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� ¸² ¡ÒÌ ·¥Ï¥´¨ÖÌ § ¤ Î¨ ¸ ´ Î ²Ó´Ò³¨ ¤ ´´Ò³¨ ¤²Ö Ê· ¢´¥´¨Ö
utt = a(x, t)uxx + f(t, x, u, ut, ux)

„²Ö Ê· ¢´¥´¨Ö ¢¨¤ , Ê± § ´´μ£μ ¢ § £μ²μ¢±¥, ¶·¥¤¶μ² £ ¥É¸Ö, £·Ê¡μ £μ¢μ·Ö,
ÎÉμ a(·, t) ∈ C(R; W 1

2 ) ∩ L∞(R; W 1
∞) ∩ C1(R; L2) ¨ at(·, t) ∈ L∞(R; L∞) ¨ ÎÉμ

¸ÊÐ¥¸É¢ÊÕÉ 0 < a1 < a2 ¨ a3 > 0 É ±¨¥, ÎÉμ a1 � a(x, t) � a2 ¨ |∇a(x, t)| � a3

¤²Ö ²Õ¡ÒÌ x, t ∈ R. ”Ê´±Í¨Ö f ¶·¥¤¶μ² £ ¥É¸Ö ´¥¶·¥·Ò¢´μ ¤¨ËË¥·¥´Í¨·Ê¥³μ°
¨ Ê¤μ¢²¥É¢μ·ÖÕÐ¥° Ê¸²μ¢¨Õ f(t, x, 0, r, s) ≡ 0. �·¥¤¶μ² £ ¥É¸Ö, ÎÉμ ´ Î ²Ó´Ò¥
¤ ´´Ò¥ ¶·¨´ ¤²¥¦ É (W 1

2 ∩W 1
∞)× (L2 ∩L∞). „μ± § ´Ò ¸ÊÐ¥¸É¢μ¢ ´¨¥ ¨ ¥¤¨´-

¸É¢¥´´μ¸ÉÓ ²μ± ²Ó´μ£μ ¸² ¡μ£μ (W 1
2 ∩W 1

∞)-·¥Ï¥´¨Ö. Š·μ³¥ Éμ£μ, ¢ ¸¶¥Í¨ ²Ó´μ³
¸²ÊÎ ¥ f(t, x, u, ut, ux) = −|u|q−1u, q � 1 ¤μ± § ´μ ¸ÊÐ¥¸É¢μ¢ ´¨¥ £²μ¡ ²Ó´μ£μ
¸² ¡μ£μ ·¥Ï¥´¨Ö.

� ¡μÉ  ¢Ò¶μ²´¥´  ¢ ‹ ¡μ· Éμ·¨¨ É¥μ·¥É¨Î¥¸±μ° Ë¨§¨±¨ ¨³. �.�. �μ£μ²Õ-
¡μ¢  �ˆŸˆ.
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For the equation of the kind indicated in the title, it is assumed roughly speaking
that a(·, t) ∈ C(R; W 1

2 ) ∩ L∞(R; W 1
∞) ∩ C1(R; L2) and at(·, t) ∈ L∞(R; L∞)

and that there exist 0 < a1 < a2 and a3 > 0 such that a1 � a(x, t) � a2 and
|∇a(x, t)| � a3 for any x, t ∈ R. The function f is assumed to be continuously
differentiable and satisfying f(t, x, 0, r, s) ≡ 0. The initial data are assumed to be in
(W 1

2 ∩W 1
∞)×(L2∩L∞). The existence and uniqueness of a local weak (W 1

2 ∩W 1
∞)-

solution is proved. In addition, in the special case f(t, x, u, ut, ux) = −|u|q−1u,
q � 1 the existence of a global weak solution is proved.

The investigation has been performed at the Bogoliubov Laboratory of Theoretical
Physics, JINR.
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1. INTRODUCTION. STATEMENTS OF THE MAIN RESULTS

In several last decades, a large number of publications was devoted to studies
of the existence and uniqueness of solutions for semilinear wave equations in the
case when these equations are autonomous (i.e., when their coefˇcients do not de-
pend on time t). For an information on this subject, see, for example, monograph
[6] and the references therein. Another classical ˇeld of investigations consists of
the same questions for quasilinear hyperbolic equations. It is known that in this
case, generally speaking, an initial value problem has a local sufˇciently smooth
solution which is not global (that is, it cannot be continued onto the entire real
line t ∈ R). There is a number of basis results on this subject (see, for exam-
ple, [1Ä4] and the references therein). A general theory of hyperbolic equations,
mainly of linear ones, is presented, for example, in the recent book [5].

In the present paper, we consider the problem

utt = a(x, t)uxx + b(x, t)u + c(x, t)ut + d(x, t)ux+

+ f(t, x, u, ut, ux), u = u(x, t), (x, t) ∈ R
2, (1)

u(·, 0) = u0(·) ∈ W 1
2 (R) ∩ W 1

∞(R), ut(·, 0) = u1(·) ∈ L2(R) ∩ L∞(R). (2)

Hereafter, all the quantities we deal with are real, a(·, t) is, speaking not quite
precisely, in C(R; W 1

2 (R)) ∩ L∞(R; W 1
∞(R)) ∩ C1(R; L2(R)) and at(·, t) ∈

L∞(R; L∞) and, for simplicity, f is assumed to be smooth and, in addition,
f(t, x, 0, ut, ux) ≡ 0 (we shall give precise deˇnitions in the following). We
assume that equation (1) is uniformly hyperbolic, that is, that for any bounded
interval I ⊂ R there exist 0 < a1 < a2 such that

a1 � a(x, t) � a2 (3)

for any t ∈ I ˇxed for almost all x ∈ R. It is known that the methods used
usually for autonomous semilinear hyperbolic problems of this type in our case do
not apply (on the theory of autonomous problems of this type, see, for example,
[6]). One of the reasons of this is that the Strichartz-type estimates exploiting
often in the autonomous case are not known for problem (1)Ä(2). Our results for
this problem may be considered as a step in the way of proving the existence and
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uniqueness of a weak solution for a quasilinear second-order hyperbolic problem
(for example, when we have a coefˇcient a1 = a1(u(x, t)) in place of a(x, t)),
if such a solution exists at all. For this aim, we shall consider lower regularity
coefˇcients in equation (1), though if one assumes that these coefˇcients are
sufˇciently smooth and bounded with their derivatives, then our proofs become
essentially simpler. The quasilinear equations have a lot of applications in physics,
in particular, in the theory of nonlinear waves, in the elasticity theory, etc. We
have to note in addition that with lemmas 10 and 11 we establish the existence
and uniqueness of a local smooth solution of problem (1)Ä(2) when the initial data
(u0, u1) and the coefˇcients in the equation are sufˇciently smooth and bounded.
However, in the present paper, our aim is to prove the existence and uniqueness
just of a weak solution of this problem which we shall establish with theorems
1 and 2. The author of this work believes that the existence and uniqueness of
a local smooth solution of equations (1) and (2) is a technical result that can be
easily obtained by the methods developed earlier for quasilinear equations (on
this subject, see, for example, [1, 2, 4]). It seems to be essential to note that the
maximal intervals on which smooth and weak solutions can be continued (in the
case of smooth initial data) simply coincide with each other (see lemmas 10 and
11 in the following).

Now, we introduce some notation. For p ∈ [1,∞), by Lp = Lp(R) and
W 1

p = W 1
p (R) we denote the standard Lebesgue and Sobolev spaces taken re-

spectively with the norms ‖g‖Lp =
{∫

R
|g(x)|p

}1/p
, if p < +∞, ‖g‖L∞ =

ess supx∈R
|g(x)|, and ‖g‖W 1

p
= ‖g‖Lp + ‖g′‖Lp . For p ∈ (1,∞), we denote

by p′ the positive number such that
1
p

+
1
p′

= 1. Let Δ be the closure of

the operator

(
− d2

dx2

)
, taken ˇrst with the domain C∞

0 (R) of inˇnitely dif-

ferentiable ˇnite functions in R, in L2. It is well known that Δ is a self-
adjoint positive operator in L2. For p ∈ (1,∞), by W−1

p = W−1
p (R) we

denote the Banach space being the completion of C∞
0 (R) taken with the norm

‖g‖W−1
p

= ‖(Δ + Id)−1/2g‖Lp , where Id denotes the identity. It is known that

the space W−1
p′ is dual to W 1

p in the sense that for any linear bounded functional

ϕ in W 1
p there exists a unique g′ ∈ W−1

p′ such that ϕ(g) = (g′, g)L2 for any

g ∈ W 1
p where (·, ·)L2 denotes the standard scalar product in L2 correspond-

ing to the norm that we took in this space (carefully, one should deˇne the
expression (g′, g)L2 by a limit procedure; this procedure is known now). Con-
versely, the space W 1

p is dual to W−1
p′ in a similar sense. For a set A ⊂ R

d,
d � 1 is integer, by C(A) we denote the space of continuous bounded func-
tions in A, taken with the uniform norm. For an open set A ⊂ R

d, d � 1
is integer, C∞(A) denotes the linear space of functions inˇnitely differentiable
in A. Let also Ω ⊂ R

d, where d � 1 is integer, be an open set. We shall
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write g ∈ Lp,loc(Ω), g ∈ W 1
p,loc(Ω), etc., if for any x ∈ Ω there exists its open

bounded neighborhood O = O(x) ⊂ Ω such that g ∈ Lp(O), g ∈ W 1
p (O), etc.

We shall write gn → g in Lp,loc(Ω), W 1
p,loc(Ω), etc., if for any x ∈ Ω there

exists its neighborhood O = O(x) ⊂ Ω such that gn → g in Lp(O) (resp. in
W 1

p (O), etc.).
For an interval I ∈ R and a Banach space B with the norm denoted by

‖ · ‖B, by Ck(I; B), where k = 0, 1, 2, we denote the Banach spaces of functions
from I into B continuous, continuously differentiable and twice continuously
differentiable, respectively, and bounded, bounded with their ˇrst derivatives
and bounded with their ˇrst and second derivatives, respectively, taken with
the norms ‖g(·)‖Ck(I;B) =

∑k
l=0 supt∈I ‖g(l)(t)‖B , k = 0, 1, 2, respectively.

In addition, we introduce the Banach space Lb(I; B) that consists of bounded
functions g : I → B such that the function ‖g(t)‖B of the argument t is
measurable and that equipped with the norm ‖g(·‖Lb(I;B) = sup

t∈I
‖g(t)‖B.

Let I ⊂ R be an interval. For the simplicity of our notation, we denote
X := X(I) = C(I; W 1

2 ) ∩ Lb(I; W 1
∞) and Z := Z(I) = C(I; W−1

2 ). We
also denote by Y = Y (I) the space of continuously differentiable functions
u(·) : I → L2 bounded together with their derivatives u′

t(t) and such that u and
u′

t(t) belong in addition to Lb(I; L∞); the space Y (I) is equipped with the norm
‖u(·)‖Y (I) = ‖u(·)‖C1(I;L2) + ‖u(·)‖Lb(I;L∞) + |u′(·)‖Lb(I;L∞). Sometimes we
shall denote by C, C1, C2, C

′, C′′, · · · positive constants not speaking especially
what they are do not depend on if it is clear from the context.

Our main assumptions are as follows.
(A1) Let for any bounded interval I ⊂ R and x0 ∈ R the function a(·, t) be

in C(I; W 1
2 (x0 − 1, x0 + 1)) ∩ C1(I; L2(x0 − 1, x0 + 1)), estimates (3) hold for

any t ∈ I ˇxed for almost all x ∈ R and a′
t(·, t), a′

x(·, t) ∈ Lb(I; L∞).
(A2) Let for any bounded interval I ⊂ R the coefˇcients b, c and d be in

Lb(I; L∞) and let for any x0 ∈ R each of them belong to C(I; L2(x0−1, x0+1)).
(A3) Let the function f be continuously differentiable and for any R > 0

there exist C > 0 such that

|f(z1, z2, z3, z4, z5)| � C|z3|

and

|f ′
z3

(z1, z2, z3, z4, z5)| + |f ′
z4

(z1, z2, z3, z4, z5)| + |f ′
z5

(z1, z2, z3, z4, z5)| � C

for any z = (z1, z2, z3, z4, z5) ∈ R
5 satisfying |(z3, z4, z5)| � R and |z1| � R.

We accept the following deˇnition of a weak solution of problem (1)Ä(2).
Deˇnition 1. Let the above assumptions (A1)Ä(A3) be valid and let I ∈ R be

an interval that contains 0. Suppose that a function u(·, t) belongs to X ∩Y ∩Z.
Observe that the operator in the right-hand side of (1) maps this function u
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into a function that belongs to C(I; W−1
2 ) (see lemma 1 in what follows for a

justiˇcation). We say that this function u(·, t) is a weak solution (or a (W 1
2 ∩W 1

∞)-
solution) of problem (1)Ä(2) if u(·, 0) = u0(·), ut(·, 0) = u1(·) in the senses of
W 1

2 and L2, respectively, and if equality (1) is valid in the sense of the space Z.
Now we can establish our main results. They are as follows.
Theorem 1. Under the assumptions (A1), (A2) and (A3) for any D > 0 and

u0, u1 satisfying ‖u0‖W 1
2 ∩W 1

∞
� D and ‖u1‖L2∩L∞ � D there exist T > 0 that

depends only on D and a unique weak solution u(·, t) of problem (1)Ä(2) in the
interval of time I := [−T, T ]. This weak solution can be uniquely continued on a
maximal interval (−T1, T2) of time t (here T1, T2 > 0) such that either T1 = −∞
(resp. T2 = +∞) or lim sup

t→−T1+0
[‖u(·, t)‖W 1

2 ∩W 1
∞

+ ‖ut(·, t)‖L2∩L∞ ] = +∞ (resp.

lim sup
t→T2−0

[‖u(·, t)‖W !
2∩W 1

∞
+ ‖ut(·, t)‖L2∩L∞ ] = +∞). A weak solution depends

continuously on the initial data (u0, u1) in the sense that for any compact interval
I on which a given weak solution can be continued for any initial data sufˇciently
close to (u0, u1) in (W 1

2 ∩ W 1
∞) × (L2 ∩ L∞) the corresponding solution of

equations (1) and (2) can be continued on the interval I and the correspondence
(u0, u1) → u(·, t) as a map from (W 1

2 ∩ W 1
∞) × (L2 ∩ L∞) into X ∩ Y is

continuous. If in addition the initial data (u0, u1) are compactly supported, then
the support of our weak solution u(x, t), which is regarded here as a function of
the argument x, is bounded uniformly with respect to t in any compact interval
on which this solution u(x, t) can be continued.

In the next Sec. 2, we shall describe more precisely the behavior of the
support in time t of a weak solution of problem (1)Ä(2) in the case when this
weak solution is ˇnite.

Theorem 2. Let assumption (A1) be valid, b ≡ c ≡ d ≡ 0 for simplicity
and f(t, x, u, ut, ux) = −|u|q−1u, where q � 1 is a constant. Then, an arbitrary
weak solution of problem (1)Ä(2) given by theorem 1 is global, that is, it can be
uniquely continued on the entire real line t ∈ R.

The function f in theorem 2 above is a standard model nonlinearity used in
the literature for many times.

In the next Sec. 2 we shall prove theorem 1 and in Sec. 3 Å theorem 2.
Using this occasion, the author wants to thank his colleagues for their support

without which this paper cannot appear.

2. LOCAL WELL-POSEDNESS. PROOF OF THEOREM 1

In this Section, we accept that I0 
 0 is a bounded open interval and I = I0

is its closure. We divide our proof of theorem 1 in several lemmas.
Lemma 1. Lg := −a(·, t)gxx is a bounded linear operator from C(I; W 1

2 )∩
Lb(I; W 1

∞) in C(I; W−1
2 ).
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Proof. Since as is known, Δ is a bounded linear operator from W 1
p in

W−1
p for any p ∈ (1,∞) and t ∈ R ˇxed, the proof easily follows from our

assumptions.�
Consider the equations for the characteristics of equation (1):

d

dt
X1(t) =

√
a(X1(t), t), t ∈ I, (4)

d

dt
X2(t) = −

√
a(X2(t), t), t ∈ I. (5)

We supply equations (4) and (5) with the following initial data:

X i(0) = d ∈ R, i = 1, 2, (6)

where d is a parameter. Since the right-hand sides in (4) and (5) are continuous,
for any d ∈ R each of the sets of equations (4), (5) and (4), (6) has a local
solution X1(t; d) and X2(t; d), respectively, where we indicate explicitly that
these solutions depend on d. A simple corollary of assumption (A1) is that each
of these two solutions is unique. Since the function a is bounded, each of these
two solutions is global, that is, it can be uniquely continued on the entire real
line t ∈ R.

Now, we introduce the functions χ(x, t) and η(x, t) by setting χ(X1(t; d), t) ≡
d and η(X2(t; d), t) ≡ d, where t and d run over the entire real line. Clearly, for
any (x, t) ∈ R, the quantities χ(x, t) and η(x, t) are well deˇned.

Lemma 2. Let I be a compact interval. There exist the derivatives X iy(t; y),
Xity(t; y) and X itt(t; y) and they belong to Lb(I; L∞). In addition, there exist
0 < c1 < C1 such that

c1 � Xiy(t; y) � C1 for any t ∈ I fixed for almost all x ∈ R,

and for any x0 ∈ R one has: Xiy(t; ·), Xity(t; ·), X itt(t; ·) ∈ C(I; L2(x0 − 1,
x0 + 1)).

Proof. We shall prove this claim only for X1(t; d) because for X2(t; d) it
can be made by complete analogy. We have formally

d

dt
X1y(t; y) = a′

x(X1(t, y), t)X1y(t; y), (7)

X1y(0; y) = 1. (8)

The unique solution of equations (7) and (8) can be represented as follows:

X
′
1y(t; y) = e

∫
t
0 a′

x(X1(s,y),s)ds, (9)
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therefore

X1(t; y) =
∫ y

0

dre
∫ t
0 a′

x(X1(s,r),s)ds + X1(t; 0). (10)

It is easily seen that one has for the function X1(t; y) in (10):

∂2

∂t∂y
X1(t; y) =

∂2

∂y∂t
X1(t; y)

for any t ∈ I ˇxed for almost all x ∈ R. Therefore, the formal differentiation
above is correct and indeed, the derivative X1y satisˇes equations (7) and (8) and
is given by (9). The other part of lemma 2 can be proved by complete analogy.�

Lemma 3. The derivatives χ′
t(x, t), η′

t(x, t), χ′
x(x, t), η′

x(x, t), χ′
tt(x, t),

ηtt(x, t), χ′′
tx(x, t), η′′

tx(x, t), χ′′
xx(t; x) and η′′

xx(t; x) are well-deˇned, each of
them belongs to Lb(I; L∞) and for any x0 ∈ R each of these functions belongs
to C(I; L2(x0 − 1, x0 + 1)).

Proof. We establish our proof only for the function χ because for η it can
be made by complete analogy. Consider the following two Cauchy problems:

X1t =
√

a(X1(t), t), X1(t0) = y

and

X2t = −
√

a(X2(t); t), X2(t0) = y

and denote by Xi(t0, t; y), i = 1, 2, their solutions, respectively. By analogy
with the proof of lemma 2, we have

χ′
y(y, t) = lim

Δy→0

χ(y + Δy, t) − χ(y, t)
Δy

=

= lim
Δy→0

X1(t, 0; y + Δy) − X1(t, 0; y)
Δy

= X1y(t, 0; y) ∈ Lb(I; L∞).

By analogy,

χ′
t(y, t) = X1t(t, 0; y) =

= −
√

a(y, t)e
−

t∫

0
(2a(X1(t,r;y),r))−1/2a′

x(X1(t,r;y),r)dr
∈ Lb(I; L∞)

and

η′
t(y, t) = X2t(t, 0; y) =

=
√

a(y, t)e
−

t∫

0
(2a(X2(t,r;y),r))−1/2a′

x(X2(t,r;y),r)dr
∈ Lb(I; L∞).
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From this, χtt(·, t) and χ′′
tx(·, t) are in Lb(I; L∞). In addition, each of the latter

two quantities for any x0 ∈ R belongs to C(I; L2(x0 − 1, x0 + 1)).
Now, we have

0 ≡ d

dt
χ(X1(t; d), t) =

∂χ(x, t)
∂t

∣∣∣∣
x=X1(t;d)

+
∂χ(x, t)

∂x

∣∣∣∣
x=X1(t;d)

√
a(X1(t; d), t).

Take formally one more derivative over t in this relation. We obtain formally:

0 ≡ d

dt
[χ′

t(x, t) +
√

a(x, t)χ′
x(x, t)]

∣∣∣∣
x=X1(t;d)

=

= χ′′
tt(X1(t; d), t) + a(X1(t, d), t)χ′′

xx(X1(t; d), t)+

+ 2
√

a(X1(t, d), t)χ′′
xt(X1(t; d), t) + χ′

x(X1(t; d), t)×

×
a′

x(X1(t, d), t)
√

a(X1(t; d), t) + a′
t(X1(t; d), t)

2
√

a(X1(t; d), t)
.

Therefore, since according to the arguments above, all the terms in the right-hand
side of this relation, except maybe the second one, are well-deˇned and are in
Lb(I; L∞), the second term is still well-deˇned and χ′′

xx(·, t) ∈ Lb(I; L∞). In
addition, we derive from the latter relations:

χ′
t(x, t) +

√
a(x, t)χ′

x(x, t) = 0, η′
t(x, t) −

√
a(x, t)η′

x(x, t) = 0,

−χ′′
tt(x, t) + a(x, t)χ′′

xx(x, t) +
1
2
χ′

t(x, t)

{
a′

t(x, t)
a(x, t)

− a′
x(x, t)√
a(x, t)

}
= 0

and

−η′′
tt(x, t) + a(x, t)η′′

xx(x, t) +
1
2
η′

t(x, t)

{
a′

t(x, t)
a(x, t)

+
a′

x(x, t)√
a(x, t)

}
= 0

for any t ∈ I ˇxed for almost all x ∈ R. The other part of the lemma can be
proved by similar arguments.�

Now, make in problem (1)Ä(2) the change of independent variables by passing
from the variables (x, t) to the variables (χ, η). According to the results above,
this is a one-to-one correspondence of I × R onto its image and its Jacobian

J(x, t) =
∂(χ, η)
∂(x, t)

is in Lb(I; R) with its inverse one. Then, according to [7],

problem (1)Ä(2) takes the following form (see Subsec. 3.1 in [7]):

v′′χη = b1(χ, η)v + c1(χ, η)vχ + d1(χ, η)vη + f1(χ, η, v, vχ, vη), v = v(χ, η),
(11)
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v
∣∣
L

= u0, (vχχt + vηηt)
∣∣
L

= u1, (12)

where L = {(χ, η) ∈ R
2 : χ = η} and, in view of the relations

χ′
t(x, t) +

√
a(x, t)χ′

x(x, t) = 0, η′
t(x, t) −

√
a(x, t)η′

x(x, t) = 0,

−χ′′
tt(x, t) + a(x, t)χ′′(x, t) + +

1
2
χ′

t(x, t)

{
a′

t(x, t)
a(x, t)

− a′
x(x, t)√
a(x, t)

}
= 0

and

−η′′
tt + a(x, t)η′′

xx(x, t) +
1
2
η′

t(x, t)

{
a′

t(x, t)
a(x, t)

+
a′

x(x, t)√
a(x, t)

}
= 0

obtained in the proof of lemma 3, we have

b1 =
b

a1
, c1 =

((
c − 1

2

(
a′

t

a
− a′

x√
a

))
χ′

t + dχ′
x

)
/a1,

d1 =
((

c − 1
2

(
a′

t

a
+

a′
x√
a

))
η′

t + dη′
x

)
/a1, f1 = f/a1 and a1(χ, η) = 4χtηt.

(13)
In view of the proof of lemma 3, there exist 0 < c2 < C2 such that

c2 � −a1 � C2 (14)

for an arbitrary t ∈ I ˇxed for almost all x ∈ R.

Lemma 4. There exist 0 < c3 < C3 such that the Jacobian J := det
∂(χ, η)
∂(x, t)

satisˇes
c3 � J � C3

for any t ∈ I ˇxed for almost all x ∈ R. In addition, for any x0 ∈ R one has:
J(·, t) ∈ C(I; L2(x0 − 1, x0 + 1)).

Proof follows from lemma 3.�
Let A > 0, P = {(t, x) : t ∈ [−A, A], x ∈ R} and P1 be its image under the

transformation (x, t) → (χ, η). Then, there exists A1 > 0 such that P1 contains
the domain G := {(χ, η) ∈ R

2 : |χ − η| � A1}.
According to lemmas 2 and 3, the coefˇcients b1, c1 and d1, regarded as func-

tions of x and t, belong to Lb(I; L∞). We deˇne weak solutions of equation (11)
as follows.

Deˇnition 2. Let G ⊂ R
2 be an open set. We say that a function

v = v(χ, η) ∈ L∞,loc(G) is a weak solution of equation (11) in G if it has

the derivatives
∂v

∂χ
,
∂v

∂η
that belong to L∞,loc(G) and the derivative

∂2v

∂χ∂η
that

8



belongs to L1,loc(G) (these derivatives are understood in the sense of distribu-

tions so that in particular
∂

∂χ

(
∂v

∂η

)
=

∂

∂η

(
∂v

∂χ

)
) and if

∂2v

∂χ∂η
is equal to the

expression in the right-hand side of (11) in the sense of L1,loc(G).
Let v(χ, η) be a weak solution of equation (11) and O ⊂ G, where O =

{(χ, η) : χ0 − δ1 < χ < χ0 + δ1, χ0 − δ2 < η < χ0 + δ2} and χ0 ∈ R, δ1 > 0
and δ2 > 0 are arbitrary constants. Then, by the Fubini theorem and Sobolev
embedding, v(χ, η) is continuous in G and v′χ(χ, η) is continuous as a function of
η ∈ (χ0 − δ2, χ0 + δ2), for almost all ˇxed χ ∈ (χ0 − δ1, χ0 + δ1). Therefore, for
almost all (χ, χ) ∈ L∩O (in the sense of the Lebesgue measure on L) there exists
a limit lim

η→χ
v′χ(χ, η). In addition, the initial conditions (2) determine uniquely

the derivative v′χ(χ, η)
∣∣
η=χ

(in fact, v′χ(χ, η)
∣∣
η=χ

= u′
0x(x) − u1(x)√

a(x, 0)
because

χ ≡ x on L). These arguments allow us to accept the following deˇnition.
Deˇnition 3. We say that a function v(χ, η) is a weak solution of problem

(11)Ä(12) if it is a weak solution of equation (11), it satisˇes the condition v
∣∣
L

=
u0, the limit of v′χ(χ, η) exists as η goes to χ ∈ R and χ is ˇxed for almost all

χ ∈ R and if this limit coincides with v′χ(χ, η)
∣∣
η=χ

= u′
0x(x) − u1(x)√

a(x, 0)
for

almost all χ = x ∈ R (note that χ ≡ x on L).
This deˇnition looks clumsy, but it is sufˇcient for our goals.
Now, we can rewrite equations (11) and (12) in the following form:

v(χ, η) = −
∫ η

χ

dr

∫ η

r

ds[b1(r, s)v+c1(r, s)v′r+d1(r, s)v′s+f1(r, s, v, v′r , v
′
s)]−

−
∫ η

χ

drv′r(r, s)
∣∣
s=r

+ v(η, η). (15)

By complete analogy, one may interchange χ and η in this representation. In
addition, observe that when we pass from the variables (x, t) to (χ, η), the half-
plane {(x, t) ∈ R : t > 0} transforms in the half-plane {(χ, η) ∈ R : χ < η}.

Make in (15) the inverse change of variables passing from the variables (χ, η)
to (x, t). Then, we obtain

v(x, t) = −
∫

S

drdsJ [b1(χ, η)v(χ, η) + c1(χ, η)(vrrχ + vssχ)+

+ d1(χ, η)(vrrη + vssη) + f1(t, x, v, vrrχ + vssχ, vrrη + vssη)]

∣∣∣∣∣
χ=χ(r,s)
η=η(r,s)

+

+
1
2

∫ x2(x,t)

x1(x,t)

1√
a(r, 0)

u1(r)dr +
1
2
[u0(x1(x, t)) + u0(x2(x, t))], (16)

9



where S is the curvilinear triangle bounded by the segments of the X axis and
of two characteristics X1 and X2 each of which contains the point (x, t), and
x1(x, t) and x2(x, t) are the points of intersection of these two characteristics
with the X axis, respectively.

Lemma 5. Let I be a compact interval. Then, there exists C4 > 0 such that

‖b1(·, t‖Lb(I;L∞) + ‖c1(·, t‖Lb(I;L∞) + ‖d1(·, t)‖Lb(I;L∞) � C4

and for any x0 ∈ R one has: b1(t, ·), c1(t, ·), d1(t, ·) ∈ C(I; L2(x0 − 1, x0 + 1)).
Proof follows from (13), (14) and lemmas 2 and 3.�
Denote

(S(t, w))(x, t) = −J(x, t)[b1(χ, η)w(χ, η) + c1(χ, η)(wxxχ + wttχ)+

+ d1(χ, η)(wxxη + wttη) + f1(t, x, w, wxxχ + wttχ, wxxη + wttη)]
∣∣∣∣

χ=χ(x,t)
η=η(x,t)

,

[R(s)g](x, t) =

X2(t,s;x)∫
X1(t,s;x)

g(z)dz

and

(Pw)(x, t) =
t∫
0

{R(s)[(S(s, w))(·, s)]}(x, t)ds.

Then, equation (16) reads

v(x, t) = (Pv)(x, t)+
1
2

x2(x,t)∫
x1(x,t)

1√
a(r, 0)

u1(r)dr+
1
2
[u0(x1(x, t))+u0(x2(x, t))].

(17)
Lemma 6. Let [−T, T ] = I 
 0 be a compact interval. Then
1) For any t ∈ I S is a continuous operator from X ∩ Y in C(I; L2) ∩

Lb(I; L∞) and for any ball B ⊂ X ∩ Y there exists Ĉ > 0 such that

‖S(·, w1) − S(·, w2)‖C(I;L2)∩Lb(I;L∞) � Ĉ‖w1 − w2‖X∩Y

for any w1, w2 ∈ B;
2) P is a continuous operator from C(I; L2) ∩ Lb(I; L∞) in X ∩ Y and for

any ball B ⊂ C(I; L2) ∩ Lb(I; L∞) there exists a constant C̃ = C̃(T ) > 0 such
that C̃(T ) → +0 as T → +0 and that

‖(Pw1) − (Pw2)‖X∩Y � C̃(T )‖w1 − w2‖C(I;L2)∩Lb(I;L∞)

for any w1, w2 ∈ B.

10



Proof is a simple corollary of assumptions (A1)Ä(A3) and lemmas 2 and 3.�
Lemma 7. Under the assumptions of theorem 1 for any R > 0 there ex-

ists T > 0 such that for any initial data (u0, u1) satisfying ‖u0‖W 1
2 ∩W 1

∞
+

‖u1‖L2∩L∞ � R equation (16) has a unique solution v ∈ X ∩ Y in the interval
of time I = [−T, T ]. Denote also by K0 ⊂ R the support supp(u0, u1) of the
initial data (u0, u1) and by K(t) the set

⋃
x∈K0

[X2(t; x), X1(t; x)]. Then, for any

t ∈ I , where I is the just taken interval, one has: supp(u(·, t)) ⊂ K(t).
Proof is usual, and it is based on the contraction mapping principle. So, we

only sketch it, quite brie�y. Observe ˇrst that the expression in (16)

h(x, t) =
1
2

x2(x,t)∫
x1(x,t)

1√
a(r, 0)

u1(r)dr +
1
2
[u0(x1(x, t)) + u0(x2(x, t))]

is in X ∩ Y . Let us set

M = {w ∈ X ∩ Y : ‖w − h‖X∩Y � 1}.

Then M , taken with the distance ρ(w1, w2) = ‖w1 − w2‖X∩Y , is a nonempty
complete metric space. In addition, it easily follows from lemma 6 that there exists
T > 0 depending only on ‖u0‖W 1

2 ∩W 1
∞

and ‖u1‖L2∩L∞ such that the operator in
the right-hand side of (17) maps M into M and is a contraction. Therefore, for
this T > 0 this map has a unique ˇxed point in M . Thus, equation (17) has a
unique local solution.

To prove the last claim of lemma 7 about the support of a solution u(x, t),
it sufˇces to take in place of the set M above the set

M1 := {w ∈ X ∩ Y : ‖w − h‖X∩Y � 1 and w(x, t) = 0

for any t ∈ I and x ∈ R \ K(t)}.
It is easily seen that the operator in the right-hand side of (17) still maps M1 into
itself and is a contraction for T > 0 sufˇciently small. This completes our sketch
of the proof of lemma 7.�

Lemma 8. Let I = (−T1, T2), where T1, T2 > 0. Under the assumptions of
theorem 1 a function v(x, t) ∈ X ∩ Y is a weak solution of problem (1)Ä(2) if
and only if it is a solution of equation (16).

Proof. Let a function v(·, t) ∈ X ∩ Y satisˇes equation (16). Then, after
some calculations, (v(·, 0), v′t(·, 0)) = (u0, u1) in the sense of the space X ∩ Y .
Take an interval I1 = (−T1+δ, T2−δ), where δ ∈ (0, min{T1; T2}) is sufˇciently
small, and C∞-approximations vε, where ε > 0 is sufˇciently small, of v(x, t)
such that the families {vε} and {vεt} are bounded, respectively, in Lb(I1; W 1

∞)
and in Lb(I1; L∞) and that vε → v in C(I1; W 1

2 ) ∩ C1(I1; L2). Then, by

11



lemma 6 vε satisˇes a slightly perturbed equation (16), with an additional term
fε(x, t) in the right-hand side such that ‖fε(·, t)‖Lb(I1;W 1

∞)+‖f ′
εt(·, t)‖Lb(I1;L∞) �

� C uniformly in ε > 0 and that ‖fε(·, t)‖C(I1;W 1
2 )∩C1(I1;L2) → 0 as ε → +0.

Correspondingly, the function vε(χ, η) := vε(x(χ, η), t(χ, η)) satisˇes a slightly
perturbed equation (15), with an additional term f ε(χ, η) in the right-hand side
that belongs to W 1

2,loc((χ, η)(I1 × R)) and goes to 0 in this space as ε → +0.
Therefore, this function vε is a solution of a slightly perturbed equation (11).
This perturbed equation (11) contains an additional term gε(χ, η) in the right-
hand side where, in view of lemmas 2 and 3 and the implicit function theorem,

gε(χ, η) =
∂2f ε(χ, η)

∂χ∂η
belongs in particular to L1,loc((χ, η)(I1 × R)).

Set gε(x, t) = gε(χ(x, t), η(x, t)). Then, in particular gε ∈ L1,loc(I1 × R).
Take an arbitrary ˇnite ϕ(χ, η) ∈ W 1

2 ((χ, η)(I1 × R)) and observe that

∫
I1×R

J(x, t)ϕ(χ(x, t), η(x, t))gε(x, t)dxdt =
∫

(χ,η)(I1×R)

ϕ(χ, η)gε(χ, η)dχdη =

= −
∫

(χ,η)(I1×R)

∂ϕ(χ, η)
∂η

∂f ε(χ, η)
∂χ

dχdη → 0 as ε → +0. (18)

In addition, observe that the function J(x, t)ϕ(χ(x, t), η(x, t)) runs over the whole
space W 1

2,loc(I1 × R) when ϕ(χ, η) runs over the whole W 1
2,loc((χ, η)(I1 × R)).

To express these two facts, we shall write formally gε → 0 in W−1
2,loc(I1 × R) as

ε → +0.
Let us now make in equation (11), written for vε, the change of variables

passing from the variables (χ, η) to (x, t). Then,

vεtt = a(x, t)vεxx + f2(t, x, vε, vεt, vεx) + gε(x, t), (19)

where f2(t, x, v, r, s) = b(x, t)v+c(x, t)r+d(x, t)s+f(t, x, v, r, s), gε(·, t) → 0 in
W−1

2,loc and vεxx → vxx in C(I1; W−1
2 ). Take an arbitrary ˇnite ϕ ∈ W 1

2 (I1×R),
multiply equation (19) by ϕ and integrate the result over I1 × R. Then,∫
I1×R

dxdtϕ(x, t)[vεtt − a(x, t)vεxx − f2(t, x, vε, vεt, vεx)] + (ϕ, gε)L2(I1×R) = 0.

From this, applying lemma 1 and (18), we obtain that vtt ∈ C(I1; W−1
2 ) and∫

I1×R

dxdtϕ(x, t)[vtt − a(x, t)vxx − f2(t, x, v, vt, vx)] = 0.

Thus, v(x, t) is a weak solution of problem (1)Ä(2). Converse is still valid.�
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Let us prove the uniqueness of a weak solution of problem (1)Ä(2). On the
contrary, suppose that this problem has two different weak solutions u1 and u2.
According to lemma 8, u1 and u2 are also solutions of equation (16) (or (17))
in an interval of time I = [−T, T ], T > 0. Without loss of the generality,
we may accept that u1(·, t) �≡ u2(·, t) as elements of W 1

2 ∩ W 1
∞ in an arbitrary

small right half-neighborhood of the point t = 0. But according to lemma 7, an
X ∩ Y -solution of equation (17) is unique in a sufˇciently small interval of time
[0, t0). Thus, u1(·, t) ≡ u2(·, t) in a right half-neighborhood of the point t = 0.
This contradiction proves that a weak solution of problem (1)Ä(2) is unique.

As is well known, a ˇxed point of a contraction mapping, which is the map
in right-hand side of (17) in our case, depends on u0 and u1 continuously, in
the same sense as the local continuous dependence on (u0, u1) in theorem 1.
So, locally, in a small neighborhood of the point t = 0 we have the continuous
dependence of a weak solution of problem (1)Ä(2) on (u0, u1). Now, the con-
tinuous dependence for an arbitrary compact interval I of time t on which our
weak solution of problem (1)Ä(2) can be continued the result can be obtained by
standard methods by extending it, step by step, for all values of t.

By the standard procedure, our weak solution of problem (1)Ä(2) can be
uniquely continued on a maximal interval (−T1, T2) such that either
lim sup

t→−T1+0
[‖u(·, t)‖W 1

2 ∩W 1
∞

+‖ut(·, t)‖L2∩L∞ ] = +∞ or T1 = −∞ and by analogy

for T2. Our proof of theorem 1 is complete.

3. GLOBAL EXISTENCE. PROOF OF THEOREM 2

Everywhere in this Section, unless otherwise is stated, we accept that the
assumptions of theorem 2 are valid. Everywhere in the following: b ≡ c ≡ d ≡ 0,
f = f(u) in equation (1) (that is, f does not depend on t, x, ut and ux) and
f(0) = 0. We shall prove this result. In view of theorem 1, for this aim, it
sufˇces to show that for any bounded interval I 
 0 on which our weak solution
u(x, t) can be continued there exists C > 0 such that ‖u(·, t)‖X∪Y � C for
this interval I . First, we shall establish the following three technical results
(lemmas 9Ä11).

Lemma 9. Let for some coefˇcient a = a(x, t) and a function f = f(u)
that satisfy assumptions (A1)Ä(A3) problem (1)Ä(2) have a solution u(x, t) in
an interval of time I1 and this solution belongs to C(I; W 3

2 ) ∩ C1(I; W 2
2 ) ∩

C2(I; W 1
2 ) for any compact interval I ⊂ I1. Let in addition uf(u) � 0 for any

u ∈ R. Then, for any bounded interval I ⊂ I1 there exists C > 0 such that
‖u‖C(I;W 1

2 )∩C1(I;L2) � C.
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Proof. Denote F (u) =
u∫
0

f(s)ds and E(u) =
∫
R

{ 1
2 [u2

t (x, t)+a(x, t)u2
x(x, t)]−

F (u(x, t)}dx. We have after an integration by parts:

d

dt
E(u(·, t)) =

∫
R

[1/2at(x, t)u2
x(x, t) − ax(x, t)ut(x, t)ux(x, t)]dx �

� (1 + 2a−1
1 )a3E(u(·, t)),

therefore
E(u(·, t)) � E(u(·, 0))e(1+2a−1

1 )a3t,

where a1 = a1(I) > 0 is the constant in (3) and a3 = a3(I) > 0 is a constant
such that ‖∇a(·, t)‖Lb(I;L∞) � a3. Now

‖u(·, t‖2
L2

=
∫
R

⎧⎨
⎩

t∫
0

u′
r(x, r)dr + u0(x)

⎫⎬
⎭

2

dx �

� 2

⎧⎨
⎩‖u0‖2

L2
+ t

t∫
0

∫
R

u′2
r(x, r)dx dr

⎫⎬
⎭ .�

Lemma 10. Let s � 3 be integer, f(·) ∈ Cs−1
loc (R), f(0) = 0 and let a

coefˇcient a(x, t) that satisˇes assumption (A1) obey in addition the following
two hypotheses.

1) For any x0 ∈ R and a bounded interval I a(·, t) ∈ C(I; W s
2 (x0 − 1, x0 +

1)) ∩ C1(I; W s−1
2 (x0 − 1, x0 + 1)).

2) Let for any bounded interval I one has: a
(k)
t (·, t) ∈ Lb(I; W s−k

∞ ) for
k = 0, 1.

Then, for any (u0, u1) ∈ W s
2 × W s−1

2 there exists T > 0 that depends only
on ‖u0‖W s

2
+ ‖u1‖W s−1

2
and a unique solution of problem (1)Ä(2) of the class

C(I; W s
2 ) ∩ C1(I; W s−1

2 ), where I = [−T, T ].
Proof in fact repeats our proof of theorem 1. So, we establish only the main

idea of this proof. Since it is clear that a W s
2 -solution in this lemma is also a

weak solution of this problem, in view of lemma 8, we have to prove only that
equation (16) has a unique local W s

2 -solution the life time of which is bounded
from below by a positive constant that depends only on ‖u0‖W s

2
+ ‖u1‖W s−1

2
.

For a bounded interval I 
 0 denote Xs = C(I; W s
2 ) ∩ C1(I; W s−1

2 ). Ob-
serve that, as in lemmas 2 and 3, there exist 0 < c < C such that

c � X
′
it(t, s; x), X

′
ix(t, s; x) � C, i = 1, 2,

14



for any t ∈ I, s ∈ [0, t] and x ∈ R and that for any such t, s and x there exist

partial derivatives in x of the functions Xi(t, s; x), X
′
it(t, s; x) and X

′
ix(t, s; x),

where i = 1, 2, of the orders 0, 1, ..., s − 1 and that each of these derivatives
belongs to Lb(I; L∞) and, for any x0 ∈ R, to C(I; L2(x0 − 1, x0 + 1)). By
analogy, there exist partial derivatives in x of the orders 0, 1, ..., s − 1 of the
coefˇcients b1, c1 and d1 and of the Jacobian J and each of these derivatives
belongs to the same spaces.

By this observation, S is a continuous operator from Xs in Xs−1 and for
any ball B ⊂ Xs there exists C = C(B) > 0 such that

‖S(w1) − S(w2)‖Xs−1 � C‖w1 − w2‖Xs

for any w1, w2 ∈ B. By this, P is a continuous operator from Xs−1 in Xs and
for any ball B ⊂ Xs−1 there exists C1 = C1(B, T ) > 0 with C1(B, T ) → +0 as
T → +0 such that

‖P (w1) − P (w2)‖Xs � C1‖w1 − w2‖Xs−1

for any w1, w2 ∈ B.
Now, one can prove our lemma completely as the ˇrst part of lemma 7, the

existence and uniqueness of a local solution of equation (16).�
Lemma 11. Let the assumptions of lemma 10 be valid with s = 3, (u0, u1) ∈

W 3
2 × W 2

2 and (−T ′
3, T

′′
3 ) be the maximal interval of time t on which the corre-

sponding W 3
2 -solution can be continued (here T ′

3, T
′′
3 > 0). Clearly, for our initial

data we have in addition the existence and uniqueness of a weak solution u(x, t)
of problem (1)Ä(2) in an interval of time I1 
 0 and clearly, (−T ′

3, T
′′
3 ) ⊂ I1 and

this weak solution u(x, t) coincides with the W 3
2 -solution in the whole interval

(−T ′
3, T

′′
3 ). Then, we have the following.

1) In fact, (−T ′
3, T

′′
3 ) = I1.

2) Let we have initial data (uh
0 , uh

1) ∈ W 3
2 × W 2

2 , a coefˇcient ah and a
function fh = fh(u) in (1) that depend on a parameter h ∈ (0, 1]. Suppose that
for any h ∈ (0, 1] this coefˇcient ah satisˇes assumption (A1) and assumptions
1) and 2) in lemma 10 with s = 3. Let for any bounded interval I the constants
a1, a2 in (3) do not depend on h ∈ (0, 1] and the norms of ah(x, t) in the
spaces of functions indicated in (A1) are bounded uniformly in h. Let in addition
for any bounded open interval Î ⊂ R the norm of fh in C1(Î) is bounded
uniformly with respect to h ∈ (0, 1] and fh(0) = 0 for any h ∈ (0, 1]. Now,
suppose that (uh

0 , uh
1 ) → (u0, u1) in W 1

2 × L2 as h → +0, that the quantity
‖uh

0‖W 1
∞

+ ‖uh
1‖L∞ is bounded uniformly with respect to h ∈ (0, 1] and that

for any bounded interval I and x0 ∈ R the coefˇcients ah and their gradients
∇ah(x, t) converge, respectively, to a and ∇a(x, t) in C(I; L2(x0−1, x0+1)) as
h → +0 and for any bounded interval J ⊂ R the functions fh(·) converge to f(·)
in C1(J). Denote by uh(x, t) the corresponding W 3

2 -solution of problem (1)Ä(2)
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taken with a = ah, f = fh and with the initial data (u0, u1) = (uh
0 , uh

1) and by
u(x, t) the weak solution of this problem taken with the limit coefˇcient a, with
the limit function f and with the initial data (u0, u1). Then, for any compact
interval I on which our weak solution u(x, t) can be continued for any h > 0
sufˇciently small, the W 3

2 -solution uh(x, t) can be continued on this interval I
and one has that

‖uh(·, t) − u(·, t)‖C(I;W 1
2 )∩C1(I;L2) → 0

as h → +0 and that there exists C > 0 such that

‖uh(·, t)‖Lb(I;W 1
∞) + ‖uh

t (·, t)‖Lb(I;L∞) � C

for any h > 0 sufˇciently small.
Proof. As for claim 1), we shall prove only that [0, T ′′

3 ) = I1 ∩ [0, +∞)
because the relation (−T ′

3, 0] = I1∩ (−∞, 0] can be proved by complete analogy.
Let I2 
 0 be an arbitrary bounded interval on which our weak solution can
be continued and I = I2 ∩ [0, +∞). We need to prove only that there exists a
constant C = C(I) > 0 such that ‖u(·, t)‖W 3

2
+ ‖ut(·, t)‖W 2

2
� C(I) for any

t ∈ I for which our W 3
2 -solution u(x, t) is determined. From (16), we obtain

‖u(·, t)‖W 3
2

+ ‖ut(·, t)‖W 2
2

�

� C

t∫
0

ds

∥∥∥∥∥
X2(t,s;·)∫

X1(t,s;·)

dyJ(y, s)[b1(χ, η)u(χ, η) + c1(χ, η)(uyyχ + ussχ)+

+ d1(χ, η)(uyyη + ussη) + f1(u(χ, η))]
∣∣∣∣

χ=χ(y,s)
η=η(y,s)

∥∥∥∥∥
W 3

2

+

+
2∑

i=1

t∫
0

ds{
∥∥∥∥∥X

′
it(t, s; ·)J(X i(t, s; ·), s)[b1(χ, η)u(χ, η)+c1(χ, η)(uyyχ+ussχ)+

+ d1(χ, η)(uyyη + ussη) + f1(u(χ, η))]
∣∣∣∣ χ=χ(Xi(t,s;·),s)

η=η(Xi(t,s,·),s)

∥∥∥∥∥
W 2

2

, (20)

where the constant C > 0 does not depend on t ∈ I, s ∈ [0, t] and x. Observe
that, as in lemmas 2 and 3 and in the proof of the previous lemma 10, there exist
0 < c < C such that

c � X
′
it(t, s; x), X

′
ix(t, s; x) � C, i = 1, 2,

for any t ∈ I, s ∈ [0, t] and x ∈ R and that for any such t, s and x there exist

partial derivatives in x of the functions Xi(t, s; x), X
′
it(t, s; x) and X

′
ix(t, s; x),

16



where i = 1, 2, of orders 1 and 2 and that each of these derivatives belongs to
Lb(I; L∞) and, for any x0 ∈ R, to C(I; L2(x0 − 1, x0 + 1)). By analogy, there
exist partial derivatives in x of orders 0, 1 and 2 of the coefˇcients b1, c1 and d1

and of the Jacobian J and each of these derivatives belongs to the same spaces.
The expression in the right-hand side of (20) contains the norms of the kind

∥∥∥∥∥
X2(t,s;·)∫

X1(t,s;·)

dyJ(y, s)[b1(χ, η)u(χ, η) + c1(χ, η)(uyyχ + ussχ)+

+ d1(χ, η)(uyyη + ussη) + f1(u(χ, η))]
∣∣∣∣

χ=χ(y,s)
η=η(y,s)

∥∥∥∥∥
W 3

2

and∥∥∥∥∥X
′
it(t, s; ·)J(X i(t, s; ·), s)[b1(χ, η)u(χ, η) + c1(χ, η)(uyyχ + ussχ)+

+ d1(χ, η)(uyyη + ussη) + f1(u(χ, η))]
∣∣∣∣ χ=χ(Xi(t,s;·),s)

η=η(Xi(t,s;·),s)

∥∥∥∥∥
W 2

2

, i = 1, 2.

All these expressions can be estimated in the same way, therefore we shall do
this below only for the terms of the second kind. The observation is that each of
these latter terms can be estimated from above by a sum of L2-norms of

u(y, s)
∣∣
y=Xi(t,s;x)

, uy(y, s)
∣∣
y=Xi(t,s;x)

, us(y, s)
∣∣
y=Xi(t,s;x)

,

usy(y, s)
∣∣
y=Xi(t,s;x)

, uyy(y, s)
∣∣
y=Xi(t,s;x)

,

usyy(y, s)
∣∣
y=Xi(t,s;x)

, and uyyy(y, s)
∣∣
y=Xi(t,s;x)

, i = 1, 2,

(21)

multiplied by some coefˇcients, denoted by k(t, s, x). These coefˇcients k, being
regarded as functions of the arguments s and x with a ˇxed t, are bounded in
Lb([0, t]; L∞) uniformly with respect to t ∈ I . Therefore, we need to obtain only
upper bounds for the L2-norms of the expressions in (21). We have∫

R

[uyyy(y, s)
∣∣
y=X1(t,s;x)

]2dx =

=
∫
R

dy[X
′
1x(t, s; x(y))]−1u2

yyy(y, s) � C2‖uyyy(·, s)‖2
L2

,

where the constant C2 > 0 does not depend on u, t, s and x above. The L2-norms
of all other expressions in (21) can be estimated by complete analogy.

17



Summarizing the arguments above, we obtain ˇnally from (20) for any t ∈ I:

‖u(·, t)‖W 3
2

+ ‖ut(·, t)‖W 2
2

� C2

t∫
0

ds[‖u(·, s)‖W 3
2

+ ‖us(·, s)‖W 2
2
] + C3, (22)

where positive constants C2 and C3 do not depend on t ∈ I . Now, claim 1) of
our lemma for t > 0 follows by applying the Gronwell lemma. The case t < 0
can be treated by complete analogy. So, claim 1) is proved.

Let us prove claim 2). Let I 
 0 be a compact interval on which our
weak solution u(x, t) can be continued and let I+ = I ∩ [0, +∞) and I− =
I ∩ (−∞, 0]. Observe that, due to the results above, the coefˇcients bh

1 , ch
1 and

dh
1 , that correspond to a = ah(x, t), are bounded in Lb(I+; L∞) uniformly with

respect to h ∈ (0, 1] and that these coefˇcients converge, respectively, to b1, c1

and d1 at least in the sense that, for any x0 ∈ R,

sup
t∈I+

[‖bh
1 − b1‖L2(x0−1,x0+1) + ‖ch

1 − c1‖L2(x0−1,x0+1)+

+ ‖dh
1 − d1‖L2(x0−1,x0+1)] → 0

as h → +0.
Denote

g(x, t) = [b1(χ, η)u(χ, η)+c1(χ, η)(uxxχ+uttχ)+d1(χ, η)(uxxη+uttη)]
∣∣∣∣

χ=χ(x,t)
η=η(x,t)

and

gh(x, t) = [bh
1 (χ, η)uh(χ, η) + ch

1 (χ, η)(uh
xxχ + uh

t tχ)+

+ dh
1 (χ, η)(uh

xxη + uh
t tη)]

∣∣∣∣
χ=χ(x,t)
η=η(x,t)

.

Let us consider the difference between two samples of equation (16) written,
respectively, for uh(x, t) and for our weak solution u(x, t). Then, in view of
lemmas 2 and 3, it follows as when deriving (20) and (22) that

‖uh(·, t) − u(·, t)‖W 1
2

+ ‖uh
t (·, t) − ut(·, t)‖L2 �

� γ(h) + C1

t∫
0

ds

{
2∑

i=1

[sup
t,s,x

|Xh

it

′
(t, s; x)| + sup

t,s,x
|Xh

ix

′
(t, s; x)|]×

18



×‖gh(X
h

i (t, s; ·), s)−g(Xi(t, s; ·), s)‖L2 +

∥∥∥∥∥∥∥
X

h
2 (t,s;·)∫

X
h
1 (t,s;·)

dy(gh(y, s) − g(y, s))

∥∥∥∥∥∥∥
L2

+

+
2∑

i=1

[sup
t,s,x

|Xh

it

′
(t, s; x) − X it

′
(t, s; x)|+

+ sup
t,s,x

|Xh

ix

′
(t, s; x) − Xix

′
(t, s; x)|]‖g(·, s)‖L2

}
�

� γ1(h) + C2

t∫
0

ds[‖uh(·, s) − u(·, s)‖W 1
2

+ ‖uh
s (·, s) − us(·, s)‖L2 ],

where positive constants C1 and C2 do not depend on t ∈ I+ and h, γ(h), γ1(h) →
+0 as h → +0, all the supremums are taken over t ∈ I+, s ∈ [0, t] and x ∈ R

and where we applied the mean continuity of the Lebesgue integral.
Now, the ˇrst relation in claim 2) of our lemma for t > 0 follows by applying

the Gronwell lemma. The case t < 0 can be treated by complete analogy. The
second estimate in claim 2) of our lemma can now be obtained from an estimate
derived from (16) for ‖uh(·, t)‖W 1

∞
+ ‖ut(·, t)‖L∞ by analogy with (22). Our

proof of lemma 11 is complete.�

Lemma 12. Let a(x, t) and f = f(u) be as in lemma 10. Then, for a
W 3

2 -solution u(x, t) of problem (1)Ä(2) and integer n � 2 one has

1
2

d

dt

∫
R

{
(|ut(x, t)| + a1/2(x, t)|ux(x, t)|)2n+

+(|ut(x, t)| − a1/2(x, t)|ux(x, t)|)2n
}

=

=
n−1∑
k=0

2n

(
2n − 1

2k

) ∫
R

dxak(x, t)f(u(x, t))u2n−2k−1
t (x, t)u2k

x (x, t)−

−
n∑

k=1

k

(
2n

2k − 1

) ∫
R

dxak−1(x, t)ax(x, t)u2n−(2k−1)
t (x, t)u2k−1

x (x, t)+

+
n∑

k=1

k

(
2n

2k

) ∫
R

dxak−1(x, t)at(x, t)u2n−2k
t (x, t)u2k

x (x, t), (23)

where
(

n
m

)
= n!

m!(n−m)! (n � m).
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Proof. Consider the expression
d

dt

∫
R

dxu2n
t (x, t). We have

d

dt

∫
R

dxu2n
t (x, t) = 2n

∫
R

u2n−1
t (x, t)[a(x, t)uxx(x, t) + f(u(x, t))] =

= 2n

∫
R

dx{u2n−1
t (x, t)f(u(x, t)) − u2n−1

t (x, t)ux(x, t)ax(x, t)}−

−2n(2n− 1)
∫
R

dxa(x, t)u2n−2
t (x, t)ux(x, t)utx(x, t) =

= 2n

∫
R

dx{u2n−1
t (x, t)f(u(x, t)) − ax(x, t)u2n−1

t (x, t)ux(x, t)}−

−
(

2n

2

)
d

dt

∫
R

dxa(x, t)u2n−2
t (x, t)u2

x(x, t)+

+
(

2n

2

) ∫
R

dx
∂

∂t
[a(x, t)u2n−2

t (x, t)]u2
x(x, t) =

= 2n

∫
R

dx{u2n−1
t (x, t)f(u(x, t)) − ax(x, t)u2n−1

t (x, t)ux(x, t)}−

−
(

2n

2

)
d

dt

∫
R

dxa(x, t)u2n−2
t (x, t)u2

x(x, t)+

+
(

2n

2

)∫
R

dxat(x, t)u2n−2
t (x, t)u2

x(x, t)+

+(2n−2)
(

2n

2

) ∫
R

dxa(x, t)u2n−3
t (x, t)u2

x(x, t)[a(x, t)uxx(x, t)+ f(u(x, t))] =

= 2n

∫
R

dx{u2n−1
t (x, t)f(u(x, t)) − ax(x, t)u2n−1

t (x, t)ux(x, t)}−

−
(

2n

2

)
d

dt

∫
R

dxa(x, t)u2n−2
t (x, t)u2

x(x, t)+

+
(

2n

2

)∫
R

dxat(x, t)u2n−2
t (x, t)u2

x(x, t)+
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+(2n− 2)
(

2n

2

) ∫
R

dxa(x, t)u2n−3
t (x, t)u2

x(x, t)f(u(x, t))−

−(2n− 3)
(

2n

3

) ∫
R

dxa2(x, t)u2n−4
t (x, t)u3

x(x, t)utx(x, t)−

−2
(

2n

3

) ∫
R

dxa(x, t)ax(x, t)u2n−3
t (x, t)u3

x(x, t) =

= 2n

∫
R

dx{u2n−1
t (x, t)f(u(x, t)) − ax(x, t)u2n−1

t (x, t)ux(x, t)}−

−
(

2n

2

)
d

dt

∫
R

dxa(x, t)u2n−2
t (x, t)u2

x(x, t)+

+
(

2n

2

)∫
R

dxat(x, t)u2n−2
t (x, t)u2

x(x, t)+

+(2n− 2)
(

2n

2

) ∫
R

dxa(x, t)u2n−3
t (x, t)u2

x(x, t)f(u(x, t))−

−2
(

2n

3

) ∫
R

dxa(x, t)ax(x, t)u2n−3
t (x, t)u3

x(x, t)−

−
(

2n

4

)
d

dt

∫
R

dxa2(x, t)u2n−4
t (x, t)u4

x(x, t)+

(
2n

4

) ∫
R

dxu4
x(x, t)

∂

∂t
[a2(x, t)u2n−4

t (x, t)].

Continue this process. Then, ˇnally we obtain relation (23).�
Lemma 13. Let assumption (A1) be valid, b ≡ c ≡ d ≡ 0, f = f(u) ∈

C1
loc(R), f(0) = 0, uf(u) � 0 for any u ∈ R and let u(x, t) be a weak solution

of equations (1) and (2) that can be continued on an interval I 
 0. Then, for
any bounded interval I1 = (−T1, T2) ⊂ I (T1, T2 > 0) there exists C > 0 such
that ‖u(·, t)‖W 1

∞
+ ‖ut(·, t)‖L∞ � C for any t ∈ I1.

Proof. We shall establish our proof only for t ∈ [0, T2) because for t ∈
(−T1, 0] it can be made by complete analogy. First, let f = f(u), the coefˇcient
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a(x, t) and the initial data (u0, u1) be smooth as in lemma 10 and let u(x, t) be
the corresponding W 3

2 -solution of problem (1)Ä(2). Then, we have from (23):

1
2

d

dt

⎧⎨
⎩

∫
R

dx[(|ut(x, t)| + a
1
2 (x, t)|ux(x, t)|)2n+

+(|ut(x, t)| − a
1
2 (x, t)|ux(x, t)|)2n]

1
2n

⎫⎬
⎭ �

� 1
2

(
‖|ut(x, t)| + a

1
2 |ux(x, t)|‖2n

L2n
+ ‖|ut(x, t)| − a

1
2 |ux(x, t)|‖2n

L2n

) 1
2n−1

×

×
{

n−1∑
k=0

∫
R

dx|f(u(x, t))|
(

2n− 1
2k

)
|ut(x, t)|2n−2k−1ak(x, t)|ux(x, t)|2k+

+
n∑

k=1

∫
R

dx

(
2n

2k − 1

)
|ax(x, t)|
a

1
2 (x, t)

|ut(x, t)|2n−(2k−1)ak− 1
2 (x, t)|ux(x, t)|2k−1+

+
n∑

k=1

∫
R

dx

(
2n

2k

)
|at(x, t)|
a(x, t)

|ut(x, t)|2n−2kak(x, t)|ux(x, t)|2k

}
=

=
1
2

(
‖|ut(x, t)| + a

1
2 (x, t)|ux(x, t)|‖2n

L2n
+

‖|ut(x, t)| − a
1
2 (x, t)|ux(x, t)|‖2n

L2n

) 1
2n−1

× (I + II + III) (24)

(note that the divisor in the right-hand side of (24) does not vanish by the proved
uniqueness of a solution). In (24), we shall estimate the terms I, II and III
separately. We have by the Sobolev embedding and lemma 9:

I(t) � 1
2
C1(T2)

∫
R

dx[(|ut(x, t)| + a
1
2 (x, t)|ux(x, t)|)2n−1+

+ (|ut(x, t)| − a
1
2 (x, t)|ux(x, t)|)2n−1],

where the constant C1 > 0 does not depend on n > 0 integer sufˇciently large.
Applying the Héolder inequality for sums, we obtain from this estimate:

I(t) � C12
1
2n

⎧⎨
⎩

∫
R

dx[(|ut(x, t)| + a
1
2 (x, t)|ux(x, t)|)2n+

+(|ut(x, t)| − a
1
2 (x, t)|ux(x, t)|)2n]

⎫⎬
⎭

1− 1
2n

. (25)
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For II(t), we have by analogy:

II(t) � a3

2
√

a1

∫
R

dx[(|ut(x, t)| + a
1
2 (x, t)|ux(x, t)|)2n−

− (|ut(x, t)| − a
1
2 (x, t)|ux(x, t)|)2n]. (26)

Finally, for III(t), by analogy:

III(t) � a3

2a1

∫
R

dx[(|ut(x, t)| + a
1
2 (x, t)|ux(x, t)|)2n+

+ (|ut(x, t)| − a
1
2 (x, t)|ux(x, t)|)2n]. (27)

Thus, from (24)Ä(27), for t ∈ [0, T2],

⎧⎨
⎩

∫
R

dx[(|ut(x, t)| + a
1
2 (x, t)|ux(x, t)|)2n+

+(|ut(x, t)| − a
1
2 (x, t)|ux(x, t)|)2n]

⎫⎬
⎭

1
2n

�

�

⎧⎨
⎩

∫
R

dx[(|ut(x, 0)| + a
1
2 (x, 0)|ux(x, 0)|)2n+

+(|ut(x, 0)| − a
1
2 (x, 0)|ux(x, 0)|)2n]

⎫⎬
⎭

1
2n

+

+ 2C1T2 + C3

t∫
0

ds

⎧⎨
⎩

∫
R

dx[(|us(x, s)| + a
1
2 (x, s)|ux(x, s)|)2n+

+(|us(x, s)| − a
1
2 (x, s)|ux(x, s)|)2n]

⎫⎬
⎭

1
2n

, (28)

where the constant C3 > 0 does not depend on t ∈ [0, T2) and on n > 0
integer sufˇciently large. Now, under the assumptions of our lemma, in view
of lemma 11, for a weak solution estimate (28) can be obtained by taking the
limit over sequences of smooth (u0, u1), coefˇcients a(x, t) and functions f(u)
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and the corresponding W 3
2 -solutions of problem (1)Ä(2) converging, respectively,

to nonsmooth (u0, u1), a(x, t), f(u) and a weak solution u(x, t) in the sense
indicated in lemma 11.

From (28), we have for a weak solution u(x, t) of problem (1)Ä(2) by apply-
ing the Gronwell lemma:

‖|ut(x, t)| + a
1
2 (x, t)|ux(x, t)|‖L2n � C4, (29)

where the constant C4 > 0 does not depend on t ∈ [0, T2) and on n > 0
integer sufˇciently large. For t ∈ (−T1, 0], estimate (29) still holds by analogous
arguments. From (29), by taking the limit n → ∞,

‖|ut(x, t)| + a
1
2 (x, t)|ux(x, t)|‖Lb((−T1,T2);L∞) � C4,

and lemma 13 is proved.�
Now, the result in theorem 2 follows from theorem 1 and lemmas 9 and 13.�
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