0}} \Delta}{E_{K^{0}}^{2}}\right), \\
E_{L}-E_{S} \cong \frac{2 m_{K^{0}} \Delta}{E_{K^{0}}}=\frac{2 \Delta}{\gamma} . \tag{56}
\end{gather*}
$$

In this case the length of oscillations $R_{L S}$ is

$$
\begin{equation*}
R_{L S} \cong \frac{\gamma}{2 \Delta} \tag{57}
\end{equation*}
$$

From expressions (24), (40), (43) and (45) we see that the length of oscillations has to be of the order of the length of K^{0}-, \bar{K}^{0}-meson oscillations, right up they are nearly equal (by the way, it is usually presumed).

Now we consider K_{1}^{0}-, K_{2}^{0}-meson oscillations, taking into account the decay widths.
3.3. Vacuum Oscillations of K_{1}^{0}, K_{2}^{0} Mesons with Taking into Account Decay Widths. If we take into account that K_{S}, K_{L} decay and have the decay widths Γ_{S}, Γ_{L}, we can rewrite expressions (49)-(52), and then K_{S}, K_{L} mesons with masses m_{S} and m_{L} evolve in dependence on time according to the following formula:

$$
\begin{equation*}
K_{S}(t)=\mathrm{e}^{-i E_{S} t-\frac{\Gamma_{S} t}{2}} K_{S}(0), \quad K_{L}(t)=\mathrm{e}^{-i E_{L} t-\frac{\Gamma_{L} t}{2}} K_{L}(0), \tag{58}
\end{equation*}
$$

where

$$
E_{k}^{2}=\left(p^{2}+m_{k}^{2}\right), \quad k=S, L
$$

If mesons are moving without interactions, then

$$
\begin{align*}
& K_{1}^{0}(t)=\cos \beta \mathrm{e}^{-i E_{S} t-\frac{\Gamma_{S} t}{2}} K_{S}(0)+\sin \beta \mathrm{e}^{-i \delta} \mathrm{e}^{-i E_{L} t-\frac{\Gamma_{L} t}{2}} K_{L}(0) \\
& K_{2}^{0}(t)=-\sin \beta \mathrm{e}^{i \delta} \mathrm{e}^{-i E_{S} t-\frac{\Gamma_{S} t}{2}} K_{S}(0)+\cos \beta \mathrm{e}^{-i E_{L} t-\frac{\Gamma_{L} t}{2}} K_{L}(0) \tag{59}
\end{align*}
$$

Using the expressions for $K_{S^{-}}$and K_{L}-meson states from (38) and using them in expression (59), we get

$$
\begin{align*}
K_{1}^{0}(t) & =\left[\mathrm{e}^{-i E_{S} t-\frac{\Gamma_{S} t}{2}} \cos ^{2} \beta+\mathrm{e}^{-i E_{L} t-\frac{\Gamma_{L} t}{2}} \sin ^{2} \beta\right] K_{1}^{0}(0)+ \\
& +\mathrm{e}^{-i \delta}\left[\mathrm{e}^{-i E_{S} t-\frac{\Gamma_{S} t}{2}}-\mathrm{e}^{-i E_{L} t-\frac{\Gamma_{L} t}{2}}\right] \sin \beta \cos \beta K_{2}^{0}(0), \\
K_{2}^{0}(t) & =\left[\mathrm{e}^{-i E_{S} t-\frac{\Gamma_{S} t}{2}} \sin ^{2} \beta+\mathrm{e}^{-i E_{L} t-\frac{\Gamma_{L} t}{2}} \cos ^{2} \beta\right] K_{1}^{0}(0)+ \tag{60}\\
& +\mathrm{e}^{i \delta}\left[\mathrm{e}^{-i E_{S} t-\frac{\Gamma_{S} t}{2}}-\mathrm{e}^{-i E_{L} t-\frac{\Gamma_{L} t}{2}}\right] \sin \beta \cos \beta K_{2}^{0}(0) .
\end{align*}
$$

Then the probability that meson K_{1}^{0} produced at moment $t=0$ will be at moment $t \neq 0$ in the state of K_{2}^{0} meson is given by the squared absolute value of the amplitude in (60); i.e.,

$$
\begin{align*}
& P\left(K_{2}^{0} \rightarrow K_{1}^{0}, t\right)=\left|\left(K_{1}^{0}(0) \cdot K_{2}^{0}(t)\right)\right|^{2}= \\
& =\frac{1}{4} \sin ^{2} 2 \beta\left[\mathrm{e}^{-\Gamma_{S} t}+\mathrm{e}^{-\Gamma_{L} t}-2 \mathrm{e}^{-\frac{\left(\Gamma_{S}+\Gamma_{L}\right) t}{2}} \cos \left(\left(E_{L}-E_{S}\right) t\right)\right] \simeq \\
& \simeq \varepsilon\left[\mathrm{e}^{-\Gamma_{S} t}+\mathrm{e}^{-\Gamma_{L} t}-2 \mathrm{e}^{-\frac{\left(\Gamma_{S}+\Gamma_{L}\right) t}{2}} \cos \left(\left(E_{L}-E_{S}\right) t\right)\right] \tag{61}
\end{align*}
$$

and

$$
P\left(K_{2}^{0} \rightarrow K_{1}^{0}, t\right)=P\left(K_{1}^{0} \rightarrow K_{2}^{0}, t\right)
$$

How can we see oscillations at $K_{2}^{0} \leftrightarrow K_{1}^{0}$ mesons transition? Since there is a big number of K_{1}^{0} mesons, it is difficult to see these oscillations because they will be masked by their background. Then we have to see these oscillations at distances when the number of K_{1}^{0} mesons $n_{K_{1}^{0}}$ is smaller than ε :

$$
\mathrm{e}^{-\Gamma_{S} t_{1}}<\varepsilon, \quad t_{1}>-\ln (\varepsilon) / \Gamma_{S}
$$

i.e., $t_{1}>6 \tau_{s}$ where τ_{s} is the decay time of K_{S} mesons. If velocity v of K^{0} $v \simeq c$, the distance L_{1} is

$$
L_{1}>6 \tau_{s} c
$$

Then at $t>t_{1}$ expression (61) can be rewritten in the following form:

$$
\begin{align*}
P\left(K_{2}^{0} \rightarrow K_{1}^{0}, t\right) \simeq \varepsilon & \varepsilon\left[\mathrm{e}^{-\Gamma_{L} t}+\right. \\
& \left.+2 \mathrm{e}^{-s \frac{\left(\Gamma_{S}+\Gamma_{L}\right) t}{2}}\left(-1+2 \sin ^{2}\left(\left(E_{L}-E_{S}\right) \frac{t}{2}\right)\right)\right]
\end{align*}
$$

So, expression ($61^{\prime \prime}$) can be used to register the above oscillations and the length of such oscillations is determined by expression (64).

And $P\left(K_{1}^{0} \rightarrow K_{1}^{0}\right)$ is

$$
\begin{align*}
& P\left(K_{1}^{0} \rightarrow K_{1}^{0}\right)=\left|\left(K_{1}^{0}(0) \cdot K_{1}^{0}(t)\right)\right|^{2}= \\
&=\left[\cos ^{4} \beta \mathrm{e}^{-\Gamma_{S} t}+\sin ^{4} \beta \mathrm{e}^{-\Gamma_{L} t}+2 \sin ^{2} \beta \cos ^{2} \beta \mathrm{e}^{-\frac{\left(\Gamma_{S}+\Gamma_{L}\right) t}{2}} \cos \left(\left(E_{L}-E_{S}\right) t\right)\right] \simeq \\
& \simeq {\left[\mathrm{e}^{-\Gamma_{S} t}+\epsilon^{2} \mathrm{e}^{-\Gamma_{L} t}+2 \epsilon \mathrm{e}^{-\frac{\left(\Gamma_{S}+\Gamma_{L}\right) t}{2}} \cos \left(\left(E_{L}-E_{S}\right) t\right)\right], } \tag{62}
\end{align*}
$$

and $P\left(K_{2}^{0} \rightarrow K_{2}^{0}\right)$ is

$$
\begin{align*}
& P\left(K_{2}^{0} \rightarrow K_{2}^{0}\right) \\
&\left.=\left[\sin ^{4} \beta \mathrm{e}^{-\Gamma_{S} t}+\cos _{2}^{4} \beta(0) \cdot K_{2}^{0}(t)\right) \mathrm{e}^{-\Gamma_{L} t}+2 \sin ^{2} \beta \cos ^{2} \beta \mathrm{e}^{-\frac{\left(\Gamma_{S}+\Gamma_{L}\right) t}{2}} \cos \left(\left(E_{L}-E_{S}\right) t\right)\right] \simeq \\
& \simeq {\left[\epsilon^{2} \mathrm{e}^{-\Gamma_{S} t}+\mathrm{e}^{-\Gamma_{L} t}+2 \epsilon \mathrm{e}^{-\frac{\left(\Gamma_{S}+\Gamma_{L}\right) t}{2}} \cos \left(\left(E_{L}-E_{S}\right) t\right)\right], \quad }
\end{align*}
$$

the above has taken into account that $\cos ^{2} \beta \simeq 1, \sin ^{2} \beta \simeq \epsilon$.
Using expressions (40) and (24) for K_{1}^{0}-, K_{2}^{0}-meson masses, we obtain the same expression as in (56):

$$
\begin{equation*}
E_{L}-E_{S} \cong \frac{2 m_{K^{0}} \Delta}{E_{K^{0}}}=\frac{2 \Delta}{\gamma} . \tag{63}
\end{equation*}
$$

Then the length of $R_{L S}$ of K_{1}^{0}, K_{2}^{0} oscillations is

$$
\begin{equation*}
R_{L S} \cong \frac{\gamma}{2 \Delta} \equiv \frac{2 \pi h c \gamma}{2 \Delta}=0.352 \gamma[m] . \tag{64}
\end{equation*}
$$

Since the decay mode of K_{L}, K_{S} mesons slightly differs from the decay mode of K_{1}^{0}, K_{2}^{0}, we can suppose that $\Gamma_{S} \simeq \Gamma_{1}$ and $\Gamma_{L} \simeq \Gamma_{2}$. In this case expression (62) gets the following form:

$$
\begin{align*}
P\left(K_{1}^{0} \rightarrow\right. & \left.K_{2}^{0}\right) \equiv P\left(K_{2}^{0} \rightarrow K_{1}^{0}\right)=\left|\left(K_{2}^{0}(0) \cdot K_{1}^{0}(t)\right)\right|^{2}= \\
& =\frac{1}{4} \sin ^{2} 2 \beta\left[\mathrm{e}^{-\Gamma_{1} t}+\mathrm{e}^{-\Gamma_{2} t}-2 \mathrm{e}^{-\frac{\left(\Gamma_{1}+\Gamma_{2}\right) t}{2}} \cos \left(\left(E_{L}-E_{S}\right) t\right)\right] \tag{65}
\end{align*}
$$

3.4. Vacuum Oscillations of K_{2}^{0}, K_{1}^{0} Mesons in the Case When Unitarity of Mixing Matrix Is Violated. In expression (46) matrix U is unitary; i.e., $U U^{-1}=1$. In principle we can use the nonunitary matrix, i.e., use matrix U and for back transformation, use matrix U^{T} instead of $U^{-1}\left(\operatorname{det} U=\operatorname{det} U^{T}=1\right)$, then

$$
U=\left(\begin{array}{cc}
\cos \beta & -\sin \beta \mathrm{e}^{-i \delta} \tag{66}\\
\sin \beta \mathrm{e}^{i \delta} & \cos \beta
\end{array}\right), \quad U^{T}=\left(\begin{array}{cc}
\cos \beta & \sin \beta \mathrm{e}^{i \delta} \\
-\sin \beta \mathrm{e}^{-i \delta} & \cos \beta
\end{array}\right)
$$

Now instead of expressions (47) and (48) we get

$$
\begin{gather*}
K_{S}=\cos \beta K_{1}^{0}-\sin \beta K_{2}^{0} \mathrm{e}^{i \delta} \tag{67}\\
K_{L}=\sin \beta \mathrm{e}^{-i \delta} K_{1}^{0}+\cos \beta K_{2}^{0} \\
K_{1}^{0}=\cos \beta K_{S}+\sin \beta \mathrm{e}^{-i \delta} K_{L} \\
K_{2}^{0}=-\sin \beta \mathrm{e}^{i \delta} K_{S}+\cos \beta K_{L} . \tag{68}
\end{gather*}
$$

Now if mesons are moving without interactions, then

$$
\begin{align*}
& K_{1}^{0}(t)=\cos \beta \mathrm{e}^{-i E_{S} t-\frac{\Gamma_{S} t}{2}} K_{S}(0)+\sin \beta \mathrm{e}^{-i \delta} \mathrm{e}^{-i E_{L} t-\frac{\Gamma_{L} t}{2}} K_{L}(0), \\
& K_{2}^{0}(t)=-\sin \beta \mathrm{e}^{i \delta} \mathrm{e}^{-i E_{S} t-\frac{\Gamma_{S} t}{2}} K_{S}(0)+\cos \beta \mathrm{e}^{-i E_{L} t-\frac{\Gamma_{L} t}{2}} K_{L}(0) . \tag{69}
\end{align*}
$$

Using the expressions for $K_{S^{-}}$and K_{L}-meson states from (67) and putting them into expression (69), we get

$$
\begin{align*}
K_{1}^{0}(t) & =\left[\mathrm{e}^{-i E_{S} t-\frac{\Gamma_{S} t}{2}} \cos ^{2} \beta+\mathrm{e}^{-i E_{L} t-\frac{\Gamma_{L} t}{2}} \mathrm{e}^{-2 i \delta} \sin ^{2} \beta\right] K_{1}^{0}(0)+ \\
& +\left[-\mathrm{e}^{-i E_{S} t-\frac{\Gamma_{S} t}{2}} \mathrm{e}^{i \delta}+\mathrm{e}^{-i E_{L} t-\frac{\Gamma_{L} t}{2}} \mathrm{e}^{-i \delta}\right] \sin \beta \cos \beta K_{2}^{0}(0), \\
K_{2}^{0}(t) & =\left[\mathrm{e}^{-i E_{S} t-\frac{\Gamma_{S} t}{2}} \mathrm{e}^{2 i \delta} \sin ^{2} \beta+\mathrm{e}^{-i E_{L} t-\frac{\Gamma_{L} t}{2}} \cos ^{2} \beta\right] K_{1}^{0}(0)+ \tag{70}\\
& +\left[-\mathrm{e}^{-i E_{S} t-\frac{\Gamma_{S} t}{2}} \mathrm{e}^{i \delta}+\mathrm{e}^{-i E_{L} t-\frac{\Gamma_{L} t}{2}} \mathrm{e}^{-i \delta}\right] \sin \beta \cos \beta K_{2}^{0}(0) .
\end{align*}
$$

The probability that meson K_{1}^{0} produced at moment $t=0$ will be at moment $t \neq 0$ in the state of K_{1}^{0} meson is given by the squared absolute value of the amplitude in (71); i.e.,

$$
\begin{align*}
P\left(K_{1}^{0} \rightarrow\right. & \left.K_{1}^{0}\right)=\left|\left(K_{1}^{0}(0) \cdot K_{1}^{0}(t)\right)\right|^{2}=\left[\cos ^{4} \beta \mathrm{e}^{-\Gamma_{S} t}+\sin ^{4} \beta \mathrm{e}^{-\Gamma_{L} t}+\right. \\
& \left..+2 \sin ^{2} \beta \cos ^{2} \beta \mathrm{e}^{-\frac{\left(\Gamma_{S}+\Gamma_{L}\right) t}{2}} \cos \left(\left(E_{L}-E_{S}\right) t+2 \delta\right)\right] \simeq \\
\simeq & {\left[\mathrm{e}^{-\Gamma_{S} t}+\epsilon^{2} \mathrm{e}^{-\Gamma_{L} t}+2 \epsilon \mathrm{e}^{-\frac{\left(\Gamma_{S}+\Gamma_{L}\right) t}{2}} \cos \left(\left(E_{L}-E_{S}\right) t+2 \delta\right)\right] } \tag{71}
\end{align*}
$$

and probability of $P\left(K_{2}^{0} \rightarrow K_{2}^{0}\right)$ transition is

$$
\begin{align*}
P\left(K_{2}^{0} \rightarrow\right. & \left.K_{2}^{0}\right)=\left|\left(K_{2}^{0}(0) \cdot K_{2}^{0}(t)\right)\right|^{2}=\left[\sin ^{4} \beta \mathrm{e}^{-\Gamma_{S} t}+\cos ^{4} \beta \mathrm{e}^{-\Gamma_{L} t}+\right. \\
& \left.+2 \sin ^{2} \beta \cos ^{2} \beta \mathrm{e}^{-\frac{\left(\Gamma_{S}+\Gamma_{L}\right) t}{2}} \cos \left(\left(E_{L}-E_{S}\right) t+2 \delta\right)\right] \simeq \\
\simeq & {\left[\epsilon^{2} \mathrm{e}^{-\Gamma_{S} t}+\mathrm{e}^{-\Gamma_{L} t}+2 \epsilon \mathrm{e}^{-\frac{\left(\Gamma_{S}+\Gamma_{L}\right) t}{2}} \cos \left(\left(E_{L}-E_{S}\right) t+2 \delta\right)\right] . } \tag{71'}
\end{align*}
$$

Then the probability that meson K_{1}^{0} produced at moment $t=0$ will be at moment $t \neq 0$ in the state of K_{2}^{0} meson is given by the squared absolute value
of the amplitude in (70); i.e.,

$$
\begin{align*}
& P\left(K_{2}^{0} \rightarrow K_{1}^{0}, t\right)=\left|\left(K_{2}^{0}(0) \cdot K_{1}^{0}(t)\right)\right|^{2}= \\
& =\frac{1}{4} \sin ^{2} 2 \beta\left[\mathrm{e}^{-\Gamma_{S} t}+\mathrm{e}^{-\Gamma_{L} t}-2 \mathrm{e}^{-\frac{\left(\Gamma_{S}+\Gamma_{L}\right) t}{2}} \cos \left(\left(E_{L}-E_{S}\right) t+2 \delta\right)\right] \simeq \\
& \quad \simeq \varepsilon\left[\mathrm{e}^{-\Gamma_{S} t}+\mathrm{e}^{-\Gamma_{L} t}-2 \mathrm{e}^{-\frac{\left(\Gamma_{S}+\Gamma_{L}\right) t}{2}} \cos \left(\left(E_{L}-E_{S}\right) t+2 \delta\right)\right],
\end{align*}
$$

and $P\left(K_{2}^{0} \rightarrow K_{1}^{0}, t\right)=P\left(K_{1}^{0} \rightarrow K_{2}^{0}, t\right)$ (the above has taken into account that $\cos ^{2} \beta \simeq 1, \sin ^{2} \beta \simeq \epsilon$.

The length of oscillations in this case is given by expressions (63), (64). Expression ($71^{\prime \prime}$) was obtained by using the standard technique of oscillations and it is analogous to the expression obtained in $[11,12]$ at violation of orthogonality of K_{S}, K_{L} states.

4. PROBABILITIES of $K^{0} \leftrightarrow \bar{K}^{0}$ MESON TRANSITIONS

(OSCILLATIONS) VIA K_{S}, K_{L} MESONS
In principle we can consider transition of K^{0}, \bar{K}^{0} mesons into K_{S}, K_{L} mesons, then ($a=\cos \beta-\sin \beta, b=\sin \beta+\cos \beta$):

$$
\begin{align*}
K^{0}=\frac{1}{\sqrt{2}}\left[(\cos \beta-\sin \beta) K_{S}+(\sin \beta+\cos \beta) K_{L}\right] & =\frac{1}{\sqrt{2}}\left(a K_{S}+b K_{L}\right), \\
\bar{K}^{0}=\frac{1}{\sqrt{2}}\left[-(\sin \beta+\cos \beta) K_{S}+(\cos \beta-\sin \beta) K_{L}\right] & =\frac{1}{\sqrt{2}}\left(-b K_{S}+a K_{L}\right), \tag{72}
\end{align*}
$$

at the inverse transformation we get

$$
\begin{align*}
K_{S} & =\frac{1}{\sqrt{2}}\left[(\cos \beta-\sin \beta) K^{0}-(\cos \beta+\sin \beta) \bar{K}^{0}\right]=\frac{1}{\sqrt{2}}\left(a K^{0}-b \bar{K}^{0}\right) \\
K_{L} & =\frac{1}{\sqrt{2}}\left[(\cos \beta+\sin \beta) K^{0}+(\cos \beta-\sin \beta) \bar{K}^{0}\right]=\frac{1}{\sqrt{2}}\left(b K^{0}+a \bar{K}^{0}\right) \tag{73}
\end{align*}
$$

It is necessary to stress that in the above expression the normalization was not lost, while in [11] (see also [12]) there is a need to fulfil renormalization (there if the unitarity was lost, then it is necessary to restore it):

$$
\begin{align*}
K^{0} & =\frac{1}{\sqrt{2}(1+\epsilon)}\left[K_{L}+\sqrt{1+|\epsilon|^{2}} K_{S}\right] \\
\bar{K}^{0} & =\frac{1}{\sqrt{2}(1-\epsilon)}\left[K_{L}-\sqrt{1+|\epsilon|^{2}} K_{S}\right] . \tag{74}
\end{align*}
$$

It is necessary especially to stress that a straight transition from K^{0}, \bar{K}^{0} mesons to K_{S}, K_{L} mesons is not correct since K_{1}^{0}, K_{2}^{0} mesons play an important role at $C P$ violation.

Repeating the above procedure (30)-(39) for expressions (46) and (47) by using expression (58), we get

$$
\begin{align*}
K^{0}(t)=\frac{1}{2}\left[\mathrm{e}^{-i E_{S} t-\frac{\Gamma_{S} t}{2}} a^{2}\right. & \left.+\mathrm{e}^{-i E_{L} t-\frac{\Gamma_{L} t}{2}} b^{2}\right] K^{0}(0)+ \\
& +\frac{1}{2}\left[\mathrm{e}^{-i E_{S} t-\frac{\Gamma_{S} t}{2}}-\mathrm{e}^{-i E_{L} t-\frac{\Gamma_{L} t}{2}}\right] a b \bar{K}^{0}(0) \tag{75}
\end{align*}
$$

$$
\begin{align*}
\bar{K}^{0}(t)=\frac{1}{2}\left[\mathrm{e}^{-i E_{S} t-\frac{\Gamma_{S} t}{2}} b^{2}\right. & \left.+\mathrm{e}^{-i E_{L} t-\frac{\Gamma_{L} t}{2}} a^{2}\right] K^{0}(0)+ \\
& +\frac{1}{2}\left[\mathrm{e}^{-i E_{S} t-\frac{\Gamma_{S} t}{2}}-\mathrm{e}^{-i E_{L} t-\frac{\Gamma_{L} t}{2}}\right] b a \bar{K}^{0}(0) \tag{76}
\end{align*}
$$

The probability that meson K^{0} produced at moment $t=0$ will be at moment $t \neq 0$ in the state of \bar{K}^{0} meson is given by the squared absolute value of the amplitude in (75), (76); i.e.,

$$
\begin{align*}
& P\left(K^{0} \rightarrow \bar{K}^{0}, t\right)=P\left(\bar{K}^{0} \rightarrow K^{0}, t\right)=\left|\left(\bar{K}^{0}(0) \cdot K^{0}(t)\right)\right|^{2}= \\
& \quad=\frac{1}{4} a^{2} b^{2}\left[\mathrm{e}^{-\Gamma_{S} t}+\mathrm{e}^{-\Gamma_{L} t}-2 \mathrm{e}^{-\frac{\left(\Gamma_{S}+\Gamma_{L}\right) t}{2}} \cos \left(\left(E_{L}-E_{S}\right) t\right)\right] . \tag{77}
\end{align*}
$$

Then

$$
\begin{align*}
& P\left(K^{0} \rightarrow K^{0}, t\right)=\left|\left(K^{0}(0) \cdot K^{0}(t)\right)\right|^{2}= \\
& \quad=\frac{1}{4}\left[a^{4} \mathrm{e}^{-\Gamma_{S} t}+b^{4} \mathrm{e}^{-\Gamma_{L} t}+2 a^{2} b^{2} \mathrm{e}^{-\frac{\left(\Gamma_{S}+\Gamma_{L}\right) t}{2}} \cos \left(\left(E_{L}-E_{S}\right) t\right)\right] . \tag{78}
\end{align*}
$$

and

$$
\begin{align*}
& P\left(\bar{K}^{0} \rightarrow \bar{K}^{0}, t\right)=\left|\left(\bar{K}^{0}(0) \cdot \bar{K}^{0}(t)\right)\right|^{2}= \\
& \quad=\frac{1}{4}\left[b^{4} \mathrm{e}^{-\Gamma_{S} t}+a^{4} \mathrm{e}^{-\Gamma_{L} t}+2 a^{2} b^{2} \mathrm{e}^{-\frac{\left(\Gamma_{S}+\Gamma_{L}\right) t}{2}} \cos \left(\left(E_{L}-E_{S}\right) t\right)\right] . \tag{79}
\end{align*}
$$

From expressions (77)-(79) we see that these expressions have no sense since at transition of K^{0}, \bar{K}^{0} mesons into superpositions of K_{1}^{0}, K_{2}^{0} mesons the K_{1}^{0} meson states decay very quickly and then K_{2}^{0}-meson states remain; i.e., further it is justified to consider only K_{1}^{0}-, K_{2}^{0}-meson states. It is necessary to remind that oscillations between K_{S}, K_{L} mesons are absent.

5. CONCLUSION

In the literature $[11,12]$ the nonunitary transformation is used at obtaining the K_{S}, K_{L} states. It is supposed that these states arise at $C P$ violation. In expression (4) for $\left|K_{1}^{0}\right|^{2}$ cross term is present which is responsible for oscillations. This term can appear only at violation of orthogonality of K_{S}, K_{L} states. In the framework of the quantum approach we have to suppose that the K_{S}, K_{L} states are orthogonal. The problem we are solving in this work is: how do oscillations arise in the framework of quantum mechanics approach (without violation of unitarity and orthogonality) and how do short-living mesons appear at long distances from K^{0} source? For this aim we have used the standard technique of oscillations.

This work has considered K^{0}, \bar{K}^{0} mixings and oscillations via K_{1}^{0}-, K_{2}^{0-} meson states at strangeness violation by weak interactions and K_{1}^{0}-, K_{2}^{0}-meson mixings and oscillations via $K_{S^{-}}, K_{L}$-meson states at $C P$ violation by the weak interactions without and with taking into decay widths. We have worked in the framework of the mass mixing scheme while considering the oscillations. It has been shown that $K_{1}^{0}-\left(K_{S^{-}}\right)$meson states appear at big distances from the K^{0}-meson source after their decays ($\tau_{L} \gg \tau_{S}\left(\tau_{2} \gg \tau_{1}\right)$) due to oscillations of residual $K_{2}^{0}\left(K_{L}\right)$ mesons, then we see again short-living $K_{1}^{0}\left(K_{S}\right)$ mesons. It is implied that $K_{L} \leftrightarrow K_{S}$ meson oscillations are absent. We have also considered the case when at $C P$ violation the unitarity is violated but orthogonality of K_{S}, K_{L} states remains. The general expressions for probabilities of meson oscillations (transitions) have been given.

It is necessary to remark that usually it is supposed [22] that at long distances

$$
K_{L} \simeq K_{2}+\varepsilon K_{1}
$$

mesons are presented and then the probability of $C P$ violation is directly proportional to the parameter of $C P$ violation ε :

$$
P\left(K_{L} \rightarrow 2 \pi, t\right) \sim \varepsilon .
$$

But when we use the standard technique of oscillations at long distances, K_{2} states remain and K_{1} states appear as a result of oscillations, i.e., transition of K_{2} mesons into K_{1} mesons. Then

$$
K_{L}=\sin \beta K_{1}^{0}+\cos \beta K_{2}^{0}
$$

where $\sin \beta \simeq \varepsilon$. The probablity $P\left(K_{2}^{0} \rightarrow K_{1}^{0}, t\right)$ of such transitions, i.e., $C P$ violation, is proportional to ε^{2}; i.e.,

$$
P\left(K_{2}^{0} \rightarrow K_{1}^{0}, t\right) \sim \varepsilon^{2}
$$

but not to ε, in contrast to [22].

REFERENCES

1. Gell-Mann M., Pais A. // Phys. Rev. 1955. V.97. P. 1387;

Pais A., Piccioni O. // Phys. Rev. 1955. V. 100. P. 1487;
Okun L. B. Weak Intreactions of Elementary Particles. M.: Fismatizdat, 1963.
2. Treiman S. B., Sachs R. S. // Phys. Rev. 1956. V. 103. P. 1545.
3. Beshtoev Kh. M. // Il Nuovo Cim. A. 1995. V. 168. P. 275.
4. Beshtoev Kh. M. // JINR Rapid Communications. 1995. No.3(71)-95; The Intern. Symp. on Weak and Electrom. Inter. in Nuclei, June 1995, Osaka, Japan. P. 15.
5. Beshtoev Kh. M. // Proc. of 24th Intern. Cosmic Ray Conf., Rome, 1995. V. 4. P. 1237.
6. Beshtoev Kh. M. // Proc. of 4th Intern. School «Particles and Cosmology», Baksan, 1995. P. 290.
7. Lee T. D., Yang C. N. // Phys. Rev. 1956. V. 104. P. 254.
8. Wu C. S. et al. // Phys. Rev. 1957. V. 105. P. 1413; Ibid. V. 106. P. 1361.
9. Landau L. D. // Sov. JETP. 1957. V. 32. P. 405.
10. Christenson J. H. et al. // Phys. Rev. Lett. 1964. V. 13. P. 138.
11. Wu T. T., Yang C. N. // Phys. Rev. Lett. 1964. V. 13. P. 380.
12. Commins E. D., Bucksbaum P.H. Weak Interactions of Leptons and Quarks. Cambridge ..., 1983.
13. Weisskopf V., Wigner E. P. // Z. Phys. 1930. V.63. P. 54.
14. Wenzel G. // Phys. Rev. 1956. V. 101. P. 1215.
15. Yao W.-M. et al. // J. Phys. G: Nucl. Part. Phys. (Particle Data Group). 2006. V. 33. P. 1 .
16. Okun L. B. Lepton and Quarks. M.: Nauka, 1990.
17. Cabibbo N. // Phys. Rev. Lett. 1963. V. 10. P. 531; Kobayashi M., Maskawa K. // Prog. Theor. Phys. 1973. V.49. P. 652.
18. Gribov V., Pontecorvo B. M. // Phys. Lett. B 1969. V.28. P. 493.
19. Bilenky S. M., Pontecorvo B. M. // Phys. Rep. 1978. V.41. P. 226; Boehm F., Vogel P. Physics of Massive Neutrinos. Cambridge Univ. Press, 1987. P. 27, 121.
20. Galbrait W. et al. // Phys. Rev. Lett. 1965. V. 14. P. 383; de Bouart et. al. // Phys. Lett. 1965. V. 15. P. 58.
21. Maiani L. // Proc. Intern. Symp. on Lepton-Photon Int., Hamburg, DESY, 1977. P. 867.
22. Rev. of Particle Phys. // Phys. Lett. B. 2008. V.667. P. 55, 153, 914.

Редактор Е. И. Кравченко

Подписано в печать 12.07.2011.
Формат $60 \times 90 / 16$. Бумага офсетная. Печать офсетная.
Усл. печ. л. 1,43 . Уч.-изд. л. 1,93. Тираж 375 экз. Заказ № 57371.

Издательский отдел Объединенного института ядерных исследований 141980, г. Дубна, Московская обл., ул. Жолио-Кюри, 6.

E-mail: publish@jinr.ru
www.jinr.ru/publish/

